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Accurate temporal expression normalization, the process of assigning a numerical value to a
temporal expression, is essential for tasks such as timeline creation and temporal reasoning.
While rule-based normalization systems are limited in adaptability across different domains and
languages, deep-learning solutions in this area have not been extensively explored. An additional
challenge is the scarcity of manually annotated corpora with temporal annotations. To address
the adaptability limitations of current systems, we propose a highly adaptable methodology
that can be applied to multiple domains and languages. This can be achieved by leveraging a
multilingual Pre-trained Language Model (PTLM) with a fill-mask architecture, using a Value
Intermediate Representation (VIR) where the temporal expression value format is adjusted to the
fill-mask representation. Our approach involves a two-phase training process. Initially, the model
is trained with a novel masking policy on a large English biomedical corpus that is automatically
annotated with normalized temporal expressions, along with a complementary hand-crafted
temporal expressions corpus. This addresses the lack of manually annotated data and helps to
achieve sufficient capacity for adaptation to diverse domains or languages. In the second phase,
we show how the model can be tailored to different domains and languages employing various
techniques, showcasing the versatility of the proposed methodology. This approach significantly
outperforms existing systems.

1. Introduction

A temporal expression (TE) refers to a linguistic construct or phrase within a sentence
or discourse that conveys information about date, time, duration or sets. Every TE is
associated with a corresponding value; for instance, “April 1990” is represented by the
value “1990-04”. The process of predicting this value is termed temporal normalization.
TimeML (Pustejovsky et al. 2010) is an ISO standard that includes the TIMEX3 tag,
which defines what and how TEs should be annotated.
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This is a complicated task due to several factors. On one hand, there are basic
constructions like “today” or “yesterday” which are very well processed by current
systems. On the other hand, there is a great variety of expressions and many ways
of expressing the same thing like “a while”, “some time”, “period”, “moment”, etc. Also,
some TEs need to be anchored since they do not contain enough information to be
normalized, e.g. in “Next 26 July” it is necessary to know which is the current month
to know which is the next July. There are also temporal expressions that might be
interpretable, e.g. “10 hours later” can be treated as a time or as a duration depending
on the annotator’s interpretation. Therefore, merging different corpora with different
annotator’s interpretations might lead to contradictions. Attention must also be paid to
the context, e.g. the sentence “On the 3rd and 4th day” is split into two expressions “3rd”
and “4th day”. Therefore, the system in charge of normalizing the first expression must
be aware of the context to see that “3rd” refers to day.

Normalization of TEs is very helpful in all tasks that involve temporal ordering such
as timeline creation (Najafabadipour et al. 2020), summarization of texts (Barros et al.
2019) or question answering (Cole et al. 2023). It also plays a crucial role in reasoning,
since providing the systems with the capability of being temporarily aware is a crucial
step to achieving reasoning. It is basic to apply induction and deduction to infer the
temporal order of things.

Until now, rule-based systems (Strötgen and Gertz 2010; Navas-Loro et al. 2020)
have dominated the landscape of normalization, offering precise adaptation to spe-
cific domains and languages. However, these architectures prove highly susceptible
to changes in domain and language, demanding labor-intensive hand-crafting of new
rules for adaptation. Attempts to transition to machine and deep learning solutions
(Ning et al. 2018; Ding et al. 2021; Chang and Manning 2012) have encountered obstacles
that hinder their progress, such as the limited availability of hand-annotated data,
together with a lack of work done for languages other than English. Additionally, the
representation of TE-formatted values complicates the adaptability of deep learning
architectures. Furthermore, addressing the task requires a significant linguistic capacity,
as observed, and conventional deep-learning architectures have proven insufficient.
Lastly, there has been limited exploration of the Pre-trained Language Models (PTLMs)
approach, and the existing research has not delved into sophisticated fine-tuning tech-
niques to enhance performance.

This work aims to solve the existing challenges on the TE normalization task: data
scarcity, language and domain adaptation and TE-formatted value representation on
deep learning architectures through the exploration of sophisticated fine-tuning and
data representation techniques for TE normalization, improving the performance of
existing solutions.

In order to do this, we introduce a novel deep-learning methodology for normal-
izing TEs. We will train a XLM-RoBERTa model (Conneau et al. 2020), which possesses
a much higher linguistic capacity than rule-based systems and non-transformers deep
learning architectures. This model provides multilingual capabilities, which through the
use of the proposed methodology will provide a much more adaptable solution. The
intuition behind the use of fill-mask and this type of model is that by being able to inde-
pendently mask the expression text, type and value, the model is allowed to learn all the
semantic structures and relationships between the three components. Understanding
the relationship between these three components can lead to better standardization.
Also, it also allows the integration of multiple languages and domains to enrich the
capabilities of the model. Thus, a performance superior to the current state of the art
can be achieved. We have used a fill-mask approach inspired by (Lange et al. 2023), for
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which we introduce a Value Intermediate Representation (VIR) designed for token-based
architectures, like fill-mask, to represent the TE values effectively. With this approach,
we minimize the TE-formatted values representation problem. The training process will
be divided into two phases. On the first one, we will mitigate the data scarcity problem.
We propose the use of a current state-of-the-art rule-based system called Annotador
(Navas-Loro et al. 2020) for automatically annotating the temporal expressions of a
large English biomedical domain corpus — MIMIC-III — (Johnson, Pollard, and Mark
2016), from which we have used only the plain text. To complement them we have
hand-crafted a TEs dataset of 12k uncommon date expressions, like calendar dates,
centuries or decades. We will train the model over these two corpora while exploring
different novel masking policies, with which the performance of classical techniques
can be improved.

On the second one, we will perform a domain and language adaptation of the
model, to biomedical —E3C (Magnini et al. 2020)— and news —Timebank (Verhagen
et al. 2007)— domains using the available multilingual annotated TEs in Italian, French,
English and Spanish present in these corpora, together with the freezing layers tech-
nique to minimize catastrophic forgetting.

We show how, with just a few annotations, our model can be adapted to the biomed-
ical and news domain in multiple languages —Italian, French, English and Spanish—.
With the sum of all, we improve the performance of the current best multilingual nor-
malization model, XLM_Bosch (Lange et al. 2023) and other monolingual normalization
systems in E3C and Timebank corpora. Our model and complete pipeline, along with
training scripts and all training data, will be publicly available as long as licenses allow
1.

2. Related Work

The most widely used schema for TEs is TimeML ISO standard (Pustejovsky et al. 2010)
in which TEs are defined using the TIMEX3 tag, although there are other minority
schemes such as scate (Laparra, Xu, and Bethard 2018). This tag classifies TEs into
4 types: DATE, DURATION, TIME and SET along with some attributes, from which
the value is the most relevant. The TimeML schema is under constant review by the
community (Suleymanova and Trofimov 2021), as the annotation system is flexible and
open to interpretation.

HeidelTime (Strötgen and Gertz 2010) is the most recognized rule-based system.
The main limitation of these systems is that they are difficult to adapt, as they require
analyzing the text and hand-crafting new rules for a new domain or language. This
issue of domain and language adaptation has been treated, specifically for low-resource
languages (Skukan, Glavaš, and Šnajder 2014; Li et al. 2014; Moriceau and Tannier
2013; Mansouri et al. 2018). After HeidelTime, other rule-based systems have arisen
like Annotador (Navas-Loro et al. 2020), the state-of-the-art for Spanish and English
legal domain, Parstime (Mansouri et al. 2018) for Persian or CogCompTime (Ning et al.
2018) which can be considered the current state-of-the-art on English. There are other
systems that use different techniques such as UWTime (Lee et al. 2014), which uses a
Combinatory Categorial Grammar to construct compositional meaning representations,
while considering contextual cues, to compute the final time values. Or DNPTime
(Ding et al. 2021) where they model temporal expression normalization as a sequence

1 https://github.com/asdc-s5/Temporal-expression-normalization-with-fill-mask
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of operations to construct the normalized temporal value, and they present a novel
method, that can automatically generate normalization rules from training data without
expert interventions. Or TimeNorm (Escribano, Rigau, and Agerri 2023) where they use
a synchronous context-free grammar (SCFG) using an extended version of the CYK+
algorithm for normalization.

Temporal expression normalization has also been treated with mixed machine
learning and rule-based systems like (Ning et al. 2018; Ding et al. 2021). These systems
bring more flexibility regarding domain and rule adaptation, which requires less human
intervention. Still, generally, they obtain worse performance than rule-based systems.

Deep learning approaches (Kim and Jeong 2016; Etcheverry and Wonsever 2017;
Lange et al. 2020; Sánchez-de Castro, Araujo, and Martínez-Romo 2024) have contested
rule-based systems, but their data-hungry nature posed challenges due to small and
scarce TE corpora.

Recently, research has been slowed in TE normalization, especially in languages
other than English, mainly because it is a hard problem to tackle with recent deep learn-
ing approaches and the range of solutions is not that wide. However, the disruption
of PTLM has brought new opportunities as shown in (Sánchez-de Castro, Araujo, and
Martinez-Romo 2023) or (Lange et al. 2023). In the latter, the authors propose the use of
an XLM-based model with a fill-mask objective for token prediction, where each token
to be predicted is part of the TE value. Their results show the potential of PTLMs for
this task, particularly in low-resource languages, where they outperform HeidelTime.

Some studies, such as (Gautam, Lange, and Strötgen 2024) which explore the use
of recent GPT models – specifically GPT-3.5 –for TE normalization. In this work, the
authors propose several prompting techniques for improving the model’s performance.
While their approach shows advantages in specific cases, it proves less effective when
evaluated on well-established datasets like Timebank. In particular, their method un-
derperforms by 6.4 points compared to the approach proposed in (Lange et al. 2023) on
English Timebank with a much higher energy cost.

Fill-mask or masked language modeling (MLM) has been used for pre-training
language models like BERT (Devlin et al. 2018) and it can be applied to a bunch of tasks,
like data augmentation (Zhou et al. 2022), named entity recognition (Liu, Zhu, and Zhu
2020), text classification (Moon et al. 2021) or sentiment transfer (Wu et al. 2019). A key
element in fill-mask is the masking policy, determining which and how many tokens
are masked. This process involves selecting and masking certain words in the input.
The model is then trained on this masked input to predict the original tokens, enabling
the learning of syntactic structures and token relationships. The general rule is to mask
15% of the input tokens, but recent work casts doubt on this (Wettig et al. 2023; Yang,
Zhang, and Zhao 2023). As for what to mask, there are some suggestions on how to
select the most relevant tokens, such as Pointwise Mutual Information (PMI) (Levine
et al. 2021), Salient Span Masking (SSM) (Guu et al. 2020), (Cole et al. 2023), SpanBERT
(Joshi et al. 2020) or Weighted sampling (Zhang et al. 2023).

In summary, current solutions for TE normalization lack adaptability to domain
and language, which hampers addressing the shortage of annotated data. This could
be mitigated by employing contemporary language model architectures along with
various training techniques, including specific masking methods tailored for temporal
expressions.

3. Approach

In this section, we will describe all the technical details that have been addressed.
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3.1 Temporal expression anchoring

TEs often lack complete information about their value. For instance, “20th April” speci-
fies a day and month but omits the year, necessitating the use of an additional reference
point, known as a reference date or reference date, to resolve this ambiguity.

This reference date might sometimes be found implicitly within the surrounding
context. For instance, in the sentence “the patient was admitted on 12 April...the following
day...” where “the following day” refers to the 13th of April. However, in many cases,
such implicit temporal references are absent, leaving the document creation time (DCT)
as the only available point of reference for resolving the expression. In these situations,
the DCT provides the necessary context for interpreting ambiguous TEs. For instance,
if the document was created on April 15, 2023, the phrase“the following day” would be
assumed to refer to April 16, 2023. The reliance on DCT underscores the importance of
knowing when a document was produced to accurately normalize temporal expressions
in texts lacking clear temporal cues.

Normalization systems usually incorporate an anchoring mechanism, like Anno-
tador, which employs a two-step approach to normalize TEs. First, they extract an
unfinished TE value called context intermediate representation (CIR), based only on
the TE textual content. For instance, for the TE “20th of April” the corresponding CIR
would be “XXXX-04-20”, indicating an unspecified year since the TE does not reference
any year. This CIR is then anchored to the reference date, whether it is the DCT or
another identified TE in the text. Furthermore, the anchoring mechanism must possess
the ability to perform various date-related operations, such as adding or subtracting
units of time, including days, weeks, months, years, hours, or even larger segments
like seasons. There are also operations where access to a calendar is required. For
example, in the temporal expression “Next Wednesday” it is essential to know the day
of the week of the reference date, as the upcoming Wednesday will differ depending on
whether the reference date falls on a Thursday or a Monday. Ultimately, these operations
enable the normalization process to accurately resolve relative and incomplete temporal
expressions within a given context.

It is important to note that not all TEs require an anchoring process. Expressions
classified as DURATION or SET inherently lack a relationship with any specific ref-
erence date and thus do not need anchoring. To determine the complete value of a
DURATION or SET, it is sufficient to identify the time period over which the expression
extends. Establishing which exact time point the expression refers to is a separate
process from normalization, which involves situating the various temporal expressions
on a timeline and linking them accordingly. For example, TEs such as “for 8 hours”,
“about two years ago”, “nine months”, or “every month” do not need to be associated with
a reference date to know their value. Consequently, when anchoring is not required,
the context intermediate representation (CIR) and the final normalized value will be
identical. Conversely, most TEs classified as DATES and TIMES require an anchoring
process to fully resolve their value. TIME TEs are composed of a full date and a time,
for instance, the TE “12 a.m” with a reference date of “2024-01-01” would have a value
of “2024-01-01T12:00”. However, in practice, these TEs often specify only the time
component without an accompanying date, making it necessary to anchor them to a
reference date. For example, expressions like “3 p.m.”, “this morning”, or “in the evening”
lack any explicit date information and must be anchored to the reference date to form a
complete TE.

A guiding principle is that the granularity specified by the temporal expression
sets the minimum level of detail, while the anchoring process must provide the higher
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granularity that is not explicitly stated. For example, in the TE “3 p.m” the specified
granularity is the hour, requiring the anchoring system to supply the higher missing
levels of day, month, and year, or alternatively, week and year. On the other hand,
granularities below the minimum level indicated by the TE cannot be inferred from
the reference date. For example, in the TE “April” the granularity is at the month level,
making it impossible to deduce the exact day, hour, minute, or second. This leads to the
fact that most DATES and TIMES need anchoring since they rarely state all levels of
granularities, such as months rarely specify the year or days often omitting the month
and year. This is primarily due to the economy of language, where details at broader
granularities can typically be inferred from the surrounding context or textual clues,
rather than being explicitly stated. Hence, anchoring plays a crucial role in filling in
these gaps to achieve a complete and accurate temporal normalization.

3.2 Fill-mask

The normalization problem can be seen as a translation from a string into a TIMEX3
value. Seq2Seq models (Britz et al. 2017) generate a string based on another string, which
is great for language translation. Models like T5 (Raffel et al. 2020) have been applied
with good results (Edwards et al. 2022; Xue et al. 2021; Mager et al. 2021). This kind
of architecture has been explored for TE normalization in (Ding et al. 2023) where they
use a T5 model, obtaining similar or worse performance than other existing models,
concluding how hard these kinds of models are to align to the constraints of the TimeML
schema.

On its side, the fill-mask approach consists of masking certain words or tokens in
a text so that the model predicts them. This method enables the model to predict a
sequence of tokens with a predetermined length defined by the user, making it suitable
for predicting the value of a TE. However, the main issue with fill-mask models is to
know in advance the exact length of the sequence that has to be generated. This means
that the length of the TE CIR must be known before normalizing it. For example, in TEs
of type DURATION like “1 year” the value would be “P1Y” but for“1 year and 2 months”
the value would be “P1Y2M”. Or in TEs of type DATE like “The past year”, “This month”
or “Tomorrow” where the values would be respectively 1989, 1989-12 and 1989-12-31
with a reference date 1990-01-01. As it can be seen, the length of the value varies and
predicting this length with absolute accuracy is highly challenging. Therefore, a suitable
solution is to regularize the length of every TE CIR so that all have the same length.

Inspired by (Lange et al. 2023) intermediate representation for fill-mask, we intro-
duce a more space efficient Value Intermediate Representation (VIR). The VIR is a struc-
tured, fixed-length format that encapsulates all potential variations of the CIR, capturing
TEs values. This format is organized into a series of slots, where each slot corresponds
to a distinct component of the CIR. Importantly, since the VIR must accommodate any
possible TE representation within a predefined structure, it is not expected that all
slots will be utilized for a single TE. Any unused slots are therefore populated with
padding tokens to preserve the fixed-length format. Examples illustrating the relation-
ship between a TE’s CIR and its corresponding VIR are provided in Figure 1. In the first
example, a TE of type DATE is given as “20th April”, which contains no explicit reference
to a specific year. Its VIR, reflecting only the information available in the TE, records the
month and day, while unused slots are filled with padding tokens. Accordingly, its CIR
is represented as ”XXXX-04-20´´. When normalized using the reference year 1990, the
complete normalized date is derived as “1990-04-20”.
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The second example presents another DATE TE with text “Tomorrow”. This case
involves an operation, requiring one day to be added to the reference date. The CIR
represents this operation explicitly with an anchor operation, which performs simple
additions or subtractions. This operation requires three arguments: the reference date,
the operation and the quantity. Therefore, the VIR encodes these three parameters as
“sum 1 d” (denoting the addition of one day). Using the Annotador anchoring system,
the final normalized value is then calculated as one day after the reference date as “1990-
01-02”.

Therefore, the pipeline to obtain the value of a TE follows these steps: first, the VIR
is obtained by the model and translated to CIR through a regularization process using
regular expressions. Finally, the CIR is anchored to the reference date using Annotador’s
anchoring system to obtain the final value. This structure allows for the application of a
fill-mask model, where the system predicts each slot’s value.

We define one VIR per type of TE since each one has its own format. This way we
reduce the length, optimizing the space and the tokens that have to be unmasked:

DATE: The VIR is composed of 9 slots:

• YEAR | MONTH | WEEK | DAY: These four slots are self-explanatory.
The only detail to keep in mind is that a well-formed value cannot
simultaneously reference both a week and a month at the same time. For
instance, the expression “the first week of the year” would result in a VIR
containing only a value in the week slot (set to 01), while all other slots
remain filled with padding tokens. This would translate to a CIR of
“XXXX-W01”, and, using the reference date “1990-01-01”, the final
normalized value would become “1990-W01”. As this example illustrates,
it is not possible to encode both a month and a week within the same
representation. For TEs that specify days of the week, both the week and
day slots are utilized. For example, the TE “Monday of the first week of the
year” would have 01 in the week slot and 01 in the day slot. Based on the
same reference date, this would normalize to “1990-W01-01”. Note that
days of the week are consistently encoded with numerical values ranging
from 01 (Monday) to 07 (Sunday).

• OPERATION: This slot can store three different values: SUM, SUB and
NEUT which states for additions, subtraction and neutral operations like
in the TE “Today”. This TE would have a VIR of NEUT 0 Y for the slots
OPERATION OPERATOR OPERATING. This slot also contains the ‘BC’
token, which is used to represent years in the B.C. era, such as ‘the year
4000 B.C.’.

• OPERATOR: This slot stores the value on which the operation is
performed.

• OPERATING/FUZZY/TIME OF THE YEAR: This slot when working as
OPERATING can refer to any time unit, e.g. year, month, days, quarters,
seasons, etc. For example, in the TEs “the next/past
year/month/week/summer/quarter” the slot would store Y/M/W/SU/Q
respectively. As for the FUZZY term it refers to PRESENT_REF,
FUTURE_REF and PAST_REF which refers to TEs like “now”, “soon” and
“recently” respectively. Regarding to TIME OF THE YEAR there are cases
when it is necessary to store values such as seasons or quarters without the
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1989-W511990-01-
01

DATE

Figure 1
Equivalence between a TIMEX3 value and its Value Intermediate Representation (VIR).

need for any accompanying operations. For example, in the TE “Summer”
there is no operation needed so this slot just stores the value SU. These
three possibilities share the same slot since there cannot exist an
expression that contains all three terms. This saves two slots, optimizing
space. We will apply the same practice to the rest of the VIR’s TE types.
Since dates have a wide variety of possibilities, multiple types of
operations can be defined. Therefore we use five types of operations
defined by Annotador:

– Day-of-the-week-based operations: This kind of operation needs
the current day of the week to properly anchor the final value. For

8

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/COLI.a.13

© 2025 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/doi/10.1162/C
O

LI.a.12/2523155/coli.a.12.pdf by guest on 17 June 2025

https://doi.org/10.1162/COLI.a.13


Alejandro Sánchez de Castro Temporal Expression Normalization

example, in TEs such as “next Friday”, identifying the next Friday
depends on the day of the week of the reference date. If the
reference date is a Thursday, the next Friday is the following day.
However, if the reference date is a Sunday, the next Friday falls five
days later.

– Month-based operations: This includes TEs such as “next
September” where it is necessary to identify the current month to
know which is the next September.

– Season-based operations: With TEs like “past summer” where
knowing the current season is needed.

– Date-based operations: As in “next 20 of April” where the current
date is needed.

– Numerical operations: Including TEs like “two days before” or “three
months after” which involve arithmetic operations relative to the
reference date, but they don’t need access to a calendar in order to
be anchored.

• CENTURY: This slot stores the value for centuries. For example, in the TE
“The 20th century” the slot would store the value 19 which refers to the first
two digits of the century representation in decimal format, that is 19XX.

• DECADE: This slot stores the value for decades which is just the first digit
of the decimal representation of the decade. For example, in the TE “The
decade of the 20s” the slot would store the value 2. Thus, if we join the slot of
centuries and decades, we can represent TEs such as “The second decade of
the 20th century” with the VIR 19 2 which would result in the value of 192.

TIME: It is composed of 10 slots. It is similar to the DATE VIR, mainly because times
contain dates:

• YEAR | MONTH | DAY | OPERATION | OPERATOR | OPERATING |
HOUR | MINUTE | SECOND: As it can be seen in this listing, we have
dispensed with the WEEKS slot because they imply a vague date. For
example “the second week of the year” implies seven days, which makes it
impossible to specify particular hours. The same happens with decades,
centuries and fuzzy expressions. TIME expression can also have
operations like “Tomorrow morning” as can be seen in the first TIME
example in Figure 1, but the operation will always refer to a date with a
fixed time so we use the same kind of operations. It is worth mentioning
that expressions like “two hours later” are usually marked as DURATIONS,
since there is usually no other time hour to anchor the operation and for
event and time relation anchoring are equally useful.

• TIME OF THE DAY: We have added this slot for referring to afternoon,
morning, midnight, evening and night with the tokens AF, MO, MI, EV and
NI respectively.

DURATION: This kind of expression does not include operations but comprehends
durations of any granularity. The VIR is composed of 8 slots:
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• YEAR | MONTH/QUANT TIME OF THE YEAR | WEEK | DAY: A
DURATION must store values for years, months, weeks and days for TEs
such as ‘a month”, “a year” or “two weeks”. But it also must store time of the
year quantifiers such as quarters, weekends or seasons in TE like “for 2
springs”.

• HOUR/QUANT TIME OF THE DAY | MINUTE | SECOND: Smaller
granularities like hours, minutes and seconds must also be stored for TEs
like “three hours” or “five minutes” and also times of the day quantifiers
such as morning or night in TE like “nineteen mornings” or “five hundred
nights”.

• TIME OF THE DAY/YEAR: This slot stores which time of the day or year
the quantifier slots refer to. For the TE nineteen mornings the QUANT TIME
OF THE DAY slot would store 19 and this slot would store MO (from
morning). It should be noted that a time of the year and a time of the day
cannot coexist in the same TE, since they have incompatible scales in the
same way that a month and a week cannot coexist. In the case of an
expression in which both options are mentioned consecutively, they will
be annotated as different TEs.

SET: This VIR closely resembles that of DURATION, sharing a similar format with
minor differences and the same length of 8 slots:[YEAR | MONTH/QUANT TIME
OF THE YEAR | WEEK | DAY | HOUR/QUANT TIME OF THE DAY | MINUTE
| SECOND | TIME OF THE DAY/YEAR/DAY OF THE WEEK]. In the SET type can
appear TEs such as “Each Friday”, generally referring to specific days of the week. To
accommodate this, we have added the option in the final slot to specify the day of the
week as can be seen in the final example of Figure 1. The rest of the VIR is the same as
the DURATION’s.

In summary, we propose the use of the VIR, a fixed-length equivalent of the CIR,
which represents the unanchored value of a TE. This design enables the application
of a fill-mask PTLM architecture in conjunction with an existing and tested anchoring
system. The VIR approach offers a key advantage since it relieves the model from
anchoring TEs, avoiding the need for complex date calculations or an internal calendar
representation, thereby simplifying the task significantly.

The proposed representation differs significantly from the one introduced by (Lange
et al. 2023). To understand these differences, it is necessary to first examine how their
representation is structured:

• First slot: This slot stores the BC token, serving as an auxiliary component
for operations alongside the last three slots.

• Second and third slots: These slots are used to store the year, split into
two parts (e.g., the year 1940 is divided into “19” and “40”). These slots
also encode undetermined dates, temporal references such as past,
present, and future, and certain DURATION values.

• Fourth and fifth slots: These are designated for storing month and day
information.
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• Sixth to eighth slots: These slots store hours, minutes, and seconds. The
hour slot additionally encodes part-of-day tokens (e.g., evening, night)
and certain duration values related to hours, minutes, and seconds.

• Ninth to eleventh slots: The final three slots capture information related to
operations as defined in HeidelTime.

Once we introduce their representation, several key differences emerge. Even
though both representations share certain fundamental features, such as slots for
months, days, and years, Lange’s representation lacks dedicated slots for certain tem-
poral elements such as specific parts of the year (such as summer or quarters), weeks,
centuries, and decades. Also, they do not explicitly define the typology of used op-
erations, although they use 4 slots while we use 3. In addition, their approach relies
on a single representation for all types of TEs. As a result, their method squeezes
multiple types of temporal elements into a small number of slots. As a result, these slots
become overcrowded and the information is heavily condensed. This approach forces
important details to be overgeneralized, compromising the accuracy and efficiency of
the representation. In contrast, our representation is more space-efficient and tailored
to the specific needs of each type of TE. For instance, when applied to the Timebank
and E3C corpora, Lange’s representation requires 51,392 tokens to unmask, while our
representation only needs 40,662 tokens—a reduction of approximately 21%. Lange’s
representation, in theory, could be optimized to achieve similar efficiencies. For exam-
ple, DATES could be encoded with only 8 slots by omitting the hour, minute, and second
slots. However, based on the information provided in the paper, it remains unclear
whether removing these slots would still allow for the full encoding of all possible
DATE information. These differences are understandable, as Lange’s representation
was designed to reflect the way HeidelTime handles TE values, while our proposed
representation is based on Annotador. Since HeidelTime and Annotador are different
systems, their representations naturally diverge, like in the definition of partial values
or operations, which are defined significantly different in each system. Consequently,
although both representations originate from the same conceptual foundation, they are
implemented within distinct systems, employ different approaches, and yield notably
different results.

3.3 Masking policy

Within a fill-mask approach, the masking policy comprises the masking strategy, which
determines which tokens to mask, and the masking function, which specifies the num-
ber of tokens to mask.

3.3.1 Masking strategy. Regarding the masking strategy, we distinguish between mask-
ing TE and masking regular tokens. For TEs, we introduce a tag in the text following the
format “<TYPE EXPRESSION VIR>” where, for example, the expression “tomorrow” is
tagged as ”<DATE tomorrow <pad>...sum 1 d...<pad> >”. The tag components are deeply
related: the type defines the VIR’s structure and potential values, and the string provides
values and positions. Just knowing two of them is enough to predict the remaining
one, therefore masking one component at a time enriches the model’s knowledge.
Experimental results suggest that masking 40% of the type, 40% of the string, and 20%
of the VIR improves the model’s ability to predict the VIR, fostering attention to its
structure and values, although it may not be optimal.
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Additionally, regular tokens are masked with a 10% probability, for two main rea-
sons. First, as TEs constitute a small fraction of total tokens, masking only TEs would re-
sult in a negligible overall percentage of masked tokens. Second, to prevent catastrophic
forgetting, a diverse set of masked tokens is crucial; hence, a 10% probability is deemed
sufficient. Contrary to the 80-10-10 corruption rule proposed by (Devlin et al. 2018),
recent research (Wettig et al. 2023) suggests that simple masking without the proposed
rule may be more beneficial for downstream tasks. Furthermore, whole-word masking
is applied to regular tokens.

3.3.2 Masking function. Regarding the masking function, a constant 10% is applied to
regular tokens, while time-variant decreasing masking is used for TEs. Observations
by (Yang, Zhang, and Zhao 2023) suggest that training a BERT model with a 30%
fixed masking ratio versus 15% results in the former showing an early performance
spike, and the latter exhibiting better performance towards the end of training. This
phenomenon is akin to learning rate decay, where the model explores the entire search
space in the initial stages and converges to a final minimum in a shrinking space as
training progresses. Larger training corpora accentuate this effect, while it may not be
as noticeable in smaller datasets.

When applied to the masking function, the more tokens that are masked, the more
search space the model has available, and vice versa. To fulfill the above-mentioned
requirements, those authors propose to use a masking ratio decay. Using a linear and
a cosine function to decrease the masking ratio, they improved the performance of a
BERT model on a series of downstream tasks, with the cosine function proving superior
due to its ability to maintain a larger initial masking ratio.

When trying to apply this function to the context of TEs, we found that both linear
and cosine functions brought several problems. Figure 2 shows a comparison between
the constant function and the linear and cosine functions proposed in the above-
mentioned work, as well as our proposed linear+cosine and linear+logistic functions. We
plot a masking decay from 100% to 20%, dividing the training into initial exploration
and final optimization phases with a mean masking ratio of 60%. It can be seen that
the cosine function exhibits a notably high masking ratio in the initial 15% training
steps, potentially causing prolonged random guessing. Conversely, the linear function
may decay too quickly initially and too slowly later, compromising the advantages
of masking decay. Combining linear+cosine or linear+logistic functions addresses these
issues. For the first half of training, a linear function with reduced gradient avoids rapid
decreases and overly high initial masking ratios. In the second half, the logistic function
ensures a rapid yet decelerating decrease, while the cosine function provides a slower
but accelerating decrease. This combination maintains the same mean masking ratio as
linear, cosine, and constant functions but with more suitable initial and final masking
rates.

Accordingly, we have defined the linear+logistic and linear+cosine functions as piece-
wise functions.

Mlin_cos(t) =


m · t+ c 0 ≤ t < T

p

(1 + cos(π·rs ))(a+ b) T
p ≤ t < T
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Figure 2
Evolution of the masking ratio for different functions over 1 million steps.

Mlin_log(t) =


m · t+ c 0 ≤ t < T

p

1
(d−l)+(l·er/T )

T
p ≤ t < T

For the first T/p steps of the M(t) range we define the linear function, where p is
the percentage of steps. In the case of Figure 2 where p = 0.5, t is the actual step, c
corresponds to the maximum value of the linear function for T steps and m is the slope,
defined as

m =
minimumlin − 1

T · p

For the second part of the Mlin_cos(t) range, we define the cosine function. As the
function starts at step T/p, it must be taken as if this were the starting point, therefore we
normalize the starting point through r = t− (T · p+ 1) and s = T − (T · p+ 1). On the
other hand, b represents the minimum value of Mlin_cos(t) for T steps and a is defined
as

a =
maximumcos − b

2
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The first part of the Mlin_log(t) range is the same as Mlin_cos(t). As for the second
part of the range we define the logistic function, where d = 1/minimumlinear, r is
defined the same as in Mlin_cos(t) and l defines the curvature of the function as

l =
1
n − d

ep − 1

Where n refers to the minimum value of Mlin_log(t).
In conclusion, we introduce a comprehensive masking policy that defines what

tokens will be masked and in what percentage, introducing a novel masking strategy
and masking function.

3.4 Freezing layers technique

TE expressions vary based on writing style, domain and language, as evident in prior
research like (Bethard et al. 2017), which showed a performance drop of around 20
points in TE detection and classification due to a slight change in the domain. Annotator
interpretations also contribute to significant differences, given the flexibility of the
TimeML schema, allowing a single TE to be annotated in various ways.

A second fine-tuning process enhances the model’s performance on E3C and Time-
bank domains and languages, but it may result in catastrophic forgetting (Ke et al.
2021; Kar et al. 2022), where previously acquired knowledge is lost. To mitigate this,
techniques like layer freezing are employed. Involving freezing certain model layers
during training to reduce forgetting, improve domain and language adaptation, and
decrease training time. The optimal number of layers to freeze lacks consensus, but for
a 12-layer model like the one used, freezing less than 6 has minimal impact, and freezing
more than 9 updates too little information.

3.5 Corpora

For training our model we have used five different corpora: Medical Information
Mart for Intensive Care III (MIMIC III): It is an English-exclusive biomedical domain
corpus, which includes de-identified hospital patient records. We have used over 300K
records from which we have automatically detected, classified and normalized around
1080K TEs with Annotador. From which 200K are DATE TE, 480K are TIME TE, 240K
are DURATION TE and 150K are SET TE. During this process, we realized that Anno-
tador had problems detecting and normalizing some TE. Since it is a rule-based system,
we have corrected and added some rules so it could handle more TEs:

• Detection and normalization rules:
– We have added two lemmas to the rule “Rule$PARTDAY” for the

detection of “midnight” and “on midnight” in the text.
– We have changed the NI in “PARTDAY_MAP” for TNI. This meant

that when normalizing expressions that included references to
“night”, such as “tonight”, the value was not assigned correctly. The
correct value to assign when there are references to night is TNI
according to the annotation standard.

– We have changed the rule ”Rule$TIMEdelfullDATE” because it
added an extra T on CIRs like anchor(today,+,1D)TT15:00
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• Anchoring process
– We have added a rule so that Annotador could anchor CIRs like

anchor(TODAY, +, 1WE).
– We have modified Annotador so that it does not erase the month

on CIRs like Sanchor(+, XXXX-XX-12).
– We have modified Annotador so it does process only decades like

XX8.
– We have added the option of neutral Danchor for expressions like

“on the 5th”. This is to accommodate the behavior of the model
because it mixed the neutral anchor operation with Danchor. This
is not an incorrect behavior so we opted to modify the anchoring
process rather than the training data.

Hand-crafted TEs dataset: In addition to the presented corpora, we have devel-
oped a new hand-crafted TEs dataset. While automatically annotating MIMIC-III, we
observed significant gaps in the variety of basic date-related TEs. Approximately 89%
of the TEs were classified as past, present, or future, demonstrating a limited range of
expressions. To address this, we created a 12K TE dataset with fundamental structures
to complement and enrich the automatically annotated dataset, enabling the model
to acquire stronger foundational capabilities. Each TE in this dataset includes both
its textual form and corresponding VIR, with values derivable through an automatic
de-regularization process, if needed. The TEs were generated using templates based
on semantic structures, with components randomly varied using a predefined pool of
options. For instance, one template might follow the structure “number + part-of-year
+ present/future/past”, where “number” is a digit, “part-of-the-year” can be years, months,
weeks or days and future/past temporal modifiers like previous, past, former, present, same,
subsequent, next, coming, etc.. Note that when the verbal tense is present the number
part is omitted as well as with certain temporal modifiers like next or previous in TEs
like “the next year” or “the previous month”. This approach automates the generation
process, allowing for scalability by adjusting the variety within the pool of options while
reducing the production time from months if done manually to just a few days. We did
not provide a surrounding context for these artificial TEs, as the primary goal was to ad-
dress the limitations of the automatically annotated corpus by increasing the diversity of
TEs. Adding contextual information would introduce domain-specific biases, whereas
our intention was to keep the dataset as domain-neutral as possible. These templates
were designed following the TE typology defined by Annotador, a framework we were
already familiar with, having utilized it as a base system for normalization. The primary
typologies are as follows:

1. Calendar dates: We generate 8000 calendar dates with the form “2001”,
“21st of August”, “first week of the year”, “late December”, etc.

2. Centuries and decades: We generate 200 TEs like “XX century”, “second
century”,“the twenties”, etc.

3. Regular operations (anchor): These are operations with years, months,
weeks and days, for example, “past week”, “next year”, “this month”, “two
days ago”, etc. We have added 2000 expressions.

(a) There is a specific type of regular operation that involves adding or
subtracting days of the week, like in “previous Monday”, “on
Saturday” or “coming Thursday”. We have added 600 expressions.
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Calendar Cent & Dec Anchor Sanchor Danchor Specific Total
1.256 2.282 18.118 0 0 0 21.656

Table 1
TE distribution in automatically annotated MIMIC-III of DATES based in the typology defined in
Annotador and used for the hand-crafted dateset. The point represents thousands not decimals.

4. Seasons operations (Sanchor): Operations like “next spring”, “past autumn”,
“this summer”, etc. We add 600 of these expressions.

5. Date operations (Danchor): These are operations that involve adding or
subtracting whole dates like in “on the first of coming June” or “the past day
10”. We have added 600 date operations.

6. Specific expressions: We add some specific expressions which are regular
operations but we treat them differently since they are very common. Some
examples are “the day before yesterday”, “the day after tomorrow”, “the day
after the day after tomorrow”, etc. We have added 300 specific expressions.

The amount of TEs per type is mainly based on the variety of expressions we were
able to generate. The greater the variety the greater the number of TEs. For example,
it is relatively easy to create a great variety of calendar dates just varying days, weeks,
months and years. But it is harder to create such a great variety of season operations
when there are just 4 seasons. We have also taken into account the quantity of each
kind of TEs in the automatically annotated dataset. As can be seen in Table 1, there are
no Sanchor, Danchor and specific expressions, and there are very few calendar dates. It is
important to remember that these expressions only represent 10% of the total number of
DATES, since the rest are expressions such as present, past, future and so on. Regarding
anchor operations, while the quantity is higher the variety is still scarce, as 87% of
these values consists in just adding one day. Given these imbalances, we have focused
exclusively on DATES as other TE types in the dataset demonstrated a more balanced
distribution and did not require similar augmentation. While creating this dataset, we
carefully considered potential data leakage risks concerning the Timebank and E3C test
sets. To prevent any contamination, we ensured that none of the expressions in the
dataset overlap with those in the test sets. Although the primary goal of this dataset
is to complement the automatically annotated MIMIC-III corpus, it is versatile enough
to serve as a DATES TEs foundational corpus. Its broad yet basic coverage of DATES
makes it a valuable auxiliary dataset for training other systems.

European Clinical Case Corpus (E3C): This is a manually annotated corpus of
clinical cases. It includes multiple language annotations such as Spanish, Italian, French
and English, as shown in Table 2.
Timebank: This is a multilingual news manually annotated corpora. The corpus
contains multiple language annotations such as Spanish, Italian, French and English,
as shown in Table 2 in which it can be seen that English and Spanish account for a large
part of the representation. It can also be observed that the E3C test sets are generally
larger than the training and Timebank test sets.

The frequency of TE types varies by domain, being inversely related when consid-
ering individual datasets as shown in Figure 3. This inverted relation between types in
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Figure 3
Distribution of TE type of manually annotated data by corpus

Figure 4
Distribution of TE type per language of manually annotated data (Timebank plus E3C)

both domains may be explained due to the nature of them. In the clinical cases domain
of E3C, it may be more frequent to talk about the durations of treatments or recoveries
instead of particular dates. Also, it may be more frequent to talk about sets, for example
when prescribing medication with TEs like “every 8 hours”. On the other hand, in
the news domain of Timebank, it makes sense to use dates and times to refer to the
described events more frequently. But in the general picture, the DATE type consistently
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appears as the most frequent across all languages, as shown in Figure 4. This trend
is largely due to the higher density of temporal expressions in the Timebank corpus
compared to the E3C corpus. The DURATION type follows in frequency, whereas the
TIME and SET types occur less frequently, representing a minority in the datasets.

Language Training Test Total

Timebank

English 1053 156 1209
French 205 81 286
Italian 522 126 648
Spanish 1093 198 1291

E3C

English 153 174 327
French 118 157 275
Italian 110 177 287
Spanish 146 200 346

Table 2
TE distribution in E3C and Timebank corpora based on each language

At this stage, we have two sets of data: MIMIC-III, which contains automatically
annotated data processed by Annotador—including TEs, their corresponding CIR, and
their final anchored values— together with the hand-crafted TEs dataset and the manu-
ally annotated corpora TimeBank and E3C, which include TEs and their final anchored
values but lack CIRs. As discussed in Sections 3.1 and 3.2, using the fill-mask architec-
ture requires a representation like the VIR. Therefore, these corpora must be adapted
to this format. Given that CIR and VIR are equivalent, as outlined in Section 3.2, we
developed a process called regularization allowing automatic conversion from CIR to
VIR, and a de-regularization process to revert from VIR to CIR. Both processes have
been automated through a series of rule sets and regular expressions. For example,
DURATIONS are built like PxYxMxWxDTxHxMxS, representing years, months, weeks,
days, hours, minutes and seconds respectively. We converted this structure into our VIR
through regular expressions to detect each component. Figure 5 illustrates the pipeline
for converting a TE into its equivalent VIR for training on the top part and how the
predictions are generated on the bottom part.

Furthermore, since TimeBank and E3C do not contain CIRs for TEs, it was necessary
to manually review certain expressions to derive the CIR. As noted in Sections 3.1, the
CIR and final value are identical if anchoring is unnecessary. In the cases of DURA-
TIONS and SETS, anchoring is not required, as these represent time spans that do not
depend on a reference date. However, for DATES and TIMES, anchoring is generally
necessary, meaning that the CIR and final value often differ, requiring manual CIR
annotation. For instance, a human annotator can easily observe that if the TE is “20th
of April,” the CIR would be XXXX-04-20, since no year is mentioned in the text. It is
worth reiterating, that in such cases, the final anchored value would include the year
based on the reference date; however, since the model does not handle anchoring, it
needs only the CIR rather than the final anchored value. Therefore we have manually
annotated CIRs for all necessary TE in TimeBank and E3C. Although it is manual work,
it is a light workload, which only needs to be done once per language and in any case
the workload is much less than in the adaptation of rule-based systems. Along the way,
some misstatements on the E3C and Timebank corpora annotations have been corrected
following the TimeML annotation guide (Saurí, Saquete, and Pustejovsky 2010).
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Preprocessing of TE values into VIR for training and post-processing of VIR into final TE value.
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Figure 6
Global pipeline for training. The whole process is divided into two training phases with their
corresponding corpora

3.6 Experiments

Figure 6 illustrates the training process, divided into two phases: initial training with
the proposed masking policy and subsequent domain and language adaptation using
the freezing layers technique. On this basis, four experiments have been carried out.

The first experiment compares our proposed VIR with the representation intro-
duced by (Lange et al. 2023) using the XLM_Bosch model, referred to hereafter as
Lange’s representation. This experiment aims to evaluate whether the proposed rep-
resentation, in addition to being more spatially efficient, can achieve comparable or
superior performance. Both representations are inherently tied to the rule-based sys-
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tems upon which they are built. Lange’s representation is integrated with HeidelTime,
whereas the proposed VIR is designed around Annotador. This dependency arises be-
cause each representation closely aligns with the internal data structures and anchoring
mechanisms of its respective framework. Notably, HeidelTime and Annotador differ
in their definitions of typologies, operations, and the handling of partial DATE and
TIME values, which directly impact the resulting representations. Since Lange’s repre-
sentation cannot be decoupled from HeidelTime, the same 300K MIMIC-III documents
(described in Section 3.5) were annotated using HeidelTime. By utilizing the tools pro-
vided in its repository, TEs and their corresponding representations were extracted. This
process yielded a distribution nearly identical to that obtained via Annotador: 1080K
TEs, comprising 202K DATE TEs, 478K TIME TEs, 243K DURATION TEs, and 147K
SET TEs. This similarity was expected, as both HeidelTime and Annotador demonstrate
comparable performance, as shown in Table 7 and in prior studies (Sánchez-de Castro,
Araujo, and Martinez-Romo 2023; Navas-Loro et al. 2020). Although using two different
training sets could theoretically introduce noise, the high degree of similarity between
the datasets suggests that any resulting differences would be minimal. It is important
to note, however, that since HeidelTime employs its own typology of expressions, it
is not possible to perform a detailed distributional analysis (such as that in Table 1)
to verify alignment with Annotador’s outputs. To evaluate the performance of these
representations, a XLM-RoBERTa large model was trained on the MIMIC-III corpus
using both VIR and Lange’s representation. The model’s performance was then tested
on the Timebank and E3C datasets in English, with careful consideration of potential
noise when interpreting the results.

The second experiment compares the impact of the hand-crafted TEs corpus by
evaluating the performance of a large model trained on MIMIC-III against a model
trained on these MIMIC-III plus the hand-crafted TEs corpus, comprising up to 112K
TEs.

Thirdly, we will compare the performance of three different masking functions:
constant, linear+cosine and linear+logistic, for training the model over MIMIC-III and the
hand-crafted TEs corpus. We have used a mean masking ratio value of 60% for all three
functions and a 10% masking ratio for regular tokens. Therefore, an average masking of
around 15% is achieved in the training and dev set. Additionally, we will train two sizes
of XLM-RoBERTa, base and large, so that we can compare the performance-size trade-off.

Finally, in the fourth experiment, we will test whether it is better to freeze 6, 9 or
none layers for the domain and language adaptation phase, where we will train the
model on all E3C and Timebank languages training sets —English, Italian, French and
Spanish—.

In all experiments we have randomly split the training into 90% training and 10%
development, keeping the distribution of temporal expression types between the two
sets.

Finally, our model will be compared with other recognized systems such as GPT-
4o mini, HeidelTime 2, UWTime3, CogCompN4, DNPTime5, TimeNorm6, SUTime7, ARTime8

2 https://github.com/HeidelTime/heideltime
3 https://bitbucket.org/kentonl/uwtime-standalone/src/master/
4 https://github.com/qiangning/CogCompTime
5 https://github.com/nju-websoft/ARTime
6 https://github.com/NGEscribano/XTN-timexes
7 https://stanfordnlp.github.io/CoreNLP/sutime.html
8 https://github.com/nju-websoft/ARTime
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and XLM_Bosch 9. We have named the last model on our own since the authors did not
provide it.

Regarding GPT-4o mini we have developed two experiments. In the first one,
we just generate the predictions without any prompt technique or special hyper-
parameters. We just introduce the TimeML schema and prompt the TE asking for the
value, parse the responses and evaluate them, as follows:

• Base prompt: Temporal expressions are those constructions referring to points or
intervals on the timeline. They can express: (a) day times, e.g., “noon”, “3:00
pm”, “this morning”; (b) dates, e.g., “April 28th, 2008”, “yesterday”, “next
week”, “three months later”, “last year”; (c) durations, e.g., “two months”, “five
hours”, “the coming 9 years”; and (d) sets, e.g., “once a month, “every Tuesday”.
Your work is to obtain the value of the following temporal expressions according to
the TimeML schema. Use the document creation time, the type and the text of the
temporal expression to obtain the value. Finally, display your response in a JSON
format.

• Consecutive prompts: Obtain the value of the following temporal expression
with DCT “20-04-1990”, type “DATE” and text “Yesterday”.

Secondly, we introduce a few-shot prompt to boost the performance of the model.
We use the same prompt as in the previous experiment but introduce static normalized
examples and a bulleted style prompt for improved clarity:

• Few-shot prompt: Temporal expressions are those constructions referring to
points or intervals on the timeline. They can express:

– day times, e.g.
“noon” value:“XXXX-XX-XXTMI”
“3:00 pm” value: “XXXX-XX-XXT15:00”
“this morning” value:“XXXX-XX-XXTMO”

– dates, e.g.
“April 28th, 2008” value:“2008-04-28”
“yesterday” value:“one day before the DCT”. If DCT:“1990-04-20”
value:“1990-04-19”
“next week” value:“one week after the DCT”. If
DCT:“1990-04-20” value:“1990-W17”
“three months later” value:“three months after the DCT”. If
DCT:“1990-04-20” value:“1990-07”
“last year” value:“one year before the DCT”. If DCT:“1990-04-20”
value:“1989”

– durations, e.g.
“two months” value:“P2M”
“five hours” value:“PT5H”
“the coming 9 years” value:“P9Y”

– sets, e.g.
“once a month” value:“P1M”
“every Tuesday” value:“XXXX-WXX-4”

9 https://github.com/boschresearch/temporal-tagging-eacl
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Your work is to obtain the value of the following temporal expressions according to
the TimeML schema. Use the document creation time, the type and the text of the
temporal expression to obtain the value. Finally, display your response in a JSON
format.

• Consecutive prompts: Obtain the value of the following temporal expression with
DCT “1990-04-20”, type “DATE” and text “Yesterday”.

These prompts have been designed with a fundamental structure that includes
defining the task, identifying its components, and articulating the objective using
straightforward language. The purpose of these experiments is to obtain an initial
insight into the performance of the most well-known LLM in a basic scenario. Rather
than focusing on optimization, we rely on existing studies, such as (Gautam, Lange, and
Strötgen 2024), that have already addressed this aspect in the English Timebank corpus.

As for the pre-processing of the training corpora, the text has been split into sen-
tences and all sentences without at least one TE have been removed, to reduce the size.
Each possible value of the VIR slots must be represented by one model token. Therefore,
we have added 368 new tokens to the model tokenizer, 214 of which already were
included. We evaluate all systems on both E3C and Timebank predefined test sets with
the TempEval evaluation script (UzZaman et al. 2013). For all experiments, we report
the weighted-mean accuracy of TE normalization. All the mean values are weighted
based on the number of expressions of each corpus shown in Table 2.

For all experiments, we have used a XLM-RoBERTa model, with batch_size =
10, lr = 8e− 5, wd = 0.01, seed = 42 and 3 epochs, selecting the training checkpoint
with lower dev loss. For the masking function experiments we have used p = 0.5,
minimumlin = 0.7, c = 1, maximumcos = 0.7, b = 0.2, minimumlog = 0.2. We will re-
peat each experiment three times and will take the mean value to mitigate randomness.
Replicating the entire two-phase training takes around 6 hours of computing time. The
presented experiments have been run on a configuration of two RTX 3090 GPUs.

For training, we mark each TE with a label of the form “<TYPE EXPRESSION
VIR>”, for example, “She was discharged home <duration 2 weeks postoperatively
<pad><pad>2<pad><pad><pad><pad><pad> >”. This input is passed during the fine-
tuning process to the model after substituting the VIR slots, type or expression with
MASK tokens based on our proposed masking policy. For example: “<date five days
later <mask><mask><mask><mask> <mask><mask><mask><mask><mask> >”, “«mask>
five days later <pad><pad><pad><sum><5><d><pad><pad><pad> >” or “<date <mask>
<pad><pad><pad><sum><5><d><pad><pad><pad> >”. Once the VIR is unmasked, we
perform an automatic de-regularization process followed by an anchoring process,
based on the reference date to obtain the final value, as summarized in Figure 5.

4. Results

In this section, we will discuss the results of the experiments proposed in section 3.6.
It should be noted that all results shown are weighted accuracy as explained in section
3.6.

4.1 Representation comparison

As can be seen in Table 3, our representation offers a 2.64 point advantage over Lange’s.
By optimizing the representation space we reduce in more than 18% the number of
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Representation E3C Timebank Mean
Our VIR 49.96 69.62 58.65
(Lange et al. 2023) 47.71 66.49 56.01

Table 3
Performance of a large XLM-RoBERTa model trained over automatic annotated MIMIC-III with
(Lange et al. 2023) representation and our proposed VIR. In bold the best results.

masked tokens in the training set and in 22% the amount of tokens that have to be
unmasked in the test sets. Considering that the representations are composed mostly of
pad tokens, reducing the length greatly reduces the noise of this pad tokens, improving
the performance. Furthermore, employing a single representation for all types requires
condensing substantial information into a limited number of slots. This can lead the
model to mix information and worsen its performance. In contrast, utilizing a dedi-
cated representation for each type provides more specific slots tailored to the type of
expression. This design allows the model to establish stronger associations between
the expression type and its VIR, effectively segmenting the information and thereby
enhancing overall performance.

As already mentioned in Section 3.6, representations cannot be decoupled from the
system of rules on which they are designed. In our case it is Annotador and in the case
of Lange’s representation, it is HeidelTime. So to perform this experiment we had to
annotate MIMIC-III on the one hand with Annotador and our representation and on the
other hand with HeidelTime and Lange’s representation. This may lead to some inter-
ference in the results of the experiment, as the results are not fully comparable, but as we
cannot decouple HeidelTime and Annotador from their respective representations there
is no way to eliminate this interference completely. Still, HeidelTime and Annotador are
very similar systems in terms of English TE normalization performance. This can be
seen in Table 8 and in the papers (Sánchez-de Castro, Araujo, and Martinez-Romo 2023;
Navas-Loro et al. 2020), where the difference in performance is only a few tenths of a
percent. The performance difference between the two systems does not fully justify such
a large discrepancy between our representation and Lange’s. While the performance
gap is undoubtedly influenced by the differences between HeidelTime and Annotador,
the size of this gap suggests that with all other factors being equal, our representation
would outperform Lange’s in this scenario.

4.2 Hand-crafted TEs corpus impact

Table 4 shows the comparison in performance on English E3C and Timebank for train-
ing a large XLM-RoBERTa model with and without the hand-crafted TEs corpus. It can
be observed that the hand-crafted TEs boost the performance by over 5.5 points. The
increase is due to the lack of diversity of TEs in MIMIC-III, especially full dates, days
of the week and operations like “next month”. It is important to remark that there is no
data leakage from the hand-crafted TEs corpus.

4.3 Masking function results

We have proposed three different masking functions for training the model. The re-
sults can be seen in Table 5. The best performance is offered by the combination of
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Hand-crafted TEs E3C Timebank Mean
W 54.25 76.89 64.26
W/O 49.96 69.62 58.65

Table 4
Performance of a large XLM-RoBERTa model on English E3C and Timebank trained with (W)
and without (W/O) the hand-crafted TEs corpus. In bold the best results.

linear+logistic masking function. This function offers the best combination of early high
masking rate and lately low masking rate. Behind in performance is the linear+cosine
masking function. The main reason why this function is worse than the logistic function
might be the accelerating decrease exposed in Section 3.3. Lastly, the worst perfor-
mance is the constant masking function. Regarding the base and large versions of XLM-
RoBERTa, it is clear that the large version offers better performance than the base, with
around 4 points more on E3C and Timebank.

From now on we will refer to the large model trained with linear+logistic function
as our base model.

Model
Size Constant Linear +

Cosine
Linear +
Logistic Mean

E3C
Large 54.25 54.62 55 54.62
Base 49.73 51.61 52.54 51.29
Mean 51.99 53.12 53.77

Timebank
Large 76.89 76.89 78.76 77.51
Base 70.92 72.21 73.77 72.30
Mean 73.90 74.55 76.26

Table 5
Results comparing the training base and large XLM-RoBERTa model with three different
masking functions in MIMIC-III over English E3C and Timebank corpora. Showing the mean
values for each model and each function. In bold the best results.

4.4 Freezing layers result

In this experiment, our base model is subjected to a fine-tuning process on E3C and
Timebank multilingual training sets using the freezing layers technique planned in
Section 3.4. We evaluate based on the mean value of all languages across both corpora.
Table 6 shows a mean 1.22 advantage on training with 9 against 6 frozen layers on both
corpora and a 2.45 advantage on freezing 9 layers against not freezing. Therefore, it can
be concluded that freezing layers improve the adaptability of the model to new domains
and languages. In addition, for this particular case freezing 9 layers is consistently better
than freezing 6, but this may not be transferable to other cases.
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Layers E3C Timebank Mean
0 68.31 73.99 71.48
6 68.78 75.82 72.71
9 69.71 77.27 73.93

Table 6
Results on multilingual Timebank and E3C comparing fine-tuning the best model found in
Section 4.3 on multilingual Timebank and E3C train sets with 0, 6 and 9 frozen layers. In bold the
best results.

English French Italian Spanish Mean
Timebank Global Mean

Ours base W/O 74.82 54.52 77.50 73.76 72.12 65.98
Ours base 78.76 57.69 81.58 77.64 75.96 69.52
Our base W/O + ft 79.16 58.33 82.93 78.93 76.92 70.91
Ours base + ft 83.33 61.73 87.30 83.08 81.01 74.71
XLM_Bosch 79.49 61.73 85.74 81.52 79.05 69.80
GPT-4o mini 58.64 43.44 61.43 58.46 57.01 58.11
GPT-4o mini Few-Shot 61.19 45.26 63.76 61.15 59.45 60.57

E3C
Ours base W/O 52.25 62.29 59.52 69.35 61.12
Ours base 55.00 65.92 62.65 73.00 64.42
Our base W/O + ft 56.54 67.42 64.41 75.05 66.15
Ours base + ft 59.52 71.34 67.80 79.00 69.71
XLM_Bosch 54.17 61.15 58.76 74.00 62.47
GPT-4o mini 50.36 60.36 57.36 66.84 58.98
GPT-4o mini Few-Shot 52.52 62.71 59.72 69.78 61.46

Table 7
Comparison between our base model without the hand-crafted corpus, our base model, our base
model without the hand-crafted corpus plus second fine-tune, our base model plus second
fine-tune, GPT-4o mini, GPT-4o mini with few-shot and current state-of-the-art system
XLM_Bosch results on multilingual E3C and Timebank corpora —English, French, Italian and
Spanish— by order. The weighted mean for each corpus and the global weighted mean between
both corpora are also presented. In bold the best results per language, corpus and global.

4.5 Final results

Table 7 shows the final results. Our base model, which excels on the E3C dataset,
achieves a comparable global mean score to XLM_Bosch, with only a 0.28 point dif-
ference, despite XLM_Bosch performing best on the Timebank dataset. This is an un-
derstandable behavior because XLM_Bosch is trained with Timebank data and our
base model is only trained with biomedical domain data. Considering that our base-
line model has not seen data from either Timebank or E3C or any language rather
than English, it highlights the value of the training techniques used and the zero-shot
capabilities of the model. This scenario is improved on the fine-tuned version, which
outperforms XLM_Bosch with a 7.94 points advantage on E3C, 1.96 points on Timebank
and 4.91 points in general, in part thanks to the layer freezing technique. Also, our
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model outperforms in all languages, except in French Timebank where both models
score the same.

To highlight the value of the hand-crafted corpus, we trained a model follow-
ing the same procedure used for the final model but excluding this corpus from the
training process. The results are summarized in Table 7, where the first row presents
the performance of the base model trained without the hand-crafted corpus. As the
table indicates, incorporating the corpus leads to a 3.54 point improvement in the
global mean performance. Conversely, fine-tuning the model without the hand-crafted
corpus results in a 3.8 point decrease in performance. In addition, including both the
hand-crafted dataset and the fine-tuning process with E3C and Timebank shows the
best results, indicating the complementarity of both parts and empirically ruling out
unnecessary overlapping. These findings underscore the significant positive influence
of the hand-crafted corpus on the model’s performance. Although its impact is not as
pronounced as that of fine-tuning, the hand-crafted corpus could play an equally critical
role in zero-shot scenarios across other domains and languages, as it was designed
to serve as a foundational dataset. This also highlights the current lack of manually
annotated corpora to achieve sufficiently varied training sets, emphasizing the need
to build larger, well-designed foundational corpora that address global requirements
rather than domain- or language-specific needs, as our hand-crafted corpus. Also, it
should be recalled that none of the expressions included in the hand-crafted corpus are
in the test sets of either Timebank or E3C.

Regarding GPT-4o mini, it is the worst performing model of the comparison by
language and in general means. The performance gap is greater in Timebank than in
E3C, where the GPT-4o mini is just 3.49 points behind XLM_Bosch without any intended
training. But it is still far from the rest of the options in the global mean, with 16.6 points
of difference from our fine-tuned model and even 11.41 points from our base model,
which in this scenario is working on zero-shot in terms of languages and domains.

Few-shot prompting enhances GPT-4o Mini’s global mean performance by 2.46
points, a notable improvement that brings its performance close to XLM_Bosch in E3C,
with only a 1.01 point difference in favor of XLM_Bosch. Nevertheless, it remains 14.14
points below our proposed approach in terms of global mean performance. In the
English Timebank dataset results shown in Table 8, GPT-4o Mini falls 9.11 points behind
the weakest baseline system, SuTime. Additionally, prior work (Gautam, Lange, and
Strötgen 2024) that employs complex prompting strategies for TE normalization reports
a 10.73 point lower performance on the English Timebank compared to our approach.
Also, they conclude that XLM_Bosch’s performance is superior to their proposed GPT
approach in English Timebank. Considering these results, we do not expect further
exploration of more complex prompting techniques to provide substantial additional
insights for improving the baselines.

Despite these limitations, we will analyze the errors of GPT models to gain a
deeper understanding of their performance. Given the model’s considerable size and
its exceptional capabilities across diverse tasks, one would expect a strong performance
in this domain. In our baseline experiment, we observed that the model struggles with
correctly handling DURATIONS and SETS, often misinterpreting them and mistakenly
mixing them with date formats. This issue is partially mitigated by few-shot prompting,
which also improves the handling of date-related TEs involving weeks—another area
where the model initially exhibited formatting errors. However, in most other cases,
few-shot prompting did not produce any significant improvements. Given the broad
and varied nature of the errors, relying solely on prompting techniques may not yield
significant improvements, as evidenced by (Gautam, Lange, and Strötgen 2024). Other
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potential avenues for enhancement accuracy and robustness include aligning the model
through reinforcement learning or developing intelligent agents capable of integrating
external tools, such as calendars, code-for-date operations, or format verification sys-
tems.

It should be noted that it is possible that GPT-4o mini may have been trained with
some or all of Timebank and E3C, as they are public corpora and there is no guarantee
that this has not occurred.

Finally, Table 8 presents a comparison of our proposed model against other TE
normalization solutions within English Timebank. Most alternatives focus exclusively
on English and are specifically tailored for Timebank, whereas our method supports
multiple languages while achieving state-of-the-art performance. As shown, our model
nearly matches the leading solution, CogCompN, with only a 0.07 points difference,
while outperforming the others. Additionally, our approach is adaptable across various
languages and domains and can work in zero-shot scenarios for unseeing languages,
unlike rule-based systems, making it a much more effective option for TE normalization.

TE normalization systems English Timebank
HeidelTime 81.6
Annotador 81.54
SuTime 70.3
UWTime 82.6
CogCompN 83.4
ARTime 75.4
DNPTime-Large 80.4
TimeNorm 79
XLM_Bosch 79.49
Ours 83.33

Table 8
Comparison between our best model and other well-known TE normalization solutions in
English Timebank. In bold the best results and second-best results are underlined.

5. Conclusions

In this work, we achieve the best results in multilingual TE normalization among all
public normalization systems for two different domain corpora, E3C and Timebank.
To accomplish this, we have built a new value intermediate representation (VIR) for
adapting the normalization task to the fill-mask architecture. We have applied this new
representation to automatically annotate a biomedical corpus — MIMIC-III —with a
state-of-the-art normalization system called Annotador. Also, we have hand-crafted a
TEs corpus to complement the automatic annotations. This corpus has been of vital
importance in improving the results of the final model. On the training side, we have
created a custom masking policy that is fully adapted to normalization tasks. This policy
greatly improves the performance of the model against training with a general policy.
We believe that these results show the great potential of choosing a well-fitted masking
strategy and show an appropriate way to do so, which can be applied to many other
problems beyond normalization. In addition, we show that the freezing layers technique
can be of great benefit for domain and language adaptation. By freezing 9 model layers
we achieve the best performance on E3C and Timebank, outperforming the results of
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the best current multilingual normalization and monolingual systems. Also, we show
how our intermediate representation is more optimal than the one proposed at (Lange
et al. 2023). Therefore, we show how our methodology contributes to improving cross-
language and domain adaptability by enabling and optimizing the use of multilingual
fill-masked PTLMs, demonstrating how they are a great alternative to conventional
systems to achieve multilingual capabilities.

6. Limitations

This work presents a series of limitations regarding the methodology and the final
model capabilities.

First, we would like to acknowledge that our work was inspired by (Lange et al.
2023) in the use of fill-mask models alongside an intermediate representation. However,
while we adopted the concept of an intermediate representation, our implementation
significantly diverges from theirs, both in design and demonstrated performance. We
have shown that our representation is more space-efficient and achieves superior re-
sults. Beyond this shared inspiration, the rest of our work is entirely novel. We intro-
duce a completely new corpus, which has proven highly effective and can serve as a
valuable resource for other TE normalization approaches. Additionally, we propose an
entirely new masking policy that is broadly applicable to any fill-mask model, further
distinguishing our methodology from previous efforts.

As the proposed methodology and techniques are universal, we plan to apply them
to other languages and domains in the future. Also, we plan to adapt auto-retrogressive
Large Language Models (LLM) like Mistral, Gemma or LLaMA-3 to the normalization
task, since it has a promising avenue for study. Also, we plan to test the applications
of agentic approaches where LLMs can use external tools like calendars, code for date
operations or format verifiers. In addition, we have only tested with XLM-RoBERTa.
Other fill-mask models might achieve a better balance between performance and size.
We also plan to use Low Ranking Adaptation (LoRA) given the good results it has been
producing in recent LLM. Also, we have not tested other possible VIR formats with
different lengths or configurations which might result in a better understanding of the
representation by the model.

The use of TE detection models has not been studied in this work, as it has been
considered that it could interfere with the study of the performance of the proposed
normalization methodology. A normalization system can only process TEs that provide
sufficient information for normalization. If the detection system partially fails, it is
likely that the normalization process will also fail. Moreover, if the detection system
fails entirely and does not detect the expression, there is nothing for the normalization
system to process. Thus, evaluating a normalization system’s performance together
with a detection system would be inefficient for studying the normalization process.

In conducting our GPT-4o Mini experiments, we recognize that our approach does
not aim to maximize the model’s potential performance. Although more advanced
prompting techniques could have been incorporated, they fall beyond the scope of this
study. Existing research (Gautam, Lange, and Strötgen 2024) has already investigated
such methods, reporting lower performance than our approach on English Timebank,
10.73 points precisely. Consequently, we see little value in further exploring prompting
strategies for GPT-4o Mini in this work. Instead, our inclusion of GPT-4o serves to
illustrate the performance of a widely recognized model in a basic scenario, rather than
to highlight its full capabilities.
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Regarding the final model, we are conscious that it has certain limitations when it
comes to TE normalization. Most of these are one-off errors. However, we have detected
a recurrent error when trying to normalize long-context TEs. For example when some
part of the expression is implicit like in “On 4 and 5 April, the patient went to the doctor
for consultation...On 4 underwent various tests”. The model does not relate 4 with a day,
it just takes a random guess. This is an acceptable error since most of the TEs are self-
contained and relating both parts of the text is a very hard task in deep learning. We
have not tried to solve these problems because they rarely appear in real scenarios.
Also, building artificial expressions with this characteristic would imply filling in the
space between both TEs, hindering the task. Finally, we regularize and de-regularize
every value into its corresponding VIR and vice versa with a Python script, using rules,
regular expressions and pattern recognition. This script has been done meticulously,
taking care and debugging errors. Nevertheless, the potential range of values for the
TEs is very extensive and there may be some misbehavior in the regularization and
de-regularization processes.

As for the final results in Table 8, the scores of HeidelTime and Annotador have
been extracted from (Navas-Loro et al. 2020), UWTime, CogCompn and DNPTime-
Large have been extracted from (Ding et al. 2023) and the scores of TimeNorm from
(Escribano, Rigau, and Agerri 2023), as all of them use the same test sets as ours.

This work has been developed taking into account the possible impacts, both
positive and negative, of our proposal and methodology. This is why we have not
repeated the experiments more than three times, to reduce the environmental impact.
On the other hand, some of the used corpora include personal information that is fully
anonymized by the corresponding authors. Finally, we have not found any possible
biases that could be detrimental or have a negative impact on any community.
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