
Optimization for Statistical Machine
Translation: A Survey

Graham Neubig∗
Graduate School of Information Science
Nara Institute of Science and Technology

Taro Watanabe∗∗
Google Inc.

In statistical machine translation (SMT), the optimization of the system parameters to maximize
translation accuracy is now a fundamental part of virtually all modern systems. In this article,
we survey 12 years of research on optimization for SMT, from the seminal work on discriminative
models (Och and Ney 2002) and minimum error rate training (Och 2003), to the most recent
advances. Starting with a brief introduction to the fundamentals of SMT systems, we follow by
covering a wide variety of optimization algorithms for use in both batch and online optimization.
Specifically, we discuss losses based on direct error minimization, maximum likelihood, max-
imum margin, risk minimization, ranking, and more, along with the appropriate methods for
minimizing these losses. We also cover recent topics, including large-scale optimization, non-
linear models, domain-dependent optimization, and the effect of MT evaluation measures or
search on optimization. Finally, we discuss the current state of affairs in MT optimization,
and point out some unresolved problems that will likely be the target of further research in
optimization for MT.

1. Introduction

Machine translation (MT) has long been both one of the most promising applications
of natural language processing technology and one of the most elusive. However, over
approximately the past decade, huge gains in translation accuracy have been achieved
(Graham et al. 2014), and commercial systems deployed for hundreds of language
pairs are being used by hundreds of millions of users. There are many reasons for
these advances in the accuracy and coverage of MT, but among them two particularly
stand out: statistical machine translation (SMT) techniques that make it possible to learn
statistical models from data, and massive increases in the amount of data available to
learn SMT models.

∗ 8916-5 Takayama-cho, Ikoma, Nara, Japan. E-mail: neubig@is.naist.jp.
∗∗ 6-10-1 Roppongi, Minato-ku, Tokyo, Japan. E-mail: tarow@google.com.

This work was mostly done while the second author was affiliated with the National Institute
of Information and Communications Technology, 3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto,
619-0289, Japan.

Submission received: 3 June 2014; revised version received: 18 March 2015; accepted for publication:
11 October 2015.

doi:10.1162/COLI a 00241

© 2016 Association for Computational Linguistics

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

Within the SMT framework, there have been two revolutions in the way we math-
ematically model the translation process. The first was the pioneering work of Brown
et al. (1993), who proposed the idea of SMT, and described methods for estimation of the
parameters used in translation. In that work, the parameters of a word-based generative
translation model were optimized to maximize the conditional likelihood of the training
corpus. The second major advance in SMT is the discriminative training framework
proposed by Och and Ney (2002) and Och (2003), who propose log-linear models for
MT, optimized to maximize either the probability of getting the correct sentence from
a k-best list of candidates, or to directly achieve the highest accuracy over the entire
corpus. By describing the scoring function for MT as a flexibly parameterizable log-
linear model, and describing discriminative algorithms to optimize these parameters, it
became possible to think of MT like many other structured prediction problems, such
as POS tagging or parsing (Collins 2002).

However, within the general framework of structured prediction, MT stands apart
in many ways, and as a result requires a number of unique design decisions not neces-
sary in other frameworks (as summarized in Table 1). The first is the search space that
must be considered. The search space in MT is generally too large to expand exhaus-
tively, so it is necessary to decide which subset of all the possible hypotheses should
be used in optimization. In addition, the evaluation of MT accuracy is not straight-
forward, with automatic evaluation measures for MT still being researched to this day.
From the optimization perspective, even once we have chosen an automatic evaluation
metric, it is not necessarily the case that it can be decomposed for straightforward
integration with structured learning algorithms. Given this evaluation measure, it is
necessary to incorporate it into a loss function to target. The loss function should be
closely related to the final evaluation objective, while allowing for the use of efficient
optimization algorithms. Finally, it is necessary to choose an optimization algorithm.
In many cases it is possible to choose a standard algorithm from other fields, but there
are also algorithms that have been tailored towards the unique challenges posed by
MT.

Table 1
A road map of the various elements that affect MT optimization.

Which Loss Functions? Which Optimization Algorithm?
Error (§3.1) Minimum Error Rate Training (§5.1)
Softmax (§3.2) Gradient-based Methods (§5.2, §6.5)
Risk (§3.3) Margin-based Methods (§5.3)
Margin, Perceptron (§3.4) Linear Regression (§5.4)
Ranking (§3.5) Perceptron (§6.2)
Minimum Squared Error (§3.6) MIRA (§6.3)

AROW (§6.4)

Which Evaluation Measure? Which Hypotheses to Target?
Corpus-level, Sentence Level (§2.5) k-best vs. Lattice vs. Forest (§2.4)
BLEU and Approximations (§2.5.1, §2.5.2) Merged k-bests (§5)
Other Measures (§8.3) Forced Decoding (§2.4), Oracles (§4)

Other Topics:
Large Data Sets (§7), Non-linear Models (§8.1),
Domain Adaptation (§8.2), Search and Optimization (§8.4)

2

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

In this article, we survey the state of the art in machine translation optimization
in a comprehensive and systematic fashion, covering a wide variety of topics, with a
unified set of terminology. In Section 2, we first provide definitions of the problem of
machine translation, describe briefly how models are built, how features are defined,
and how translations are evaluated, and finally define the optimization setting. In
Section 3, we next describe a variety of loss functions that have been targeted in machine
translation optimization. In Section 4, we explain the selection of oracle translations,
a non-trivial process that directly affects the optimization results. In Section 5, we
describe batch optimization algorithms, starting with the popular minimum error rate
training, and continuing with other approaches using likelihood, margin, rank loss, or
risk as objectives. In Section 6, we describe online learning algorithms, first explaining
the relationship between corpus-level optimization and sentence-level optimization,
and then moving on to algorithms based on perceptron, margin, or likelihood-based
objectives. In Section 7, we describe the recent advances in scaling training of MT
systems up to large amounts of data through parallel computing, and in Section 8, we
cover a number of other topics in MT optimization such as non-linear models, domain
adaptation, and the relationship between MT evaluation and optimization. Finally, we
conclude in Section 9, overviewing the methods described, making a brief note about
which methods see the most use in actual systems, and outlining some of the unsolved
problems in the optimization of MT systems.

2. Machine Translation Preliminaries and Definitions

Before delving into the details of actual optimization algorithms, we first introduce pre-
liminaries and definitions regarding MT in general and the MT optimization problem in
particular. We focus mainly on the aspects of MT that are relevant to optimization, and
readers may refer to Koehn (2010) or Lopez (2008) for more details about MT in general.

2.1 Machine Translation

Machine translation is the problem of automatically translating from one natural lan-
guage to another. Formally, we define this problem by specifying F to be the collection
of all source sentences to be translated, f ∈ F as one of the sentences, and E (f) as the
collection of all possible target language sentences that can be obtained by translating f .
Machine translation systems perform this translation process by dividing the translation
of a full sentence into the translation and recombination of smaller parts, which are
represented as hidden variables, which together form a derivation.

For example, in phrase-based translation (Koehn, Och, and Marcu 2003), the hidden
variables will be the alignment between the phrases of the source and target sentences,
and in tree-based translation models (Yamada and Knight 2001; Chiang 2007), the
hidden variables will represent the latent tree structure used to generate the translation.
We will define D(f) to be the space of possible derivations that can be acquired from
source sentence f , and d ∈ D(f) to be one of those derivations. Any particular deriva-
tion d will correspond to exactly one e ∈ E (f), although the opposite is not true (the
derivation uniquely determines the translation, but there can be multiple derivations
corresponding to a particular translation). We also define tuple 〈e, d〉 consisting of a
target sentence and its corresponding derivation, and T (f) ⊆ E (f)×D(f) as the set of
all of these tuples.

Because the set of all possible translations E (f) will contain both good and
bad translations, it is necessary to have a method to identify and output the good

3

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

translations. In order to do so, in machine translation it is common to define a linear
model that determines the score of each translation candidate. In this linear model
we first define an M-dimensional feature vector for each output and its derivation as
h(f , e, d) : F × E ×D→ RM. For each feature, we also define a corresponding weight,
resulting in an M-dimensional weight vector w ∈ RM. Based on these feature and
weight vectors, we proceed to define the problem of selecting the best 〈e, d〉 as the
following maximization problem

〈ê, d̂〉 = arg max
〈e,d〉∈T (f)

w>h(f , e, d) (1)

where the dot product of the parameters and features is equivalent to the score assigned
to a particular translation.

The optimization problem that we will be surveying in this article is generally
concerned with finding the most effective weight vector w from the set of possible
weight vectors RM.1 Optimization is also widely called tuning in the SMT literature. In
addition, because of the exponentially large number of possible translations in E (f) that
must be considered, it is necessary to take advantage of the problem structure, making
MT optimization an instance of structured learning.

2.2 Model Construction

The first step of creating a machine translation system is model construction, in which
translation models (TMs) are extracted from a large parallel corpus. The TM is usually
created by first aligning the parallel text (Och and Ney 2003), using this text to extract
multi-word phrase pairs or synchronous grammar rules (Koehn, Och, and Marcu 2003;
Chiang 2007), and scoring these rules according to several features explained in more
detail in Section 2.3. The construction of the TM is generally performed first in a manner
that does not directly consider the optimization of translation accuracy, followed by an
optimization step that explicitly considers the accuracy achieved by the system.2 In this
survey, we focus on the optimization step, and thus do not cover elements of model
construction that do not directly optimize an objective function related to translation
accuracy, but interested readers can reference Koehn (2010) for more details.

In the context of this article, however, the TM is particularly important in the role
it plays in defining our derivation space D(f). For example, in the case of phrase-based
translation, only phrase pairs included in the TM will be expanded during the process
of searching for the best translation (explained in Section 2.4).

This has major implications from the point of view of optimization, the most impor-
tant of which being that we must use separate data for training the TM and optimizing
the parameters w. The reason for this lies in the fact that the TM is constructed in such a
way that allows it to “memorize” long multi-word phrases included in the training data.
Using the same data to train the model parameters will result in overfitting, learning
parameters that heavily favor using these memorized multi-word phrases, which will
not be present in a separate test set.

1 It should be noted that although most work on MT optimization is concerned with linear models (and
thus we will spend the majority of this article discussing optimization of these models), optimization
using non-linear models is also possible, and is discussed in Section 8.1.

2 It should also be noted there have been a few recent attempts to jointly perform rule extraction and
optimization, doing away with this two-step process (Xiao and Xiong 2013).

4

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

The traditional way to solve this problem is to train the TM on a large parallel
corpus on the order of hundreds of thousands to tens of millions of sentences, then
perform optimization of parameters on a separate set of data consisting of around one
thousand sentences, often called the development set. When learning the weights for
larger feature sets, however, a smaller development set is often not sufficient, and it is
common to perform cross-validation, holding out some larger portion of the training
set for parameter optimization. It is also possible to perform leaving-one-out training,
where counts of rules extracted from a particular sentence are subtracted from the
model before translating the sentence (Wuebker, Mauser, and Ney 2010).

2.3 Features for Machine Translation

Given this overall formulation of MT, the features h(f , e, d) that we choose to use to
represent each translation hypothesis are of great importance. In particular, with regard
to optimization, there are two important distinctions between types of features: local vs.
non-local, and dense vs. sparse.

With regard to the first distinction, local features, such as phrase translation prob-
abilities, do not require additional contexts from other partial derivations, and they are
computed independently from one another. On the other hand, when features for a
particular phrase pair or synchronous rule cannot be computed independently from
other pairs, they are called non-local features. This distinction is important, as local
features will not result in an increase in the size of the search space, whereas non-local
features have the potential to make search more difficult.

The second distinction is between dense features, which define a small number of
highly informative feature functions, and sparse features, which define a large number
of less informative feature functions. Dense features are generally easier to optimize,
both from a computational point of view because the smaller number of features re-
duces computational and memory requirements, and because the smaller number of
parameters reduces the risk of overfitting. On the other hand, sparse features allow
for more flexibility, as their parameters can be directly optimized to increase translation
accuracy, so if optimization is performed well they have the potential to greatly increase
translation accuracy. The remainder of this section describes some of the widely used
features in more detail.

2.3.1 Dense Features. Dense features, which are generally continuously valued and
present in nearly all translation hypotheses, are used in the majority of machine trans-
lation systems. The most fundamental set of dense features are phrase/rule translation
probabilities or relative frequencies in which the log of sentence-wise probability
distributions p(f |e) and p(e| f), are split into the sum of phrase or rule log probabilities

hφ(f , e, d) =
∑
〈α,β〉∈d

log pφ(α|β), hφ′ (f , e, d) =
∑
〈α,β〉∈d log pφ′ (β|α) (2)

Here α and β are the source and target sides of a phrase pair or rule. These features are
estimated using counts of each phrase derived from the training corpus as follows:

pφ(α|β) =
count(α,β)∑
α′ count(α′,β)

, pφ′ (β|α) =
count(α,β)∑
β′ count(α,β′)

(3)

5

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

In addition, it is also common to use lexical weighting, which estimates parameters
for each phrase pair or rule by further decomposing them into word-wise probabilities
(Koehn, Och, and Marcu 2003). This helps more accurately estimate the reliability of
phrase pairs or rules that have low counts. It should be noted that all of these features
can be calculated directly from the rules themselves, and are thus local features.

Another set of important features are language models (LMs), which capture the
fluency of translation e, and are usually modeled by n-grams

hlm(f , e, d) =

|e|∑
i=1

log plm(ei|ei−1
i−n+1) (4)

Note that the n-gram LM is computed over e regardless of the boundaries of phrase
pairs or rules in the derivation, and is thus a non-local feature.

The n-gram language model assigns higher penalties for longer translations, and
it is common to add a word penalty feature that measures the length of translation
e to compensate for this. Similarly, phrase penalty or rule penalty features express
the trade-off between longer or shorter derivations. There exist other features that are
dependent on the underlying MT system model. Phrase-based MT heavily relies on
the distortion probabilities that are computed by the distance on the source side of
target-adjacent phrase pairs. More refined lexicalized reordering models estimate the
parameters from the training data based on the relative distance of two phrase pairs
(Tillman 2004; Galley and Manning 2008).

2.3.2 Sparse features. Although dense features form the foundation of most SMT systems,
in recent years the ability to define richer feature sets and directly optimize the system
using rich features has been shown to allow for significant increases in accuracy. On the
other hand, large and sparse feature sets make the MT optimization problem signifi-
cantly harder, and many of the optimization methods we will cover in the rest of this
survey are aimed at optimizing rich feature sets.

The first variety of sparse features that we can think of are phrase features or
rule features, which count the occurrence of every phrase or rule. Of course, it is only
possible to learn parameters for a translation rule if it exists in the training data used in
optimization, so when using a smaller data set for optimization it is difficult to robustly
learn these features. Chiang, Knight, and Wang (2009) have noted that this problem can
be alleviated by only selecting and optimizing the more frequent of the sparse features.
Simianer, Riezler, and Dyer (2012) also propose features using the “shape” of translation
rules, transforming a rule

X→ 〈ne X 1 pas, did not X 1 〉 (5)

into a string simply indicating whether each word is a terminal (T) or non-terminal (N)

N→ 〈T N T, T T N〉 (6)

Count-based features can also be extended to cover other features of the translation,
such as phrase or rule bigrams, indicating which phrases or rules tend to be used
together (Simianer, Riezler, and Dyer 2012).

Another alternative for the creation of features that are sparse, but less sparse than
features of phrases or rules, are lexical features (Watanabe et al. 2007). Lexical features,

6

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

similar to lexical weighting, focus on the correspondence between the individual words
that are included in a phrase or rule. The simplest variety of lexical features remembers
which source words f are aligned with which target words e, and fires a feature for
each pair. It is also possible to condition lexical features on the surrounding context
in the source language (Chiang, Knight, and Wang 2009; Xiao et al. 2011), fire features
between every pair of words in the source or target sentences (Watanabe et al. 2007),
or integrate bigrams on the target side (Watanabe et al. 2007). Of these, the former two
can be calculated from source and local target context, but target bigrams require target
bigram context and are thus non-local features.

One final variety of features that has proven useful is syntax-based features
(Blunsom and Osborne 2008; Marton and Resnik 2008). In particular, phrase-based and
hierarchical phrase-based translations do not directly consider syntax (in the linguistic
sense) in the construction of the models, so introducing this information in the form of
features has a potential for benefit. One way to introduce this information is to parse
the input sentence before translation, and use the information in the parse tree in the
calculation of features. For example, we can count the number of times a phrase or
translation rule matches, or partially matches (Marton and Resnik 2008), a span with
a particular label, based on the assumption that rules that match a syntactic span are
more likely to be syntactically reasonable.

2.3.3 Summary features. Although sparse features are useful, training of sparse features
is an extremely difficult optimization problem, and at this point there is still no method
that has been widely demonstrated as being able to robustly estimate the parameters of
millions of features. Because of this, a third approach of first training the parameters of
sparse features, then condensing the sparse features into dense features and performing
one more optimization pass (potentially with a different algorithm), has been widely
used in a large number of research papers and systems (Dyer et al. 2009; He and Deng
2012; Flanigan, Dyer, and Carbonell 2013; Setiawan and Zhou 2013). A dense feature
created from a large group of sparse features and their weights is generally called a
summary feature, and can be expressed as follows

hsum(f , e, d) = w>sparsehsparse(f , e, d) (7)

There has also been work that splits sparse features into not one, but multiple
groups, creating a dense feature for each group (Xiang and Ittycheriah 2011; Liu et al.
2013).

2.4 Decoding

Given an input sentence f , the task of decoding is defined as an inference problem
of finding the best scoring derivation 〈ê, d̂〉 according to Equation (1). In general, the
inference is intractable if we enumerate all possible derivations in T (f) and rank
each derivation by the model. We assume that a derivation is composed of a set of
steps

d = d1, d2, · · · , d|d| (8)

where each dj is a step—for example, a phrase pair in phrase-based MT or a syn-
chronous rule in tree-based MT—ordered in a particular way. We also assume that

7

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

each feature function can be decomposed over each step, and Equation (1) can be
expressed by

〈ê, d̂〉 = arg max
〈e,d〉∈T (f)

|w|∑
i

wi

|d|∑
j=1

hi(dj,ρi(d
j−1
1)) (9)

where hi(dj,ρi(d
j−1
1)) is a feature function for the jth step decomposed from the global

feature function of hi(f , e, d). As mentioned in the previous section, non-local fea-
tures require information that cannot be calculated directly from the rule itself, and
ρi(d

j−1
1) is a variable that defines the residual information to score this ith feature func-

tion using the partial derivation dj−1
1 (Gesmundo and Henderson 2011; Green, Cer,

and Manning 2014). For example, in phrase-based translation, for an n-gram language
model feature, ρi(d

j−1
1) will be the n− 1 word suffix of the partial translation (Koehn,

Och, and Marcu 2003). The local feature functions, such as phrase translation probabili-
ties in Section 2.3.1, require no context from partial derivations, and thus ρi(d

j−1
1) = ∅.

The problem of decoding is treated as a search problem in which partial derivations
ḋ together with ρi(ḋ) in Equation (9) are enumerated to form hypotheses or states. In
phrase-based MT, search is carried out by enumerating partial derivations in left-to-
right order on the target side while remembering the translated source word positions.
Similarly, the search in MT with synchronous grammars is performed by using the
CYK+ algorithm (Chappelier and Rajman 1998) on the source side and generating
partial derivations for progressively longer source spans. Because of the enormous
search space brought about by maintaining ρi(ḋ) in each partial derivation, beam search
is used to heuristically prune the search space. As a result, the search is inexact because
of the search error caused by heuristic pruning, in which the best scoring hypothesis is
not necessarily optimal in terms of given model parameters.

The search is efficiently carried out by merging equivalent states encoded as ρ
(Koehn, Och, and Marcu 2003; Huang and Chiang 2007), and the space is succinctly
represented by compact data structures, such as graphs (Ueffing, Och, and Ney 2002)
(or lattices) in phrase-based MT (Koehn, Och, and Marcu 2003) and hypergraphs (Klein
and Manning 2004) (or packed forests) in tree-based MT (Huang and Chiang 2007).
These data structures may be directly used as compact representations of all derivations
for optimization.

However, using these data structures directly can be unwieldly, and thus it is
more common to obtain a k-best list as an approximation of the derivation space.
Figure 1(a) shows an example of k-best English translations for a French input sentence,
‘la délégation chinoise appuiera pleinement la présidence.’ The k-best list may be obtained
either from a lattice in Figure 1(b) or from a forest in Figure 1(c). It should be noted
that different derivations in a k-best list may share the same translation due to the
variation of phrases or rules in constructing a translation, e.g., the choice of support
the chair or support and the chair in Figure 1(b). A diverse k-best list can be obtained by
extracting a unique k-best list that maintains only the best scored derivation sharing
the same translation (Huang, Knight, and Joshi 2006; Hasan, Zens, and Ney 2007),
by incorporating a penalty term when scoring derivations (Gimpel et al. 2013), or by
performing Monte Carlo sampling to acquire a more diverse set of candidates (Blunsom
and Osborne 2008).

8

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

the delegation of china will support the chair in full .
the chinese delegation will fully support the chair .
the chinese delegation will fully support the presidency .
the delegation of china will in full support the presidency .
the china delegation will in full support the chair .

(a) k-best

the

delegation
of

china

chinese

china

chinese delegation

will fully
in full

support

support

fully

in full

the chair

the presidency

.

support the chair

(b) lattice

will support

the presidency the chair

will

in full

fully

delegation china

the

chinese

the

X X .

X of X X X X support X
X X

X

X X .will

X support X

(c) forest

Figure 1
Example of a k-best list, lattice, and forest.

Another class of decoding problem is forced decoding, in which the output from a
decoder is forced to match with a reference translation of the input sentence. In phrase-
based MT, this is implemented by adding additional features to reward hypotheses that
match with the given target sentence (Liang, Zhang, and Zhao 2012; Yu et al. 2013). In
MT using synchronous grammars, it is carried out by biparsing over two languages, for
instance, by a variant of the CYK algorithm (Wu 1997) or by a more efficient two-step
algorithm (Dyer 2010b; Peitz et al. 2012). Even if we perform forced decoding, we are
still not guaranteed that the decoder will be able to produce the reference translation
(because of unknown words, reordering limits, or other factors). This problem can be
resolved by preserving the prefix of partial derivations (Yu et al. 2013), or by allowing
approximate matching of the target side (Liang, Zhang, and Zhao 2012). It is also
possible to create a neighborhood of a forced decoding derivation by adding additional
hyperedges to the true derivation, which allows for efficient generation of negative
examples for discriminative learning algorithms (Xiao et al. 2011).

2.5 Evaluation

Once we have a machine translation system that can produce translations, we next must
perform evaluation to judge how good the generated translations actually are. As the
final consumer of machine translation output is usually a human, the most natural form
of evaluation is manual evaluation by human annotators. However, because human
evaluation is expensive and time-consuming, in recent years there has been a shift to
automatic calculation of the quality of MT output.

In general, automatic evaluation measures use a set of data consisting of N input

sentences F =
{

f (i)
}N

i=1
, each of which having a reference translation E =

{
e(i)}N

i=1 that
was created by a human translator. The input F is automatically translated using a ma-

chine translation system to acquire MT results Ê =
{

ê(i)}N
i=1, which are then compared

to the corresponding references. The closer the MT output is to the reference, the better
it is deemed to be, according to automatic evaluation. In addition, as there are often

9

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

many ways to translate a particular sentence, it is also possible to perform evaluation
with multiple references created by different translators. There has also been some work
on encoding a huge number of references in a lattice, created either by hand (Dreyer and
Marcu 2012) or by automatic paraphrasing (Zhou, Lin, and Hovy 2006).

One major distinction between optimization measures is whether they are calcu-
lated on the corpus level or the sentence level. Corpus-level measures are calculated by
taking statistics over the whole corpus, whereas sentence-level measures are calculated
by measuring sentence-level accuracy, and defining the corpus-level accuracy as the
average of the sentence-level accuracies. All optimization algorithms that are applicable
to corpus-level measures are applicable to sentence-level measures, but the opposite is
not true, making this distinction important from the optimization point of view.

The most commonly used MT evaluation measure BLEU (Papineni et al. 2002) is
defined on the corpus level, and we will cover it in detail as it plays an important role
in some of the methods that follow. Of course, there have been many other evaluation
measures proposed since BLEU, with TER (Snover et al. 2006) and METEOR (Banerjee
and Lavie 2005) being among the most widely used. The great majority of metrics other
than BLEU are defined on the sentence level, and thus are conducive to optimization
algorithms that require sentence-level evaluation measures. We discuss the role of
evaluation in MT optimization more completely in Section 8.3.

2.5.1 BLEU. BLEU is defined as the geometric mean of n-gram precisions (usually for n
from 1 to 4), and a brevity penalty to prevent short sentences from receiving unfairly
high evaluation scores. For a single reference sentence e and a corresponding system
output ê, we can define cn(ê) as the number of n-grams in ê, and mn(e, ê) as the number
of n-grams in ê that match e

cn(ê) = |{gn ∈ ê}|

mn(e, ê) = |{gn ∈ ê} ∩ {g′n ∈ e}|

Here, {gn ∈ ê} and {g′n ∈ e} are multisets that can contain identical n-grams more than
once, and ∩ is an operator for multisets that allows for consideration of multiple in-
stances of the same n-gram.3 Note that the total count for a candidate n-gram is clipped
to be no more than the count in the reference translation. If we have a corpus of reference
sets R = {e(1), . . . , e(N)}, where each sentence has M references e(i) = {e(i)

1 , . . . , e(i)
M}, the

BLEU score of the corresponding system outputs E = {ê(1), . . . , ê(N)} can be defined
as

BLEU(E, Ê) =
4∏

n=1

(∑N
i=1 mn({e(i)

1 , . . . , e(i)
M}, ê(i))∑N

i=1 cn(ê(i))

) 1
4

· BP(E, Ê) (10)

where the first term corresponds to geometric mean of the n-gram precisions, and
the second term BP(E, Ê) is the brevity penalty. The brevity penalty is necessary here
because evaluation of precision favors systems that output only the words and phrases
that have high accuracy, and avoids outputting more difficult-to-translate content that

3 We let #A(a) denote the number of times a appeared in a multiset A, and define: |A| =
∑

a #A(a),
#A∪B(a) = max{#A(a), #B(a)}, and #A∩B(a) = min{#A(a), #B(a)}.

10

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

might not match the reference. The brevity penalty prevents this by discounting outputs
that are shorter than the reference

BP(E, Ê) = min

{
1, exp

(
1−

∑N
i=1 |ẽ(i)|∑N
i=1 |ê(i)|

)}
(11)

where ẽ(i) is defined as the longest reference with a length shorter than or equal to ê(i).

2.5.2 BLEU+1. One thing to notice here is that BLEU is calculated by taking statistics
over the entire corpus, and thus it is a corpus-level measure. There is nothing inherently
preventing us from calculating BLEU on a single sentence, but in the single-sentence
case it is common for the number of matches of higher order n-grams to become zero,
resulting in a BLEU score of zero for the entire sentence. One common solution to this
problem is the use of a smoothed version of BLEU, commonly referred to as BLEU+1
(Lin and Och 2004). In BLEU+1, we add one to the numerators and denominators of
each n-gram of order greater than one

c′n(ê) = |{gn ∈ ê}|+ δ(n > 1)

m′n(e, ê) = |{gn ∈ ê} ∩ {g′n ∈ e}|+ δ(n > 1)

where δ(·) is a function that takes a value of 1 when the corresponding statement is true.
We can then re-define a sentence-level BLEU using these smoothed counts

BLEU’(e, ê) =
4∏

n=1

(
m′n({e1, . . . , eM}, ê)

c′n(ê)

) 1
4

· BP(e, ê) (12)

and the corpus-level evaluation can be re-defined as the average of sentence level
evaluations

BLEU’(E, Ê) = 1
N

N∑
i=1

BLEU’(e(i), ê(i)) (13)

It has also been noted, however, that the average of sentence-level BLEU+1 is not a
very accurate approximation of corpus-level BLEU, but by adjusting the smoothing
heuristics it is possible to achieve a more accurate approximation (Nakov, Guzman, and
Vogel 2012).

2.6 The Optimization Setting

During the optimization process, we will assume that we have some data consisting

of sources F =
{

f (i)
}N

i=1
with corresponding references E =

{
e(i)}N

i=1 as defined in the
previous section, and that we would like to use these to optimize the parameters of the
model. As mentioned in Section 2.5, it is also possible to use more than one reference
translation in evaluation, but in this survey we will assume for simplicity of exposition
that only one reference is used.

When we select a certain weight vector w, this will affect the scores calculated
according to the model, and thus the result acquired during decoding, as described

11

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

in Section 2.4. To express whether this effect is a positive or negative one, we define
a loss function `(F, E; w) : FN × EN × RM → R that provides a numerical indicator of
how “bad” the translations generated when we use a particular w are. As the goal of
optimization is to achieve better translations, we would like to choose parameters that
reduce this loss. More formally, we can cast the problem as minimizing the expectation
of `(·), or risk minimization:

ŵ = arg min
w∈RM

EPr(F,E)[`(F, E; w)] (14)

Here, Pr(F, E) is the true joint distribution over all sets of input and output sentences that
we are likely to be required to translate. However, in reality we will not know the true
distribution over all sets of sentences a user may ask us to translate. Instead, we have a
single set of data (henceforth, training data), and attempt to find the w that minimizes
the loss on this data:

ŵ = arg min
w∈RM

`(F, E; w) (15)

Because we are now optimizing on a single empirically derived set of training data, this
framework is called empirical risk minimization.

In machine learning problems, it is common to introduce regularization to prevent
the learning of parameters that over-fit the training data. This gives us the framework of
regularized empirical risk minimization, which will encompass most of the methods
described in this survey, and is formalized as

ŵ = arg min
w∈RM

`(F, E; w) + λΩ(w) (16)

where λ is a parameter adjusting the strength of regularization, and Ω(w) is a regular-
ization term, common choices for which include the L2 regularizer Ω2(w) = 1

2‖w‖2
2 =

1
2 w>w or the L1 regularizer Ω1(w) = ‖w‖1 =

∑M
m=1 |wm| (Tibshirani 1996; Chen and

Rosenfeld 1999). Intuitively, if λ is set to a small value, optimization will attempt to
learn a w that effectively minimizes loss on the training data, but there is a risk of over-
fitting reducing generalization capability. On the other hand, if λ is set to a larger value,
optimization will be less aggressive in minimizing loss on the training data, reducing
over-fitting, but also possibly failing to capture useful information that could be used to
improve accuracy.

3. Defining a Loss Function

The first step in performing optimization is defining the loss function that we are
interested in optimizing. The choice of a proper loss function is critical in that it effects
the final performance of the optimized MT system, and also the possible choices for op-
timization algorithms. This section describes several common choices for loss functions,
and describes their various features.

12

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

3.1 Error

The first, and most straightforward, loss that we can attempt to optimize is error (Och
2003). We assume that by comparing the decoder’s translation result Ê with the refer-
ence E, we are able to calculate a function error(E, Ê) : EN × EN → R≥0 that describes the
extent of error included in the translations. For example, if we use the BLEU described in
Section 2.5 as an evaluation measure for our system, it is natural to use 1 − BLEU as an
error function, so that as our evaluation improves, the error decreases. Converting this
to a loss function that is dependent on the model parameters, we obtain the following
loss expressing the error over the 1-best results obtained by decoding in Equation (1):

`error(F, E, C; w) = error

E,

{
arg max
〈e,d〉∈c(i)

w>h(f (i), e, d)

}N

i=1

 (17)

Error has the advantage of being simple, easy to explain, and directly related to
translation performance, and these features make it perhaps the most commonly used
loss in current machine translation systems. On the other hand, it also has a large
disadvantage in that the loss function expressed in Equation (17) is not convex, and
most MT evaluation measures used in the calculation of the error function error(·)
are not continuously differentiable. This makes direct minimization of error a difficult
optimization problem (particularly for larger feature sets), and thus a number of other,
easier-to-optimize losses are used as well.

A special instance of error, which is worth mentioning because of its relation to the
methods we will introduce in the following sections, is zero–one loss. Zero–one loss
focuses on whether an oracle translation is chosen as the system output. Oracle trans-
lations can be vaguely defined as “good” translations, such as the reference translation
e(i), or perhaps the best translation in the k-best list (described in detail in Section 4). If
we define the set of oracle translations for sentence i as o(i), zero–one loss is defined by
plugging the following zero–one error function into Equation (17):

error(E, Ê) = 1
N

N∑
i=1

(
1− δ(ê(i) ∈ o(i))

)
(18)

where ê(i) is the one-best translation candidate, and δ(ê(i) ∈ o(i)) is one if ê(i) is a member
of o(i) and zero otherwise.

3.2 Softmax Loss

One thing to note about error is that there is no concept of “probability” of each
translation candidate incorporated in its calculation. Being able to define a well-scaled
probability of candidates can be useful, however, for estimation of confidence measures
or incorporation with downstream applications. Softmax loss is a loss that is similar to
the zero–one loss, but directly defines a probabilistic model and attempts to maximize
the probability of the oracle translations (Berger, Della Pietra, and Della Pietra 1996; Och
and Ney 2002; Blunsom, Cohn, and Osborne 2008).

13

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

In particular, if we assume that MT is modeled according to the log-linear model

pw(e, d| f , c) =
exp(w>h(f , e, d))∑

〈e′,d′〉∈c exp(w>h(f , e′, d′))
(19)

we can define softmax loss `softmax(·) as follows:

`softmax(F, E, C; w) = − 1
N

N∏
i=1

∑
〈e,d〉∈o(i)

pw(e, d| f (i), c(i)) (20)

= − 1
N

N∏
i=1

∑
〈e,d〉∈o(i) exp(w>h(f (i), e, d))∑
〈e,d〉∈c(i) exp(w>h(f (i), e, d))

(21)

From Equation (21) we can see that only the oracle translations contribute to the
numerator, and all candidates in c(i) contributes to the denominator. Thus, intuitively,
the softmax objective prefers parameter settings that assign high scores to the oracle
translations, and lower scores to any other members of c(i) that are not oracles.

It should be noted that this loss can be calculated from a k-best list by iterating over
the entire list and calculating the numerators and denominators in Equation (19). It is
also possible, but more involved, to calculate over lattices or forests by using dynamic
programming algorithms such as the forward–backward or inside–outside algorithms
(Blunsom, Cohn, and Osborne 2008; Gimpel and Smith 2009).

3.3 Risk-Based Loss

In contrast to softmax loss, which can be viewed as a probabilistic version of zero–one
loss, risk defines a probabilistic version of the translation error (Smith and Eisner 2006;
Zens, Hasan, and Ney 2007; Li and Eisner 2009; He and Deng 2012). Specifically, risk
is based on the expected error incurred by a probabilistic model parameterized by w.
This combines the advantages of the probabilistic model in softmax loss with the direct
consideration of translation accuracy afforded by using error directly. In comparison to
error, it also has the advantage of being differentiable, allowing for easier optimization.

To define this error, we define a scaling parameter γ ≥ 0 and use it in the calculation
of each hypothesis’s probability

pγ,w(e, d| f , c) =
exp(γw>h(f , e, d))∑

〈e′,d′〉∈c exp(γw>h(f , e′, d′))
(22)

Given this probability, we then calculate the expected loss as follows:

`risk(F, E, C;γ, w) = 1
N

N∑
i=1

Epγ,w(e,d| f (i),c(i))[err(e(i), e)] (23)

= 1
N

N∑
i=1

∑
〈e,d〉∈c(i)

err(e(i), e)pγ,w(e, d| f (i), c(i)) (24)

14

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

In Equation (22), when γ = 0 regardless of parameters w every hypothesis 〈e, d〉 will
be assigned a uniform probability, and when γ = 1 the probabilities are equivalent to
those in the log-linear model of Equation (19). When γ→∞, the probability of the
highest-scored hypothesis will approach 1, and thus our objective will approach the
error defined in Equation (17). This γ can be adjusted in a way that allows for more
effective search of the parameter space, as described in more detail in Section 5.5.

3.4 Margin-Based Loss

The zero–one loss in Section 3.1 was based on whether the oracle received a higher
score than other hypotheses. The idea of margin, which is behind the classification
paradigm of support vector machines (SVMs) (Joachims 1998), takes this a step further,
finding parameters that explicitly maximize the distance, or margin, between correct
and incorrect candidates. The main advantage of margin-based methods is that they are
able to consider the error function, and often achieve high accuracy. These advantages
make margin-based methods perhaps the second most popular loss used in current MT
systems after direct minimization of error.

This margin-based objective can be defined as the loss:

`margin(F, E, C; w) = 1
N (C)

N∑
i=1

∑
〈e∗,d∗〉∈o(i)

∑
〈e,d〉∈c(i)\o(i)

max
{

0, ∆ err(e(i), e∗, e)−w>∆h(f (i), e∗, d∗, e, d)
}

(25)

where we define

∆ err(e, e∗, e′) = err(e, e′)− err(e, e∗) (26)

∆h(f , e∗, d∗, e′, d′) = h(f , e∗, d∗)− h(f , e′, d′) (27)

In Equation (25), we first specify that for each pair of oracle candidates o(i), and non-
oracle candidates c(i) \ o(i), the margin w>∆h(·) between oracle e∗ and non-oracle e
should be greater than the difference in the error ∆ err(·).4 We then define the loss as the
total amount that this margin is violated. In this loss calculation, the number of pairs is
N (C) =

∑N
i=1 |c(i) \ o(i)| · |o(i)|. Note that here err(·) is not calculated on the corpus level,

but on the sentence level, and may not directly correspond to our corpus-level error
error(·).

It is also common to consider the case where we calculate this loss with regards to
only a single translation candidate and oracle, and this is often called hinge loss. If we

define 〈ê(i), d̂
(i)〉 ∈ c(i) \ o(i) as the 1-best translation candidate

〈ê(i), d̂
(i)〉 = arg max

〈e,d〉∈c(i)\o(i)
w>h(f (i), e, d) (28)

4 Equation (25) can be regarded as an instance of ranking loss described in Section 3.5 in which better
translations are selected only from a set of oracle translations.

15

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

and 〈e∗(i), d∗(i)〉 ∈ o(i) as the oracle translation

〈e∗(i), d∗(i)〉 = arg min
〈e,d〉∈o(i)

err(e(i), e) (29)

the hinge loss can be defined as follows

`hinge(F, E, C; w) = 1
N

N∑
i=1

max
{

0, ∆ err(e∗(i), e∗, e)−w>∆h(f (i), e∗(i), d∗(i), ê(i), d̂
(i)

)
}

(30)

A special instance of this hinge loss that is widely used in machine translation, and
machine learning in general, is perceptron loss (Liang et al. 2006), which further re-
moves the term considering the error, and simply incurs a penalty if the 1-best candidate
receives a higher score than the oracle

`perceptron(F, E, C; w) = 1
N

N∑
i=1

max
{

0,−w>∆h(f (i), e∗(i), d∗(i), ê(i), d̂
(i)

)
}

(31)

In addition to maximizing the margin itself, there has also been work on maximiz-
ing the relative margin (Eidelman, Marton, and Resnik 2013). To explain the relative
margin, we first define the worst hypothesis as

〈ĕ(i), d̆
(i)〉 = arg max

〈e,d〉∈c(i)
err(e(i), e) (32)

and then calculate the spread ∆ err(e(i), ė(i), ĕ(i)), which is the difference of errors be-
tween the oracle hypothesis 〈ė(i), ḋ(i)〉 and worst hypothesis 〈ĕ(i), d̆

(i)〉. An additional
term can then be added to the objective function to penalize parameter settings with
large spreads. The intuition behind the relative margin criterion is that in addition
to increasing the margin, considering the spread reduces the variance between the
non-oracle hypotheses. Given an identical margin, having a smaller variance indi-
cates that an unseen hypothesis will be less likely to pass over the margin and be
misclassified.

3.5 Ranking Loss

Perceptron and margin losses attempted to distinguish between oracle and non-oracle
hypotheses. This can be considered a specific instance of the more general ranking
framework (Herbrich, Graepel, and Obermayer 1999; Freund et al. 2003; Burges et al.
2005; Cao et al. 2007), where, for an arbitrary pair of translation candidates, a binary
classifier is trained to distinguish which of the two candidates has the lower error. If a

16

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

particular pair of candidates in the training data 〈ek, dk〉 and 〈ek′ , dk′〉 is ranked in the
correct order, the following condition is satisfied:

err(e(i), ek) < err(e(i), ek′)

⇐⇒ w>h(f (i), ek, dk) > w>h(f (i), ek′ , dk′)

This can be expressed as

err(e(i), ek) < err(e(i), ek′)

⇐⇒ w>h(f (i), ek, dk) > w>h(f (i), ek′ , dk′)

⇐⇒ w>h(f (i), ek, dk)−w>h(f (i), ek′ , dk′) > 0

⇐⇒ w>
(

h(f (i), ek, dk)− h(f (i), ek′ , dk′)
)
> 0

⇐⇒ w>∆h(f (i), ek, dk, ek′ , dk′) > 0

where ∆h(f (i), ek, dk, ek′ , dk′) can be treated as training data to be classified using any
variety of binary classifier. Each binary decision made by this classifier becomes an
individual choice, and thus the ranking loss is the sum of these individual losses. As the
binary classifier, it is possible to use perceptron, hinge, or softmax losses between the
correct and incorrect answers.

It should be noted that standard ranking techniques make a hard decision between
candidates with higher and lower error, which can cause problems when the ranking
by error does not correlate well with the ranking measured by the model. The cross-
entropy ranking loss solves this problem by softly fitting the model distribution to the
distribution of ranking measured by errors (Green et al. 2014).

3.6 Mean Squared Error Loss

Finally, mean squared error loss is another method that does not make a hard zero–
one decision between the better and worse candidates, but instead attempts to directly
estimate the difference in scores (Bazrafshan, Chung, and Gildea 2012). This is done
by first finding the difference in errors between the two candidates ∆ err(e(i), e∗, e) and
defining the loss as the mean squared error of the difference between the inverse of the
difference in the errors and the difference in the model scores5:

`mse(F, E, C; w) = 1
N (C)

N∑
i=1

∑
〈e∗,d∗〉∈o(i)

∑
〈e,d〉∈c(i)(
−∆ err(e(i), e∗, e)−w>∆h(f (i), e∗, d∗, e, d)

)2
(33)

5 We take the inverse because we would like model scores and errors to be inversely correlated.

17

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

4. Choosing Oracles

In the previous section, many loss functions used oracle translations, which are defined
as a set of translations for any sentence that are “good.” Choosing oracle translations is
not a trivial task, and in this section we describe the details involved.

4.1 Bold vs. Local Updates

In other structured learning tasks such as part-of-speech tagging or parsing, it is com-
mon to simply use the correct answer as an oracle. In translation, this is equivalent
to optimizing towards an actual human reference, which is called bold update (Liang
et al. 2006). It should be noted that even if we know the reference e, we still need to
obtain a derivation d, and thus it is necessary to perform forced decoding (described in
Section 2.4) to obtain this derivation.

However, bold update has a number of practical difficulties. For example, we are
not guaranteed that the decoder is able to actually produce the reference (for example,
in the case of unknown words), in which case forced decoding will fail. In addition, even
if the hypothesis exists in the search space, it might require a large change in parameters
w to ensure that the reference gets a higher score than all other hypotheses. This is true
in the case of non-literal translations, for example, which may be producible by the
decoder, but only by using a derivation that would normally receive an extremely low
probability.

Local update is an alternative method that selects an oracle from a set of hypoth-
eses produced during the normal decoding process. The space of hypotheses used to
select oracles is usually based on k-best lists, but can also include lattices or forests
output by the decoder as described in Section 2.4. Because of the previously mentioned
difficulties with bold update, it has been empirically observed that local update tends
to outperform bold update in online optimization (Liang et al. 2006). However, it also
makes it necessary to select oracle translations from a set of imperfect decoder outputs,
and we will describe this process in more detail in the following section.

4.2 Selecting Oracles and Approximating Corpus-Level Errors

First, we define o(i) ⊆ c(i) as the set of oracle translations, derivation-translation pairs in
c(i) that minimize the error function

O = arg min
{o(i)⊆c(i)}N

i=1

error
(

E,
{

o(i) ⊆ c(i)}N
i=1

)
(34)

One thing to note here is that error(·) is a corpus-level error function. As mentioned
in Section 2.5, evaluation measures for MT can be classified into those that are
decomposable on the sentence level, and those that are not. If this error function can
be composed as the sum of sentence-level errors, such as BLEU+1, choosing the oracle
is simple; we simply need to find the set of candidates that have the lowest error
independently sentence by sentence.6

6 More accurately, finding the oracle in the k-best list by enumeration of the hypotheses is easy, but finding
the oracle in a compressed data structure such as a lattice is computationally difficult, and approximation
algorithms are necessary (Leusch, Matusov, and Ney 2008; Li and Khudanpur 2009; Sokolov, Wisniewski,
and Yvon 2012a).

18

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

1: procedure ORACLE(〈F, E, C〉)
2: O =

{
o(i)}N

i=1
3: o(i) ← {〈e, d〉 ∼ c(i)} or o(i) ← ∅
4: repeat
5: for i ∈ PERMUTE({1, . . . , N}) do . Random order
6: o(i) ← ∅
7: s←∞
8: for k ∈ {1, . . . , K} do
9: s′ ← error

(
E, {o(1)

1 , . . . , o(i−1)
1 , c(i)

k , o(i+1)
1 , . . . , o(N)

1 }
)

10: if s′ < s then . Update the oracle
11: o(i) ← {c(i)

k }
12: s← s′

13: else if s′ = s then . Same error value
14: o(i) ← o(i) ∪ {c(i)

k }
15: end if
16: end for
17: end for
18: until convergence . If O doesn’t change, converged
19: return O
20: end procedure
Figure 2
Greedy search for an oracle.

However, when using a corpus-level error function we need a slightly more
sophisticated method, such as the greedy method of Venugopal and Vogel (2005).
In this method (Figure 2), the oracle is first initialized either as an empty set or by
randomly picking from the candidates. Next, we iterate randomly through the
translation candidates in c(i), try replacing the current oracle o(i) with the candidate,
and check the change in the error function (Line 9), and if the error decreases, replace
the oracle with the tested candidate. This process is repeated until there is no change
in O.

4.3 Selecting Oracles for Margin-Based Methods

Considering the hinge loss of Equation (30), the 1-best and oracle candidates are
acquired according to Equation (28) and Equation (29), respectively, and the loss
is calculated according to Equation (31). In order to minimize this loss, we would like to
select the pair with the largest loss, and update so that the loss gets smaller. However, it

is not necessarily the case that the candidates with the maximum model score 〈ê(i), d̂
(i)〉

and minimum loss 〈e∗(i), d∗(i)〉 form the pair with the minimal margin. Thus, when using
margin-based objectives, it is common to modify the criterion for selecting candidates

19

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

to use in the update as follows (Chiang, Marton, and Resnik 2008; Chiang, Knight, and
Wang 2009):

〈ē(i), d̄(i)〉 = arg max
〈e,d〉∈c(i)

w>h(f (i), e, d) + err(e(i), e) (35)

〈ė(i), ḋ(i)〉 = arg max
〈e,d〉∈c(i)

w>h(f (i), e, d)− err(e(i), e) (36)

Thus, we can replace 〈ê(i), d̂
(i)〉 and 〈e∗(i), d∗(i)〉 with 〈ē(i), d̄(i)〉 and 〈ė(i), ḋ(i)〉, resulting in

a margin of

∆ err(e(i), ė(i), ē(i))−w>∆h(f (i), ė(i), ḋ(i), ē(i), d̄(i)) (37)

which is the largest margin in the k-best list. Explaining more intuitively, this criterion
provides a bias towards selecting hypotheses with high error, making the learning
algorithm work harder to correctly classify very bad hypotheses than it does for hy-
potheses that are only slightly worse than the oracle. Inference methods that consider
the loss as in Equations (35) and (36) are called loss-augmented inference (Taskar
et al. 2005) methods, and can minimize losses with respect to the candidate with
the largest violation. Gimpel and Smith (2012) take this a step further, defining a
structured ramp loss that additionally considers Equations (28) and (29) within this
framework.

5. Batch Methods

Now that we have explained the details of calculating loss functions used in ma-
chine translation, we turn to the actual algorithms used in optimizing using these
loss functions. In this section, we cover batch learning approaches to MT optimiza-
tion. Batch learning works by considering the entire training data on every update
of the parameters, in contrast to online learning (covered in the following section),
which considers only part of the data at any one time. In standard approaches to
batch learning, for every training example 〈 f (i), e(i)〉 we enumerate every translation
and derivation in the respective sets E (f (i)) and D(f (i)), and attempt to adjust the
parameters so we can achieve the translations with the lowest error for the entire
data.

However, as mentioned previously, the entire space of derivations is too large to
handle in practice. To resolve this problem, most batch learning algorithms for MT
follow the general procedure shown in Figure 3, performing iterations that alternate
between decoding and optimization (Och and Ney 2002). In line 6, GEN(f (i), w(t)) ={
〈e(i)

k , d(i)
k 〉
}K

k=1
indicates that we use the current parameters w(t) to perform decoding

of sentence f (i), and obtain a subset of all derivations. For convenience, we will assume
that this subset is expressed using a k-best list kbest(i), but it is also possible to use lattices
or forests, as explained in Section 2.4.

A k-best list with scores for each hypothesis can be used as an approximation
for the distribution over potential translations of f (i) according to the parameters w.
However, because the size of the k-best list is limited, and the presence of search

20

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

1: procedure BATCHLEARN(〈F, E〉 =
{
〈 f (i), e(i)〉

}N

i=1
)

2: w(1) ← ∅
3: C =

{
c(i) ≡ ∅

}N
i=1 . k-best List

4: for t ∈ {1 . . .T} do
5: for i ∈ {1 . . .N} do
6: kbest(i) ← GEN(f (i), w(t)) . Decode with w(t)

7: c(i) ← c(i) ∪ kbest(i) . k-best Merging
8: end for
9: w(t+1) ← arg minw∈RM `(F, E, C; w) + λΩ(w)

. Optimization
10: end for
11: return w(T+1)

12: end procedure
Figure 3
Batch optimization.

errors in decoding means that we are not even guaranteed to find the highest-scoring
hypotheses, this approximation is far from perfect. The effect of this approximation is
particularly obvious if the lack of coverage of the k-best list is systematic. For example, if
the hypotheses in the k-best list are all much too short, optimization may attempt to fix
this by adjusting the parameters to heavily favor very long hypotheses, far overshooting
the actual optimal parameters.7

As a way to alleviate the problems caused by this approximation, in line 7 we merge
the k-best lists from multiple decoding iterations, finding a larger and more accurate set
C of derivations. Given C and the training data 〈F, E〉, we perform minimization of the
Ω(w) regularized loss function `(·) and obtain new parameters w(t+1) (line 9). Gener-
ation of k-best lists and optimization is performed until a hard limit of T iterations is
reached, or until training has converged. In this setting, usually convergence is defined
as any iteration in which the merged k-best list does not change, or when the parameters
w do not change (Och 2003).

Within this batch optimization framework, the most critical challenge is to find
an effective way to solve the optimization problem in line 9 of Figure 3. Section 5.1
describes methods for directly optimizing the error function. There are also methods
for optimizing other losses such as those based on probabilistic models (Section 5.2),
error margins (Section 5.3), ranking (Section 5.4), and risk (Section 5.5).

5.1 Error Minimization
5.1.1 Minimum Error Rate Training Overview. Minimum error rate training (MERT) (Och
2003) is one of the first, and is currently the most widely used, method for MT
optimization, and focuses mainly on direct minimization of the error described in
Section 3.1. Because error is not continuously differentiable, MERT uses optimization
methods that do not require the calculation of a gradient, such as iterative line search

7 Liu et al. (2012) propose a method to avoid over-aggressive moves in parameter space by considering the
balance between increase in the evaluation score and the similarity with the parameters on the previous
iteration.

21

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

1: procedure MERT(F, E, C)
2: ŵ← ∅
3: for r ∈ {1 . . .R} do
4: w(1) ∼ RM . Initialize randomly
5: for t ∈ {1 . . .T} do . Until convergence
6: for m ∈ {1 . . .M} do . For each dimension
7: γ̂m ← arg minγ `error(F, E, C; w(t) + γbm) . Search
8: end for
9: γ̂← arg minγ̂m `error(F, E, C; w(t) + γ̂mbm) . Descent

10: w(t+1) ← w(t) + γ̂bm . Update
11: end for
12: if `error(F, E, C; w(T+1)) < `error(F, E, C; ŵ) then
13: ŵ← w(T+1)

14: end if
15: end for
16: return ŵ
17: end procedure
Figure 4
Minimum error rate training (MERT).

inspired by Powell’s method (Och 2003; Press et al. 2007), or the Downhill-Simplex
method (Nelder-Mead method) (Press et al. 2007; Zens, Hasan, and Ney 2007; Zhao
and Chen 2009).

The algorithm for MERT using line search is shown in Figure 4. Here, we assume
that w and h(·) are M-dimensional, and bm is an M-dimensional vector where the
m-th element is 1 and the rest of the elements are zero. For the T iterations, we decide
the dimension m of the feature vector (line 6), and for each possible weight vector
w(j) + γbm choose the γ ∈ R that minimizes `error(·) using line search (line 7). Then,
among the γ for each of the M search dimensions, we perform an update using γ̂ that
affords the largest reduction in error (lines 9 and 10). This algorithm can be deemed
a variety of steepest descent, which is a standard method used in most implemen-
tations of MERT (Koehn et al. 2007). Another alternative is a variant of coordinate
descent (e.g., Powell’s method), in which search and update is performed in each
dimension.

One feature of MERT is that it is known to easily fall into local optima of the
error function. Because of this, it is standard to choose R starting points (line 4), perform
optimization starting at each of these starting points, and finally choose the ŵ that
minimizes the loss from the weights acquired from each of the R random restarts.
The R starting points are generally chosen so that one of the points is the best w
from the previous iteration, and the remaining R− 1 have each element of w chosen
randomly and uniformly from some interval, although it has also been shown that more
intelligent choice of initial points can result in better final scores (Moore and Quirk
2008).

5.1.2 Line Search for MERT. Although the majority of this process is relatively straight-
forward, the line search in Line 7 of Figure 4 requires a bit more explanation. In this
step, we would like to choose the γ that results in the ordering of hypotheses in c(i) that
achieves the lowest error. In order to do so, MERT uses an algorithm that allows for

22

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

exact enumeration of which of the K candidates in c(i) will be chosen for each value of
γ. Concretely, we define

arg max
〈e,d〉∈c(i)

{
w(j) + γbm}> h(f (i), e, d) (38)

= arg max
〈e,d〉∈c(i)

w(j)>h(f (i), e, d)︸ ︷︷ ︸
intercept

+ γ · hm(f (i), e, d)︸ ︷︷ ︸
slope

(39)

= arg max
〈e,d〉∈c(i)

a(f (i), e, d) + γ · b(f (i), e, d) (40)

where each hypothesis 〈e, d〉 in c(i) of Equation (40) is expressed as a line with intercept
a(f (i), e, d)(= w(j)>h(f (i), e, d)) and slope b(f (i), e, d)(= hm(f (i), e, d)) with γ as a parame-
ter. Equation (40) is a function that returns the translation candidate with the highest
score. We can define a function g(γ; f (i)) that corresponds to the score of this highest-
scoring candidate as follows:

g(γ; f (i)) = max
〈e,d〉∈c(i)

a(f (i), e, d) + γ · b(f (i), e, d) (41)

We can see that Equation (41) is a piecewise linear function (Papineni 1999; Och 2003),
as at any given γ ∈ R the translation candidate with the highest score a(·) + γ · b(·)
will be selected, and this score corresponds to the line that is in the highest position at
that particular γ. In Figure 5, we show an example with the following four translation
candidates:

c(i)
1 : 2.5 + γ · (−0.8), c(i)

2 : 1 + γ · (−0.2)
c(i)

3 : 2 + γ · (−0.5), c(i)
4 : −0.5 + γ · 0.2

(42)

If we set γ to a very small value such as −∞, the candidate with the smallest slope, in
this example c(i)

1 , will be chosen. Furthermore, if we make γ gradually larger, we will

Figure 5
An example of hypotheses as lines.

23

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

see that c(i)
1 continues to be the highest scoring candidate until we reach the intersection

of c(i)
1 and c(i)

3 at

2.5− 2
(−0.5)− (−0.8) ≈ 1.667 (43)

after which c(i)
3 will be the highest scoring candidate. If we continue increasing γ, we

will continue by selecting c(i)
2 and c(i)

4 starting at their corresponding intersections.
A function like Equation (41) that chooses the highest-scoring line for each span

over γ is called an envelope, and can be used to compactly express the results we
will obtain by rescoring c(i) according to a particular γ (Figure 6a). After finding the
envelope, for each line that participates in the envelope, we can calculate the sufficient
statistics necessary for calculating the loss `error(·) and error error(·). For example, given
the envelope in Figure 6a, Figure 6b is an example of the sentence-wise loss with
respect to γ.

The envelope shown in Equation (41) can also be viewed as the problem of
finding a convex hull in computational geometry. A standard and efficient algorithm
for finding a convex hull of multiple lines is the sweep line algorithm (Bentley and
Ottmann 1979; Macherey et al. 2008) (see Figure 7). Here, we assume L is a set of the
lines corresponding to the K translation candidates in c(i), each line l ∈ L is expressed as
〈a(l), b(l),γ(l)〉with intercept a(l) = a(f (i), e, d), and slope b(l) = b(f (i), e, d). Furthermore,
we define γ(l) as an intersection initialized to −∞. SORTLINES(L) in Figure 3 sorts the
lines in the order of their slope b(l), and if two lines lk1 have the same slope, lk2 chooses
the one with the larger intercept a(lk1) > a(lk2) and deletes the other. We next process the
sorted set of lines L′ (|L′| ≤ K) in order of ascending slope (lines 4–18). If we assume H

γ

g(
γ

;f
(i

))

(a) Envelope

γ

`
er

ro
r(
·)

(b) Loss

Figure 6
An example of line search in MERT.

24

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

1: procedure SWEEPLINE(L = {〈a(l(k)), b(l(k)),γ(l(k))〉}K
k=1)

2: H← ∅,j← 1
3: L′ ← SORTLINES(L)
4: for l ∈ L′ do
5: if j > 1 then
6: while j > 1 do
7: γ(l)← a(l)−a(Hj−1)

b(Hj−1)−b(l) . Intersection of Hj−1 and l
8: if γ(Hj−1) < γ(l) then . l is in the envelope
9: break

10: end if
11: j← j− 1
12: end while
13: end if
14: if j = 1 then . The leftmost line
15: γ(l)← −∞
16: end if
17: Hj ← l,j← j + 1
18: end for
19: return Hj−1

1
20: end procedure
Figure 7
The “sweep line” algorithm.

is the envelope expressed as the set of lines it contains, we find the line that intersects
with line under consideration at the highest point (lines 6–12), and update the envelope
H. As L contains at most K lines, H’s size is also at most K.

Given a particular input sentence f (i), its set of translation candidates c(i), and
the resulting envelope H(i), we can also define the set of intersections between lines
in the envelope as γ(i)

1 < · · · < γ(i)
j < · · · < γ(i)

|H(i)|. We also define ∆`(i)j to be the change

in the loss function that occurs when we move from one span [γ(i)
j−1,γ(i)

j) to the next

[γ(i)
j ,γ(i)

j+1). If we first calculate the loss incurred when setting γ = −∞, then process the

spans in increasing order, keeping track of the difference ∆`(i)j incurred at each span
boundary, it is possible to efficiently calculate the loss curve over all spans of γ.

In addition, whereas all explanation of line search to this point has focused on
the procedure for a single sentence, by calculating the envelopes for each sentence in
the data 1 ≤ i ≤ N, and combining these envelopes into a single plane, it is relatively
simple to perform this processing on the corpus level as well. It should be noted that
for corpus-based evaluation measures such as BLEU, when performing corpus-level
processing, we do not keep track of the change in the loss, but the change in the
sufficient statistics required to calculate the loss for each sentence. In the case of BLEU,
the sufficient statistics amount to n-gram counts cn, n-gram matches mn, and reference
lengths r. We then calculate the loss curve `error(·) for the entire corpus based on these
sufficient statistics, and find a γ that minimizes Equation (17) based on this curve. By
repeating this line search for each parameter until we can no longer obtain a decrease,
it is possible to find a local minimum in the loss function, even for non-convex or non-
differential functions.

25

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

5.1.3 MERT’s Weaknesses and Extensions. Although MERT is widely used as the standard
optimization procedure for MT, it also has a number of weaknesses, and a number of
extensions to the MERT framework have been proposed to resolve these problems.

The first weakness of MERT is the randomness in the optimization process. Because
each iteration of the training algorithm generally involves a number of random restarts,
the results will generally change over multiple training runs, with the changes often
being quite significant. Some research has shown that this randomness can be stabilized
somewhat by improving the ability of the line-search algorithm to find a globally good
solution by choosing random seeds more intelligently (Moore and Quirk 2008; Foster
and Kuhn 2009) or by searching in directions that consider multiple features at once,
instead of using the simple coordinate ascent as described in Figure 4 (Cer, Jurafsky, and
Manning 2008). Orthogonally to actual improvement of the results, Clark et al. (2011)
suggest that because randomness is a fundamental feature of MERT and other opti-
mization algorithms for MT, it is better experimental practice to perform optimization
multiple times, and report the resulting means and standard deviations over various
optimization runs.

It is also possible to optimize the MERT objective using other optimization al-
gorithms. For example, Suzuki, Duh, and Nagata (2011) present a method for using
particle swarm optimization, a distributed algorithm where many “particles” are each
associated with a parameter vector, and the particle updates its vector in a way such that
it moves towards the current local and global optima. Another alternative optimization
algorithm is Galley and Quirk’s (2011) method for using linear programming to per-
form search for optimal parameters over more than one dimension, or all dimensions
at a single time. However, as MERT remains a fundamentally computationally hard
problem, this method takes large amounts of time for larger training sets or feature
spaces.

It should be noted that instability in MERT is not entirely due to the fact that search
is random, but also due to the fact that k-best lists are poor approximations of the whole
space of possible translations. One way to improve this approximation is by performing
MERT over an exponentially large number of hypotheses encoded in a translation lattice
(Macherey et al. 2008) or hypergraph (Kumar et al. 2009). It is possible to perform MERT
over these sorts of packed data structures by observing the fact that the envelopes
used in MERT can be expressed as a semiring (Dyer 2010a; Sokolov and Yvon 2011),
allowing for exact calculation of the full envelope for all hypotheses in a lattice or
hypergraph using polynomial-time dynamic programming (the forward algorithm or
inside algorithm, respectively). There has also been work to improve the accuracy of the
k-best approximation by either sampling k-best candidates from the translation lattice
(Chatterjee and Cancedda 2010), or performing forced decoding to find derivations that
achieve the reference translation, and adding them to the k-best list (Liang, Zhang, and
Zhao 2012).

The second weakness of MERT is that it has no concept of regularization, causing
it to overfit the training data if there are too many features, and there have been several
attempts to incorporate regularization to ameliorate this problem. Cer, Jurafsky, and
Manning (2008) propose a method to incorporate regularization by not choosing the
plateau in the loss curve that minimizes the loss itself, but choosing the point con-
sidering the loss values for a few surrounding plateaus, helping to avoid points that
have a low loss but are surrounded by plateaus with higher loss. It is also possible to
incorporate regularization into MERT-style line search using an SVM-inspired margin-
based objective (Hayashi et al. 2009) or by using scale-invariant regularization methods
such as L0 or a scaled version of L2 (Galley et al. 2013).

26

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

The final weakness of MERT is that it has computational problems when scaling
to large numbers of features. When using only a standard set of 20 or so features, MERT
is able to perform training in reasonable time, but the number of line searches, and thus
time, required in Algorithm 4 scales linearly with the number of features. Thus train-
ing of hundreds of features is time-consuming, and there are no published results
training standard MERT on thousands or millions of features. It should be noted, how-
ever, that Galley et al. (2013) report results for thousands of features by choosing
intelligent search directions by calculating the gradient of expected BLEU, as explained
in Section 5.5.2.

5.2 Gradient-Based Batch Optimization

In the previous section, MERT optimized a loss function that was exactly equiv-
alent to the error function, which is not continuously differentiable and thus precludes
the use of standard convex optimization algorithms used in other optimization prob-
lems. In contrast, other losses such as the softmax loss described in Section 3.2 and
risk-based losses described in Section 3.3 are differentiable, allowing for the use of
these algorithms for MT optimization (Smith and Eisner 2006; Blunsom and Osborne
2008).

Convex optimization is well covered in the standard machine learning literature,
so we do not cover it in depth, but methods such as conjugate gradient (using first-
order statistics) (Nocedal and Wright 2006) and the limited-memory Broyden-Fletcher-
Goldfarb-Shanno method (using second-order statistics) (Liu and Nocedal 1989) are
standard options for optimizing these losses. These methods are equally applicable
when the loss is combined with a differentiable regularizer Ω(w), such as L2 regu-
larization. Using a non-differentiable regularizer such as L1 makes optimization more
difficult, but can be handled by other algorithms such as orthant-wise limited-memory
Quasi-Newton (Andrew and Gao 2007).

In addition to the function being differentiable, if it is also convex we can be
guaranteed that these algorithms will not get stuck in local optima and instead they
will reach a globally optimal solution. In general, the softmax objective is convex if
there is only one element in the oracle set o(i), and not necessarily convex if there are
multiple oracles. In the case of MT, as there are usually multiple translations e that
minimize error(·), and multiple derivations d that result in the same translation e, o(i)

will generally contain multiple members. Thus, we cannot be entirely certain that we
will reach a global optimum.

5.3 Margin-Based Optimization

Minimizing the margin-based loss described in Section 3.4, possibly with the addition
of a regularizer, is also a relatively standard problem in the machine learning literature.
Methods to solve Equation (25) include sequential minimization optimization (Platt
1999), dual coordinate descent (Hsieh et al. 2008), as well as the quadratic program
solvers used in standard SVMs (Joachims 1998).

It should also be noted that there have also been several attempts to apply margin-
based online learning algorithms explained in Section 6.3, but in a batch setting where
the whole training corpus is decoded before each iteration of optimization (Cherry and
Foster 2012; Gimpel and Smith 2012). We will explain these methods in more detail
later, but it should be noted that the advantage of using these methods in a batch

27

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

setting mainly lies in simplicity; for online learning it is often necessary to directly
implement the optimization procedure within the decoder, whereas in a batch setting
the implementation of the decoding and optimization algorithm can be performed
separately.

5.4 Ranking and Linear Regression Optimization

The rank-based loss described in Section 3.5 is essentially the combination of multiple
losses over binary decisions. These binary decisions can be solved using gradient-
based or margin-based methods, and thus optimization itself can be solved with the
algorithms described in the previous two sections. However, one important concern
in this setting is training time. At the worst, the number of pairwise comparisons for
any particular k-best list is k(k− 1)/2, leading to unmanageably large amounts of time
required for training.

One way to alleviate this problem is by randomly sampling a small number of
these k(k− 1)/2 hypotheses for use in optimization, which has been shown empirically
to allow for increases in training speed without decreases in accuracy. For example,
Hopkins and May (2011) describe a method dubbed pairwise ranking optimization
that selects 5,000 pairs randomly for each sentence, and among these random pairs
using the 50 with the largest difference in error for training the classifier. Other selection
heuristics—for example, avoiding training on candidate pairs with overly different
scores (Nakov, Guzmán, and Vogel 2013), or performing Monte Carlo sampling (Roth
et al. 2010; Haddow, Arun, and Koehn 2011)—are also possible and potentially increase
accuracy. Recently, there has also been a method proposed that uses an efficient ranking
SVM formulation that alleviates the need for this sampling and explicitly performs
ranking over all pairs (Dreyer and Dong 2015).

The mean squared error loss described in Section 3.6, which is similar to ranking
loss in that it will prefer a proper ordering of the k-best list, is much easier to optimize.
This loss can be minimized using standard techniques for solving least-squared-error
linear regression (Press et al. 2007).

5.5 Risk Minimization

The risk-based loss in Section 3.3 is also differentiable and thus can be optimized
by gradient-based methods. One thing to note here is that risk objective is highly
non-convex, and thus some care must be taken to ensure that optimization does not
fall into a local optimum. The motivation behind introducing the scaling parameter
γ in Equation (22) is that it allows us to control the “peakiness” of the distribution,
which can be useful for optimization. Putting this formally, we first define the entropy
of pγ,w(·) as

H(pγ,w) = − 1
N

N∑
i=1

∑
〈e,d〉∈c(i)

pγ,w(e, d| f (i), c(i)) log pγ,w(e, d| f (i), c(i)) (44)

When γ takes a small value this entropy will be high, indicating that the loss function
is relatively smooth and less sensitive to local optima. Conversely, when γ→∞, the
entropy becomes lower, and the loss function becomes more peaky with more local

28

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

optima. It has been noted that this fact can be used for effective optimization through
the process of deterministic annealing (Sindhwani, Keerthi, and Chapelle 2006). In
deterministic annealing, the parameter γ is not set as a hyperparameter, and instead the
entropy H(pγ,w) is directly used as a regularization function during the optimization
process (Smith and Eisner 2006; Li and Eisner 2009):

arg min
γ∈R≥0,w∈RM

`risk(F, E, C;γ, w)− T ·H(pγ,w) + λΩ(w) (45)

In Equation (45), T is the temperature, which can either be set as a hyperparameter,
or gradually decreased from∞ to −∞ (or 0) through a process of cooling (Smith and
Eisner 2006). The motivation for cooling is that if we start with a large T, the earlier
steps using a smoother function will allow us to approach the global optimum, and the
later steps will allow us to approach the actual error function.

It should be noted that in Equation (24), and the discussion up to this point, we
have been using not the corpus-based error, but the sentence-based error err(e(i), e).
There have also been attempts to make the risk minimization framework appli-
cable to corpus-level error error(·), specifically BLEU. We will discuss two such
methods.

5.5.1 Linear BLEU. Linear BLEU (Tromble et al. 2008) provides an approximation for
corpus-level BLEU that can be divided among sentences. Linear BLEU uses a Taylor
expansion to approximate the effect that the sufficient statistics of any particular sen-
tence will have on corpus-level BLEU. We define r as the total length of the reference
translations, c as the total length of the candidates, and cn and mn (1 ≤ n ≤ 4) as the
translation candidate’s number of n-grams, and number of n-grams that match the
reference respectively. Taking the equation for corpus-level BLEU (Papineni et al. 2002)
and assuming that the n-gram counts are approximately equal for 1 ≤ n ≤ 4, we get the
following approximation:

log BLEU = min
{

0, 1− r
c
}

+ 1
4

4∑
n=1

log mn
cn

(46)

≈ min
{

0, 1− r
c
}

+ 1
4

4∑
n=1

log mn
c (47)

If we assume that when we add the sufficient statistics of a particular sentence e, the
corpus-level statistics change to r′, c′, c′n, and m′n, then we can express the change in
BLEU in the logarithm domain as follows

∆ log BLEU = log BLEU′− log BLEU (48)

≈ 1
4

4∑
n=1

log
m′n
c′ −

1
4

4∑
n=1

log mn
c (49)

29

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

If we make the assumption that there is no change in the brevity penalty, ∆ log BLEU
relies solely on mn and c. ∆ log BLEU can then be approximated using a first-order
Taylor expansion as follows:

∆ log BLEU ≈ (c′ − c)
∂ log BLEU′

∂c′

∣∣∣∣
c′=c

+
4∑

n=1

(m′n −mn)
∂ log BLEU′

∂m′n

∣∣∣∣
m′n=mn

(50)

= −c′ − c
c + 1

4

4∑
n=1

m′n −mn
mn

(51)

As c′ − c is the length of e, and m′n −mn is the number of n-grams (gn) in e that match
the n-grams (g(i)

n) in e(i), the sentence-level error function errlBLEU(·) for linear BLEU is

errlBLEU(e(i), e) =
|e|
c −

1
4

4∑
n=1

|{gn ∈ e} ∩ {g(i)
n ∈ e(i)}|

mn
(52)

c and mn are set to a fixed value (Tromble et al. 2008). For example, in the batch opti-
mization algorithm of Figure 3 they can be calculated based on the k-best list generated
prior to optimization.

5.5.2 Expectations of Sufficient Statistics. DeNero, Chiang, and Knight (2009) present an
alternative method that calculates not the expectation of the error itself, but the expecta-
tion of the sufficient statistics used in calculating the error. In contrast to sentence-level
approximations or formulations such as linear BLEU, the expectation of the sufficient
statistics can be calculated directly on the corpus level. Because of this, by maximizing
the evaluation derived by these expected statistics, it is possible to directly optimize for
a corpus-level error, in a manner similar to MERT (Pauls, Denero, and Klein 2009).

When this is applied to BLEU in particular, this measure is often called xBLEU
(Rosti et al. 2010, 2011) and the required sufficient statistics include n-gram counts and
matched n-gram counts. We define the kth translation candidate in c(i) as 〈ek, dk〉, its
score as si,k = γw>h(f (i), ek, dk), and the probability in Equation (22) as

pi,k =
exp(si,k)∑K

k′=1 exp(si,k′)
(53)

Next, we define the expectation of the n-gram (gn ∈ ek) frequency as cn,i,k, the expec-
tation of the number of n-gram matches as mn,i,k, and the expectation of the reference
length as ri,k. These values can be calculated as:

cn,i,k = |{gn ∈ ek}| · pi,k

mn,i,k = |{gn ∈ ek} ∩ {g(i)
n ∈ e(i)}| · pi,k

ri,k = |e(i)| · pi,k

It should be noted that although these equations apply to k-best lists, it is also possible
to calculate statistics over lattices or forests using dynamic programming algorithms
and tools such as the expectation semiring (Eisner 2002; Li and Eisner 2009).

30

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

xBLEU is calculated from these expected sufficient statistics:

xBLEU =
4∏

n=1

(∑N
i=1
∑K

k=1 mn,i,k∑N
i=1
∑K

k=1 cn,i,k

) 1
4

·φ

(
1−

∑N
i=1
∑K

k=1 ri,k∑N
i=1
∑K

k=1 c1,i,k

)
(54)

where φ(x) is the brevity penalty. Compared to the risk minimization in Equation (24),
we define our optimization problem as the maximization of xBLEU:

`xBLEU(F, E, C;γ, w) = − xBLEU (55)

It is possible to calculate a gradient for xBLEU, allowing for optimization using
gradient-based optimization methods, and we explain the full (somewhat involved)
derivation in Appendix A.

6. Online Methods

In the batch learning methods of Section 5, the steps of decoding and optimization
are performed sequentially over the entire training data. In contrast, online learning
performs updates not after the whole corpus has been processed, but over smaller
subsets of the training data deemed mini-batches. One of the major advantages of
online methods is that updates are performed on a much more fine-grained basis—it
is often the case that online methods converge faster than batch methods, particularly
on larger data sets. On the other hand, online methods have the disadvantage of being
harder to implement (they often must be implemented inside the decoder, whereas
batch methods can be separate), and also generally being less stable (with sensitivity
to the order in which the training data is processed or other factors).

In the online learning algorithm in Figure 8, from the training data 〈F, E〉 ={
〈 f (i), e(i)〉

}N

i=1
we first randomly choose a mini-batch consisting of K sentences of

1: procedure ONLINELEARN(〈F, E〉 =
{
〈 f (i), e(i)〉

}N

i=1
)

2: w(1) ← ∅
3: for t ∈ {1, . . . , T} do
4: 〈F̃(t), Ẽ(t)〉 ⊆ 〈F, E〉 . Sample (|〈F̃(t), Ẽ(t)〉| = K)
5: C̃(t) ← {c̃(j) = ∅}K

j=1 . k-best translation candidates

6: for 〈 f̃ (j), ẽ(j)〉 ∈ 〈F̃(t), Ẽ(t)〉 do
7: c̃(j) ← GEN(f̃ (j), w(t)) . Decode with w(t)

8: end for
9: w(t+1) ← arg minw∈RM `(F̃(t), Ẽ(t), C̃(t); w) + λΩ(w) .

Optimization
10: end for
11: return w(T+1)

12: end procedure
Figure 8
Online Learning.

31

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

parallel data 〈F̃(t), Ẽ(t)〉 =
{
〈 f̃ (j), ẽ(j)〉

}K

j=1
(line 4). We then decode each source sentence

f̃ (j) of the mini-batch and generate a k-best list (line 7), which is used in optimization
(line 9). In contrast to the batch learning algorithm in Figure 3, we do not merge the
k-bests from previous iterations. In addition, optimization is performed not over the
entire data, but only the data 〈F̃(t), Ẽ(t)〉 and its corresponding k-best, C̃(t). Like batch
learning, within the online learning framework, there are a number of optimization
algorithms and objective functions that can be used.

The first thing we must consider during online learning is that because we only
optimize over the data in the mini-batch, it is not possible to directly optimize a corpus-
level evaluation measure such as BLEU, and it is necessary to define an error function
that is compatible with the learning framework (see Section 6.1). Once the error has been
set, we can perform parameter updates according to a number of different algorithms
including the perceptron (Section 6.2), MIRA (Section 6.3), AROW (Section 6.4), and
stochastic gradient descent (SGD) (Section 6.5).

6.1 Approximating the Error

In online learning, parameters are updated not with respect to the entire training corpus,
but with respect to a subset of data sampled from the corpus. This has consequences
for the calculation of translation quality when using a corpus-level evaluation measure
such as BLEU. For example, when choosing an oracle for oracle-based optimization
methods, the oracles chosen when considering the entire corpus will be different from
the oracles chosen when considering a mini-batch. In general, the amount of difference
between the corpus-level and mini-batch level oracles will vary depending on the size
of a mini-batch, with larger mini-batches providing a better approximation (Tan et al.
2013; Watanabe 2012). Thus, when using smaller batches, especially single sentences, it
is necessary to use methods to approximate the corpus-level error function as covered
in the next two sections.

6.1.1 Approximation with a Pseudo-Corpus. The first method to approximate the corpus-
level evaluation measure relies on creating a pseudo-corpus, and using it to augment
the statistics used in the mini-batch error calculation (Watanabe et al. 2007). Specifically,

given the training data 〈F, E〉 =
{
〈f (i), e(i)〉

}N

i=1
, we define its corresponding pseudo-

corpus Ē =
{

ē(i)}N
i=1. Ē could be, for example, either the 1-best translation candidate

or the oracle calculated during the decoding step in line 7 of Figure 8. In the pseudo-
corpus approximation, the sentence-level error for the translation candidate e′ acquired
by decoding the ith source sentence in the training data can be defined as the corpus-
level error acquired when in Ē, the ith sentence ē(i) is replaced with e′

errpseudo(e(i), e′) = error
(
E, {ē(1), . . . , ē(i−1), e′, ē(i+1), . . . , ē(N)}

)
(56)

6.1.2 Approximation with Decay. When approximating the error function using a pseudo-
corpus, it is necessary to remember translation candidates for every sentence in the
corpus. In addition, the size of differences in the sentence-level error becomes depen-
dent on the number of other sentences in the corpus, making it necessary to perform
scaling of the error, particularly for max-margin methods (Watanabe et al. 2007). As
an alternative method that alleviates these problems, there has also been a method

32

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

proposed that remembers a single set of sufficient statistics for the whole corpus, and
upon every update forces these statistics to decay according to some criterion (Chiang,
Marton, and Resnik 2008; Chiang, Knight, and Wang 2009; Chiang 2012).

We define s̄ as the sufficient statistics necessary to calculate a particular eval-
uation measure. For example, in the case of BLEU, this would be a particular
translation candidate’s counts of the number of n-grams, the number of matched
n-grams, and the reference length. When evaluating the error for a candidate e′ of the
ith sentence in the training data, we first decay the sufficient statistics

s̄← ν× s̄ (57)

where ν < 1 is the amount of decay, taking a value such as 0.9 or 0.99. Next, based on
these sufficient statistics, we calculate the error of each candidate for the sentence by
summing the sufficient statistics of the sentence with the decayed sufficient statistics s̄.
For example, if we want to calculate BLEU using statBLEU(e(i), e′) and the ith training
sentence 〈 f (i), e(i)〉, if BLEU(·) is a function calculating BLEU from a particular set of
sufficient statistics, we can use the following equation:

errbleu′ (e
(i), e′) = 1− BLEU(s̄ + statBLEU(e(i), e′)) (58)

After performing an update for a particular sentence, s̄ is then updated with the statis-
tics from the 1-best hypothesis found during decoding. When the training data is large,
this function will place more emphasis on the recently generated examples, forgetting
the older ones.

6.2 The Perceptron

The most simple algorithm for online learning is the perceptron algorithm (shown in
Figure 9), which, as its name suggests, optimizes the perceptron loss of Section 3.4. The
most central feature of the algorithm is that when the 1-best and oracle translations

1: procedure PERCEPTRON(〈F, E〉 =
{
〈 f (i), e(i)〉

}N

i=1
)

2: w(1) ← 0
3: for t ∈ {1 . . .T} do
4: 〈 f , e〉 ∼ 〈F, E〉 . Assume K = 1
5: c̃← GEN(f , w(t)) . Decode with w(t)

6: 〈ê, d̂〉 ∈ c̃ . 1-best candidate
7: 〈e∗, d∗〉 ∈ õ ⊆ c̃ . Oracle candidate
8: if 〈e∗, d∗〉 6= 〈ê, d̂〉 then
9: w(t+1) ← w(t) + h(f , e∗, d∗)− h(f , ê, d̂) . Update

10: end if
11: end for
12: return w(T+1) or 1

T
∑T+1

t=2 w(t)

13: end procedure
Figure 9
The perceptron algorithm.

33

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

differ, we update the parameters at line 9. Because the gradient of the perceptron loss in
Equation (31) with respect to w is

1
K

K∑
i=1

−∆h(f̃ (i), e∗(i), d∗(i), ê(i), d̂
(i)

)

= 1
K

K∑
i=1

−
(

h(f̃ (i), e∗(i), d∗(i))− h(f̃ (i), ê(i), d̂
(i)

)
)

(59)

this algorithm can also be viewed as updating the parameters based on this gradient,
making the parameters for oracle 〈e∗(i), d∗(i)〉 stronger, and the parameters for the mis-

taken translation 〈ê(i), d̂
(i)〉 weaker.

In line 12, we return the final parameters to be used in translation. The most
straightforward approach here is to simply return the parameters resulting from the
final iteration of the perceptron training, but in a popular variant called the averaged
perceptron, we instead use the average of the parameters over all iterations in training
(Collins 2002). This averaging helps reduce overfitting of sentences that were viewed
near the end of the training process, and is known to improve robustness to unknown
data, resulting in higher translation accuracy (Liang et al. 2006).

6.3 MIRA

In line 9 of the perceptron algorithm in Figure 9, the parameters are updated using the
gradient with respect to w(t) (see Equation (59)). This update has the advantage of being
simple and being guaranteed to converge when the data is linearly separable, but it is
common for MT to handle feature sets that do not allow for linear separation of the
1-best and oracle hypotheses, resulting in instability in learning. The margin infused
relaxed algorithm (MIRA) (Crammer and Singer 2003; Crammer et al. 2006) is another
online learning algorithm designed to help reduce these problems of instability. The
update in MIRA follows the same Equation (59), but also adds an additional term that
prevents the parameters w(t) from varying largely from their previous values8

`MIRA(F̃, Ẽ, C̃; w, w(t)) = 1
2‖w−w(t)‖2

2 +
λMIRA

K

K∑
i=1

max
{

0, ∆ err(ẽ(i), e∗(i), ê(i))−w>∆h(f̃ (i), e∗(i), d∗(i), ê(i), d̂
(i)

)
}

(60)

It should be noted that although this is defined as a loss, it is dependent on the param-
eters at the previous time step, in contrast to the losses in Section 3.

In line 9 of Figure 8 (or when K = 1, line 9 of Figure 9), the next parameters w(t+1)

are chosen to minimize Equation (60) (Watanabe et al. 2007; Chiang, Marton, and Resnik
2008; Chiang, Knight, and Wang 2009). λMIRA is a hyperparameter that controls the

8 The algorithm presented here is actually the PA-I algorithm (Crammer et al. 2006) applied to structured
learning, and for historical reasons most research in parsing, MT, and other areas refer to this algorithm
not as PA-I, but MIRA (McDonald, Crammer, and Pereira 2005; Watanabe et al. 2007).

34

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

amount of fitting to the data, with larger values indicating a stronger fit. Intuitively, the
MIRA objective contains an error-minimizing term similar to that of the perceptron, but
also contains a regularization term with respect to the change in parameters compared
to w(t), preferring smaller changes in parameters. When K > 1, this equation can be
formulated using Lagrange multipliers and solved using a quadratic programming
solver similar to that used in SVMs. When K = 1, we can simply use the following
update formula

w(t+1) = w(t) + α(t)∆h(f̃ , e∗, d∗, ê, d̂) (61)

α(t) = min
{
λMIRA,

∆ err(ẽ, e∗, ê)−w>∆h(f̃ , e∗, d∗, ê, d̂)
‖∆h(f̃ , e∗, d∗, ê, d̂)‖2

}
(62)

The amount of update is proportional to the difference in loss between hypotheses, but
when the difference in the features between the oracle and incorrect hypotheses is small,
the features that are different will be subject to an extremely large update. The function
of the parameter λMIRA is to control these over-aggressive updates. It should also be
noted that when we set α(t) = 1, MIRA reduces to the perceptron algorithm.

6.4 AROW

One of the problems often pointed out with MIRA is that it is overagressive, mainly
because it attempts to classify the current training example correctly according to
Equation (60), even when the training example is an outlier or includes noise. One way
to reduce the effect of noise is through the use of adaptive regularization of weights
(AROW) (Crammer, Kulesza, and Dredze 2009; Chiang 2012). AROW is based on a
similar concept to MIRA, but instead of working directly on the weight vector w, it
defines a Gaussian distribution N (w, Σ) over the weights. The covariance matrix Σ
is usually assumed to be diagonal, and each variance term in Σ functions as a sort
of learning rate for its corresponding weight, with weights of higher variance being
updated more widely, and weights with lower variance being updated less widely.

For notational simplicity, we first define x(i) = ∆h(f̃ (i), e∗(i), d∗(i), ê(i), d̂
(i)

), after
which we can express the AROW loss as follows:

`AROW(F̃, Ẽ, C̃; w, Σ, w(t), Σ(t)) = KL(N (w, Σ)||N (w(t), Σ(t))) +

1
K

K∑
i=1

(
λMIRA max

{
0, ∆ err(ẽ(i), e∗(i), ê(i))−w>x(i)}+

λvar
2 x>(i)Σx(i)

)
(63)

where KL(·) is the Kullback-Leibler divergence. The KL divergence term here plays a
similar role to the parameter norm in MIRA, preventing large changes in the weight
distributions from update to update, and the first term within the summation is the
same loss term as MIRA. The main difference lies in the second term within the sum-
mation, which penalizes variance matrices that have large values for features seen in the
hypotheses to be updated. This has the effect of decreasing the variance, and thus the
learning rate, for frequently updated features, preventing large and aggressive moves
of weights for features that already have been seen often and thus can be considered
relatively reliable. In the case of K = 1 and where λMIRA = λvar, the AROW update that

35

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

minimizes this loss consists of the following updates of w and Σ (Crammer, Kulesza,
and Dredze 2009):

w(t+1) = w(t) + α(t+1)Σ(t)x(i) (64)

Σ(t+1) = Σ(t) − β(t+1)Σ(t)x(i)x>(i)Σ(t) (65)

α(t+1) = max
(
0, 1−w>(t)x(i))β(t+1) (66)

β(t+1) = 1
x>(i)Σt−1x(i) + 1/2λvar

. (67)

6.5 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a gradient-based online algorithm for optimizing
differentiable losses, possibly with the addition of L2 regularization Ω2(w), or L1 regu-
larization Ω1(w). As SGD relies on gradients, it can be thought of as an alternative to the
gradient-based batch algorithms in Section 5.2. Compared with batch algorithms, SGD
requires less memory and tends to converge faster, but requires more care (particularly
with regard to the selection of a learning rate) to ensure that it converges to a good
answer.

In SGD, like with the perceptron algorithm and MIRA, in line 9 of Figure 8 the
parameters are updated according to the gradient ∆`(·) + λ∆Ω(·) with respect to w(t)

(Bottou 1998):

η(t+1) ← update(η(t)) (68)

w(t+1) ← w(t) − η(t+1) {∆`(F̃(t), Ẽ(t), C̃(t); w(t)) + λ∆Ω(w(t))
}

(69)

where η(t) > 0 is the learning rate, which is generally initialized to a value η(1) and
gradually reduced according to a function update(·) as learning progresses. One stan-
dard method for updating η(t) according to the following formula

η(t+1) ← η(1)

1 + t/T
(70)

allows for a guarantee of convergence (Collins et al. 2008). In Equation (69), the pa-
rameters are updated and we obtain w(t+1). Within this framework, in the perceptron
algorithm η(t) is set to a fixed value, and in MIRA the amount of update changes for
every mini-batch. SGD-style online gradient-based methods have been used in transla-
tion for optimizing risk-based (Gao and He 2013), ranking-based (Watanabe 2012; Green
et al. 2013), and other (Tillmann and Zhang 2006) objectives. When the regularization
term Ω(w) is not differentiable, such as L1 regularization, it is a common practice to
use forward-backward splitting (FOBOS) (Duchi and Singer 2009; Green et al. 2013) in
which the optimization is performed in two steps:

w(t+ 1
2) ← w(t) − η(t+1)∆`(F̃(t), Ẽ(t), C̃(t); w(t)) (71)

w(t+1) ← arg min
w

1
2‖w−w(t+ 1

2)‖2
2 + η(t+1)λΩ(w) (72)

36

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

First, we perform updates without considering the regularization term in Equation (71).
Second, the regularization term is applied in Equation (72), which balances regulariza-
tion and proximity to w(t+ 1

2). As an alternative to FOBOS, it is possible to use dual
averaging, which keeps track of the average of previous gradients and optimizes for
these along with the full regularization term (Xiao 2010).

An alternative to SGD is adaptive gradient (AdaGrad) (Duchi, Hazan, and Singer
2011; Green et al. 2013) updates. The motivation behind AdaGrad is similar to that of
AROW (Section 6.4), using second-order covariance statistics Σ to adjust the learning
rate of individual parameters based on their update frequency. If we define the SGD
gradient as x = ∆`(F̃(t), Ẽ(t), C̃(t); w(t)) + λ∆Ω(w(t)) for notational simplicity, the update
rule for AdaGrad can be expressed as follows

Σ−1(t+1) ← Σ−1(t) + xx> (73)

w(t+1) ← w(t) − ηΣ1/2(t)x (74)

Like AROW, it is common to use a diagonal covariance matrix, and each time an update
is performed the variance for the updated features decreases, reducing the overall
learning rate for more commonly updated features. It should be noted that as the update
of each feature is automatically controlled by the covariance matrix, there is no need to
decay η as is necessary in SGD.

7. Large-Scale Optimization

Up to this point, we have generally given a mathematical or algorithmic explanation
of the various optimization methods, and placed a smaller emphasis on factors such
as training efficiency. In traditional optimization settings for MT where we optimize
only a small number of weights for dense features on a training set of around 1,000
sentences, efficiency is often less of a concern. However, when trying to move to larger
sets of sparse features, 1,000 sentences of training data is simply not enough to robustly
estimate the parameters, and larger training sets become essential. When moving to
larger training sets, parallelization of both the decoding process and the optimization
process becomes essential. In this section, we outline the methods that can be used to
perform parallelization, greatly increasing the efficiency of training. As parallelization
in MT has seen wider use with respect to online learning methods, we will start with a
description of online methods and touch briefly upon batch methods afterwards.

7.1 Large-Scale Online Optimization

Within the online learning framework, it is possible to improve the efficiency of learning
through parallelization (McDonald, Hall, and Mann 2010). An example of this is shown

in Figure 10, where the training data 〈F, E〉 =
{
〈 f (i), e(i)〉

}N

i=1
is split into S shards (line

2), learning is performed locally over each shard 〈Fs, Es〉, and the S sets of parameters ws
acquired through local learning are combined according to a function mix(·), a process
called parameter mixing (line 6). This can be considered an instance of the MapReduce
(Dean and Ghemawat 2008) programming model, where each Map assigns shards to S
CPUs and performs training, and Reduce combines the resulting parameters ws.

In the training algorithm of Figure 10, because parameters are learned locally on
each shard, it is not necessarily guaranteed that the parameters are optimized for the

37

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

1: procedure PARALLELLEARN(〈F, E〉)
2: Split 〈F, E〉 into S shards {〈F1, E1〉, . . . , 〈FS, ES〉}
3: for s ∈ {1, . . . , S} parallel do . Run shards in parallel
4: ws ← ONLINELEARN(〈Fs, Es〉)

or BATCHLEARN(〈Fs, Es〉) . Local learning
5: end for
6: w← mix ({w1, . . . , wS}) . Parameter mixing
7: return w
8: end procedure

Figure 10
Parallel learning.

data as a whole. In addition, it is also known that some divisions of the data can lead to
contradictions between the parameters (McDonald, Hall, and Mann 2010). Because of
this, when performing distributed online learning, it is common to perform parameter
mixing several times throughout the training process, which allows the separate shards
to share information and prevents contradiction between the learned parameters. Based
on the timing of the update, these varieties of mixing are called synchronous update
and asynchronous update.

7.1.1 Synchronous Update. In the online learning algorithm with synchronous update
shown in Figure 11, learning is performed independently over each shard 〈Fs, Es〉(1 ≤
s ≤ S). The difference between this and Figure 10 lies in the fact that learning is
performed T′ times, with each iteration initialized with the parameters w(t) from the
previous iteration (line 7).

After the local learning finishes, the parameters are mixed in line 8 (Watanabe et al.
2007; McDonald, Hall, and Mann 2010; Watanabe 2012). In the mixing function it is most
common to use the average of the parameters

w(t+1) ←
S∑

s=1

µsw̄
(t+1)
s (75)

1: procedure SYNCHRONOUSONLINELEARN(〈F, E〉)
2: Split 〈F, E〉 into S fragments {〈F1, E1〉, . . . , 〈FS, ES〉}
3: w(1) ← 0 . Initialize parameters
4: for s ∈ {1, . . . , S} parallel do . Run shards in parallel
5: for t ∈ {1, . . . , T} do
6: w̄(t)

s ← w(t) . Copy parameters to each shard
7: w̄(t+1)

s ← ONLINELEARN(〈Fs, Es〉, w̄(t)
s , T′)

. Local learning on each shard

8: w(t+1) ← mix
(
{w̄(t+1)

1 , . . . , w̄(t+1)
S }

)
. Mix parameters

9: end for
10: end for
11: return w(T+1) or 1

T
∑T+1

t=2 w(t)

12: end procedure
Figure 11
Online learning with synchronous update.

38

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

where
∑S

s=1 µs = 1. As µs, it is possible to use a uniform distribution, or a weight
proportional to the number of online updates performed at each shard (McDonald,
Hall, and Mann 2010; Simianer, Riezler, and Dyer 2012). It should be noted that this
algorithm can be considered a variety of the MapReduce framework, allowing for
relatively straightforward implementation using parallel processing infrastructure such
as Hadoop (Eidelman 2012).

Simianer, Riezler, and Dyer (2012) propose another method for mixing parameters
that, instead of averaging at each iteration, chooses to preserve only the parameters
that have been learned over all shards, and sets all the remaining parameters to zero,
allowing for a simple sort of feature selection. In particular, we define a S×M matrix

that combines the parameters w̄(t+1)
s at each shard as w̄(t+1) =

[
w̄(t+1)

1 | . . . |w̄(t+1)
S

]>
,

takes the L2 norm of each matrix column, and averages the columns with high norm
values while setting the rest to zero.

7.1.2 Asynchronous Update. While parallel learning with synchronous update is guar-
anteed to converge (McDonald, Hall, and Mann 2010), parameter mixing only occurs
after all the data has been processed, leading to inefficiency over large data sets. To fix
this problem, asynchronous update sends information about parameter updates to each
shard asynchronously, allowing the parameters to be updated more frequently, resulting
in faster learning (Chiang, Marton, and Resnik 2008; Chiang, Knight, and Wang 2009).

The algorithm for learning with asynchronous update is shown in Figure 12. With
the data 〈Fs, Es〉 (1 ≤ s ≤ S) split into S pieces, each shard performs T iterations of
training by sampling a mini-batch (line 7), translating each sentence (line 10), and
performing optimization on the mini-batch level (line 12).

1: procedure ASYNCHRONOUSONLINELEARN(〈F, E〉)
2: Split 〈F, E〉 into S fragments {〈F1, E1〉, . . . , 〈FS, ES〉}
3: w(1) ← 0 . Initialize parameters
4: for s ∈ {1, . . . , S} parallel do . Run s shards in parallel
5: for t ∈ {1, . . . , T} do
6: w̄(t)

s ← copyasync

(
w(t)) . Copy parameters to each shard

7: 〈F̃(t)
s , Ẽ(t)

s 〉 ⊆ 〈Fs, Es〉 . Sample (|〈F̃(t)
s , Ẽ(t)

s 〉| = K)
8: C̃(t)

s ← {c̃
(j)
s = ∅}K

j=1 . k-best candidates

9: for 〈 f̃ (j)
s , ẽ(j)

s 〉 ∈ 〈F̃(t)
s , Ẽ(t)

s 〉 do
10: c̃(j)

s ← GEN(f̃ (j)
s , w̄(t)

s) . Decode with w̄(t)
s

11: end for
12: w̄(t+1)

s ← arg minw̄s∈RM `(F̃(t)
s , Ẽ(t)

s , C̃(t)
s ; w̄s) + λΩ(w̄s) . Optimize

13: w(t+1) ← mixasync

(
{w̄(t+1)

1 , . . . , w̄(t+1)
S }

)
. Mix parameters

14: end for
15: end for
16: return w(T+1) or 1

T
∑T+1

t=2 w(t)

17: end procedure
Figure 12
Online learning with asynchronous update.

39

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

Compared with the synchronous algorithm in Figure 11, the parameter mixing
operator mixasync(·) in line 13 sends the result of the mini-batch level update

∆w̄(t+1)
s = w̄(t+1)

s − w̄(t)
s (76)

to each shard s′(s′ 6= s,1 ≤ s′ ≤ S). It should be noted that because the number of di-
mensions M in the parameter vector is extremely large, and each mini-batch will only
update a small fraction of these parameters, by only sending the parameters that have
actually changed in each mini-batch update we can greatly increase the efficiency of the
training. In operator copyasync(·) of line 6, the learner receives the update from all the
other shards and mixes them together to acquire the full update vector

w̄(t)
s ←

S∑
s′=1

∆w̄(t)
s′ (77)

It should be noted that at mixing time, there is no need to wait for the update vectors
from all of the other shards; update can be performed with only the update vectors that
have been received at the time. Because of this, each shard will not necessarily be using
parameters that reflect all the most recent updates performed on other shards. However,
as updates are performed much more frequently than in synchronous update, it is easier
to avoid local optima, and learning tends to converge faster. It can also be shown that
(under some conditions) the amount of accuracy lost by this delay in update is bounded
(Zinkevich, Langford, and Smola 2009; Recht et al. 2011).

7.2 Large-Scale Batch Optimization

Compared with online learning, within the batch optimization framework, paralleliza-
tion is usually straightforward. Often, decoding takes the majority of time required for
the optimization process, and because the parameters will be identical for each sentence
in the decoding run (Figure 3, line 6), decoding can be parallelized trivially. The process
of parallelizing optimization itself depends slightly on the optimization algorithm, but
is generally possible to achieve in a number of ways.

The first, and simplest, method for parallelization is the parallelization of opti-
mization runs. The most obvious example of this is MERT, where random restarts are
required. Each of the random restarts is completely independent, so it is possible to run
these on different nodes, and finally check which run achieved the best accuracy and
use that result.

Another more fine-grained method for parallelization, again most useful for MERT,
is the parallelization of search directions. In the loop starting at Figure 4, line 6, MERT
performs line search in several different directions, each one being independent of
the others. Each of these line searches can be performed in parallel, and the direction
allowing for the greatest gain in accuracy is chosen when all threads have completed.

A method that is applicable to a much broader array of optimization methods
is the parallelization of calculation of sufficient statistics. In this approach, like in
Section 7.1.1, we first split the data into shards 〈Fs, Es〉(1 ≤ s ≤ S). Then, over these
shards we calculate the sufficient statistics necessary to perform a parameter update. For
example, in MERT these sufficient statistics would consist of the envelope for each of
the potential search directions. In gradient based methods, the sufficient statistics would

40

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

consist of the gradient calculated with respect to only the data on the shard. Finally,
when all threads have finished calculating these statistics, a master thread combines the
statistics from each shard, either by merging the envelopes, or by adding the gradients.

8. Other Topics in MT Optimization

In this section we cover several additional topics in optimization for MT, including non-
linear models (Section 8.1), optimization for a particular domain or test set (Section 8.2),
and the interaction between evaluation measures (Section 8.3) or search (Section 8.4)
and optimization.

8.1 Non-Linear Models

Note that up until this point, all models that we have considered calculate the scores
for translation hypotheses according to a linear model, where the score is calculated
according to the dot product of the features and weights shown in Equation (1). How-
ever, linear models are obviously limited in their expressive power, and a number of
works have attempted to move beyond linear combinations of features to nonlinear
combinations.

In general, most nonlinear models for machine learning can be applied to MT as
well, with one major caveat. Specifically, the efficiency of the decoding process largely
relies on the feature locality assumption mentioned in Section 2.3. Unfortunately, the lo-
cality assumption breaks down when moving beyond a simple linear scoring function,
and overcoming this problem is the main obstacle to applying nonlinear models to MT
(or structured learning in general). A number of countermeasures to this problem exist:

Reranking: The most simple and commonly used method for incorporating non-
linearity, or other highly nonlocal features that cannot be easily incorporated in
search, is through the use of reranking (Shen, Sarkar, and Och 2004). In this case,
a system optimized using a standard linear model is used to create a k-best list of
outputs, and this k-best list is then reranked using the nonlinear model (Nguyen,
Mahajan, and He 2007; Duh and Kirchhoff 2008). Because we are now only dealing
with fully expanded hypotheses, scoring becomes trivial, but reranking also has
the major downsides of potentially missing useful hypotheses not included in the
k-best list,9 and requiring time directly proportional to the size of the k-best list.

Local Nonlinearity: Another possibility is to first use a nonlinear function to calculate
local features, which are then used as part of the standard linear model (Liu
et al. 2013). Alternatively, it is possible to treat feature-value pairs as new binary
features (Clark, Dyer, and Lavie 2014). In this case, all effects of nonlinearity are
resolved before the search actually begins, allowing for the use of standard and
efficient search algorithms. On the other hand, it is not possible to incorporate
non-local features into the nonlinear model.

Improved Search Techniques: Although there is no general-purpose solution to incor-
porating nonlinear models into search, for some particular models it is possible
to perform search in a way that allows for incorporation of nonlinearities. For ex-
ample, ensemble decoding has been used with stacking-based models (Razmara

9 This problem can be ameliorated somewhat by ensuring that there is sufficient diversity in the n-best list
(Gimpel et al. 2013).

41

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

and Sarkar 2013), and it has been shown that the search space can be simplified to
the extent that kernel functions can be calculated efficiently (Wang, Shawe-Taylor,
and Szedmak 2007).

Once the problems of search have been solved, a number of actual learning tech-
niques can be used to model nonlinear scoring functions. One of the most popular
examples of nonlinear functions are those utilizing kernels, and methods applied to MT
include kernel-like functions over the feature space such as the Parzen window, binning,
and Gaussian kernels (Nguyen, Mahajan, and He 2007), or the n-spectrum string kernel
for finding associations between the source and target strings (Wang, Shawe-Taylor,
and Szedmak 2007). Neural networks are another popular method for modeling non-
linearities, and it has been shown that neural networks can effectively be used to calcu-
late new local features for MT (Liu et al. 2013). Methods such as boosting or stacking,
which combine together multiple parameterizations of the translation model, have been
incorporated through reranking (Duh and Kirchhoff 2008; Lagarda and Casacuberta
2008; Duan et al. 2009; Sokolov, Wisniewski, and Yvon 2012b), or ensemble decoding
(Razmara and Sarkar 2013). Regression decision trees have also been introduced as a
method for inducing nonlinear functions, incorporated through history-based search
algorithms (Turian, Wellington, and Melamed 2006), or by using the trees to induce
features local to the search state (Toutanova and Ahn 2013).

8.2 Domain-Dependent Optimization

One widely acknowledged feature of machine learning problems in general is that the
parameters are sensitive to the domain of the data, and by optimizing the parameters
with data from the target domain it is possible to achieve gains in accuracy. In machine
translation, this is also very true, although much of the work on domain adaptation has
focused on adapting the model learning process prior to explicit optimization towards
an evaluation measure (Koehn and Schroeder 2007). However, there are a few works on
optimization-based domain adaptation in MT, as we will summarize subsequently.

One relatively simple way of performing domain adaptation is by selecting a subset
of the training data that is similar to the data that we want to translate (Li et al. 2010).
This can be done by selecting sentences that are similar to our test corpus, or even
selecting adaptation data for each individual test sentence (Liu et al. 2012). If no parallel
data exist in the target domain, it has also been shown that first automatically translating
data from the source to the target language or vice versa, then using this data for
optimization and model training is also helpful (Ueffing, Haffari, and Sarkar 2007; Li
et al. 2011; Zhao et al. 2011) In addition, in a computer-assisted translation scenario, it is
possible to reflect post-edited translations back into the optimization process as new in-
domain training data (Mathur, Mauro, and Federico 2013; Denkowski, Dyer, and Lavie
2014).

Once adaptation data have been chosen, it is necessary to decide how to use the
data. The most straightforward way is to simply use these in-domain data in opti-
mization, but if the data set is small it is preferable to combine both in- and out-of-
domain data to achieve more robust parameter estimates. This is essentially equivalent
to the standard domain-adaptation problem in machine learning, and in the context
of MT there have been methods proposed to perform Bayesian adaptation of proba-
bilistic models (Sanchis-Trilles and Casacuberta 2010), and online update using ultra-
conservative algorithms (Liu et al. 2012). This can be extended to cover multiple target
domains using multi-task learning (Cui et al. 2013).

42

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

Finally, it has been noted that when optimizing a few dense parameters, it is useful
to make the distinction between in-domain translation (when the model training data
matches the test domain) and cross-domain translation (when the model training data
mismatches the test domain). In cross-domain translation, fewer long rules will be
used, and translation probabilities will be less reliable, and the parameters must change
accordingly to account for this (Pecina, Toral, and van Genabith 2012). It has also been
shown that building TMs for several domains and tuning the parameters to maximize
translation accuracy can improve MT accuracy on the target domain (Haddow 2013).
Another option for making the distinction between in-domain and out-of-domain data
is by firing different features for in-domain and out-of-domain training data, allow-
ing for the learning of different weights for different domains (Clark, Lavie, and Dyer
2012).

8.3 Evaluation Measures and Optimization

In the entirety of this article, we have assumed that optimization for MT aims to
reduce MT error defined using an evaluation measure, generally BLEU. However, as
mentioned in Section 2.5, evaluation of MT is an active research field, and there are
many alternatives in addition to BLEU. Thus, it is of interest whether changing the
measure used in optimization can affect the overall quality of the translations achieved,
as measured by human evaluators.

There have been a few comprehensive studies on the effect of the metric used in
optimization on human assessments of the generated translations (Cer, Manning, and
Jurafsky 2010; Callison-Burch et al. 2011). These studies showed the rather surprising
result that despite the fact that other evaluation measures had proven superior to BLEU
with regards to post facto correlation with human evaluation, a BLEU-optimized system
proved superior to systems tuned using other metrics. Since this result, however, there
have been other reports stating that systems optimized using other metrics such as
TESLA (Liu, Dahlmeier, and Ng 2011) and MEANT (Lo et al. 2013) achieve superior
results to BLEU-optimized systems.

There have also been attempts to directly optimize not automatic, but human
evaluation measures of translation quality (Zaidan and Callison-Burch 2009). However,
the cost of performing this sort of human-in-the-loop optimization is prohibitive, so
Zaidan and Callison-Burch (2009) propose a method that re-uses partial hypotheses
in evaluation. Saluja, Lane, and Zhang (2012) also propose a method for incorporat-
ing binary good/bad input into optimization, with the motivation that this sort of
feedback is easier for human annotators to provide than generating new reference
sentences.

Finally, there is also some work on optimizing multiple evaluation metrics at one
time. The easiest way to do so is to simply use the linear interpolation of two or more
metrics as the error function (Dyer et al. 2009; He and Way 2009; Servan and Schwenk
2011):

error(E, Ê) =
L∑

i=1

ρi errori(E, Ê) (78)

where L is the number of error functions, and ρi is a manually set interpolation
coefficient for its respective error function. There are also more sophisticated meth-
ods based on the idea of optimizing towards Pareto-optimal hypotheses (Duh et al.

43

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

2012), which achieve errors lower than all other hypotheses on at least one evaluation
measure,

pareto(E, E) = {Ê ∈ E : ∀E′∈E∃i errori(E, Ê) < errori(E, E′)} (79)

To incorporate this concept of Pareto optimality into optimization, the Pareto-optimal
set is defined on the sentence level, and ranking loss (Section 3.5) is used to ensure
that the Pareto-optimal hypotheses achieve a higher score than those that are not Pareto
optimal. This method has also been extended to take advantage of ensemble decoding,
where multiple parameter settings are used simultaneously in decoding (Sankaran,
Sarkar, and Duh 2013).

8.4 Search and Optimization

As mentioned in Section 2.4, because MT decoders perform approximate search, they
may make search errors and not find the hypothesis that achieves the highest model
score. There have been a few attempts to consider this fact in the optimization process.

For example, in the perceptron algorithm of Section 6.2 it is known that the conver-
gence guarantees of the structured perceptron no longer hold when using approximate
search. The first method that can be used to resolve this problem is the early updating
strategy (Collins and Roark 2004; Cowan, Kuc̆erová, and Collins 2006). The early updat-
ing strategy is a variety of bold updates, where the decoder output e∗(i) must be exactly
equal to the reference e(i). Decoding proceeds as normal, but the moment the correct
hypothesis e(i) can no longer be produced by any hypothesis in the search space (i.e.,
a search error has occurred), search is stopped and update is performed using only
the partial derivation. The second method is the max-violation perceptron (Huang,
Fayong, and Guo 2012; Yu et al. 2013). In the max-violation perceptron, forced decoding
is performed to acquire a derivation 〈e∗(i), d∗(i)〉 that can exactly reproduce the correct
output e(i), and update is performed at the point when the score of a partial hypothesis

〈 ˆe(i), ˆd(i)〉 exceeds that of the partial hypothesis 〈e∗(i), d∗(i)〉 by the greatest margin (the
point of “maximum violation”).

Search-aware tuning (Liu and Huang 2014) is a method that is able to consider
search errors using an arbitrary optimization method. It does so by defining an evalu-
ation measure for not only full sentences, but also partial derivations that occur during
the search process, and optimizes parameters for k-best lists of partial derivations.

Finally, there has also been some work on optimizing features not of the model itself,
but parameters of the search process, using the downhill simplex algorithm (Chung
and Galley 2012). Using this method, it is possible to adjust the beam width, distortion
penalty, or other parameters that actually affect the size and shape of the derivation
space, as opposed to simply rescoring hypotheses within it.

9. Conclusion

In this survey article, we have provided a review of the current state-of-the-art in
machine translation optimization, covering batch optimization, online optimization,
expansions to large scale data, and a number of other topics. While these optimization
algorithms have already led to large improvements in machine translation accuracy, the
task of MT optimization is, as stated in the Introduction, an extremely hard one that is
far from solved.

44

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

Table 2
Percent of WMT systems using each optimization method, including all systems, or systems that
achieved the best results on at least one language pair.

WMT 2011 WMT 2012 WMT 2013 WMT 2014
All Best All Best All Best All Best

MERT 80 100 79 100 68 25 63 50
MIRA 0 0 0 0 20 75 27 50
Ranking 0 0 4 0 8 0 5 0
Softmax 3 0 0 0 0 0 0 0
Risk 3 0 0 0 0 0 5 0
None 17 0 17 0 4 0 0 0

The utility of an optimization algorithm can be viewed from a number of perspec-
tives. The final accuracy achieved is, of course, one of the most important factors, but
speed, scalability, ease of implementation, final resulting model size, and many other
factors play an important role. We can assume that the algorithms being used outside of
the context of research on optimization itself are those that satisfy these criteria in some
way. Although it is difficult to exactly discern exactly which algorithms are seeing the
largest amount of use (industrial SMT systems rarely disclose this sort of information
publicly), one proxy for this is to look at systems that performed well on shared tasks
such as the Workshop on Machine Translation (WMT) (Bojar et al. 2014). In Table 2
we show the percentage of WMT systems using each optimization algorithm for the
past four years, both including all systems, and systems that achieved the highest level
of human evaluation in the resource-constrained setting for at least one language pair.
From these statistics we can see that even after over ten years, MERT is still the dominant
optimization algorithm. However, starting in WMT 2013, we can see a move to systems
based on MIRA, and to a lesser extent ranking, particularly in the most competitive
systems.

In these systems, the preferred choice of an optimization algorithm seems to be
MERT when using up to 20 features, and MIRA when using a large number of features
(up to several hundred). There are fewer examples of systems using large numbers
of features (tens of thousands, or millions) in actual competitive systems, with a few
exceptions (Dyer et al. 2009; Neidert et al. 2014; Wuebker et al. 2014). In the case when
a large number of sparse features are used, it is most common to use a softmax or
risk-based objective and gradient-based optimization algorithms, often combining the
features into summary features and performing a final tuning pass with MERT.

The fact that algorithms other than MERT are seeing adoption in competitive sys-
tems for shared tasks is a welcome sign for the future of MT optimization research.
However, there are still many open questions in the field, a few of which can be outlined
here:

Stable Training with Millions of Features: At the moment, there is still no stable train-
ing recipe that has been widely proven to effectively optimize millions of features.
Finding an algorithm that gives consistent improvements in this setting is perhaps
the largest open problem in MT optimization.

Evaluation Measures for Optimization: Although many evaluation measures show
consistent improvements in correlation with human evaluation scores over BLEU

45

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

when used to evaluate the output of existing MT systems, there are few results that
show that systems optimized with evaluation measures other than BLEU achieve
consistent improvements in human evaluation scores.

Better Training/Utilization of Nonlinear Scoring Functions: Nonlinear functions us-
ing neural networks have recently achieved large improvements in a number of
areas of natural language processing and machine learning. Better methods to
incorporate these sort of nonlinear scoring functions into MT is a highly promising
direction, but will require improvements in both learning the scoring functions
and correctly incorporating these functions into MT decoding.

Resolving these, and many other, open questions will likely be among the top priorities
of MT optimization research in the years to come.

Appendix A: Derivation for xBLEU Gradients

In this appendix, we explain in detail how to derive a gradient for the xBLEU objective
in Equation (54), which has not been described completely in previous work.

First, we consider the brevity penalty

φ(x) = min {1, exp(x)} (A.1)

We can see that it is not differentiable, which precludes the use of gradient-based
algorithms. To remedy this problem, Rosti et al. (2010) propose the use of the following
differentiable approximation for the brevity penalty.

ϕ(x) =
exp(x)− 1

1 + exp(10000x) + 1 (A.2)

Using Equation (54) and the approximated brevity penalty in Equation (A.2), we can
express xBLEU = exp(P) · B, leading to the following equation

P = 1
4

4∑
n=1

(
log

N∑
i=1

K∑
k=1

mn,i,k − log
N∑

i=1

K∑
k=1

cn,i,k

)
(A.3)

B = ϕ (1− R) (A.4)

R =

∑N
i=1
∑K

k=1 ri,k∑N
i=1
∑K

k=1 c1,i,k
(A.5)

Taking the derivative of xBLEU with respect to w, we get

∂ xBLEU
∂w =

N∑
i=1

K∑
k=1

∂ xBLEU
∂ log pi,k

∂ log pi,k
∂w (A.6)

=
N∑

i=1

K∑
k=1

K∑
k′=1

∂ xBLEU
∂ log pi,k

∂ log pi,k
∂si,k′

∂si,k′

∂w (A.7)

46

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

Thus,

∂si,k′

∂w = γ · h(f (i), ek′ , dk′) (A.8)

∂ log pi,k
∂si,k′

= δ(k, k′)− pi,k′ (A.9)

and

∂ xBLEU
∂ log pi,k

= exp(P) · ∂B
∂ log pi,k

+ exp(P) · ∂P
∂ log pi,k

· B (A.10)

Additionally, the following equation holds:

∂B
∂ log pi,k

= ∂B
∂1− R

∂1− R
∂ log pi,k

(A.11)

= ϕ′ (1− R) · (−R) ·

(
ri,k∑N

i′=1
∑K

k′=1 ri′,k′
−

c1,i,k∑N
i′=1

∑K
k′=1 c1,i′,k′

)
(A.12)

∂P
∂ log pi,k

= 1
4

4∑
n=1

mn,i,k∑N
i′=1

∑K
k′=1 mn,i′,k′

−
cn,i,k∑N

i′=1
∑K

k′=1 cn,i′,k′
(A.13)

After calculating this gradient, it is possible to optimize this according to standard
gradient-based methods. However, like MR using sentence-level evaluation mentioned
in Section 5.5, the evaluation measure is not convex, and the same precautions need to
be taken to avoid falling into local optima.

References
Andrew, Galen and Jianfeng Gao. 2007.

Scalable training of L1-regularized
log-linear models. In Proceedings of ICML,
pages 33–40, Corvalis, OR.

Banerjee, Satanjeev and Alon Lavie. 2005.
METEOR: An automatic metric for MT
evaluation with improved correlation with
human judgments. In Proceedings of the
ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation
and/or Summarization, pages 65–72,
Ann Arbor, MI.

Bazrafshan, Marzieh, Tagyoung Chung, and
Daniel Gildea. 2012. Tuning as linear
regression. In Proceedings of HLT/NAACL,
pages 543–547, Montréal.

Bentley, J. L. and T. A. Ottmann. 1979.
Algorithms for reporting and counting
geometric intersections. IEEE Transactions
on Computers, 28(9):643–647.

Berger, Adam L., Vincent J. Della Pietra, and
Stephen A. Della Pietra. 1996. A maximum
entropy approach to natural language
processing. Computational Linguistics,
22:39–71.

Blunsom, Phil, Trevor Cohn, and Miles
Osborne. 2008. A discriminative latent
variable model for statistical machine
translation. In Proceedings of ACL/HLT,
pages 200–208, Columbus, OH.

Blunsom, Phil and Miles Osborne. 2008.
Probabilistic inference for machine
translation. In Proceedings of EMNLP,
pages 215–223, Honolulu, HI.

Bojar, Ondrej, Christian Buck, Christian
Federmann, Barry Haddow, Philipp
Koehn, Johannes Leveling, Christof Monz,
Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia,
and Aleš Tamchyna. 2014. Findings of the
2014 workshop on statistical machine
translation. In Proceedings of WMT,
pages 12–58, Baltimore, MD.

Bottou, Léon. 1998. Online algorithms and
stochastic approximations. In David Saad,
editor, Online Learning and Neural Networks.
Cambridge University Press, pages 9–42,
Cambridge, UK.

Brown, Peter F., Vincent J. Della Pietra,
Stephen A. Della Pietra, and Robert L.
Mercer. 1993. The mathematics of

47

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

statistical machine translation: Parameter
estimation. Computational Linguistics,
19(2):263–311.

Burges, Chris, Tal Shaked, Erin Renshaw, Ari
Lazier, Matt Deeds, Nicole Hamilton, and
Greg Hullender. 2005. Learning to rank
using gradient descent. In Proceedings of
ICML, pages 89–96, Bonn.

Callison-Burch, Chris, Philipp Koehn,
Christof Monz, and Omar Zaidan. 2011.
Findings of the 2011 workshop on
statistical machine translation. In
Proceedings of WMT, pages 22–64,
Edinburgh.

Cao, Zhe, Tao Qin, Tie-Yan Liu, Ming-Feng
Tsai, and Hang Li. 2007. Learning to rank:
From pairwise approach to listwise
approach. In Proceedings of ICML,
pages 129–136, Corvalis, OR.

Cer, Daniel, Dan Jurafsky, and
Christopher D. Manning. 2008.
Regularization and search for minimum
error rate training. In Proceedings of WMT,
pages 26–34, Columbus, OH.

Cer, Daniel, Christopher D. Manning, and
Daniel Jurafsky. 2010. The best lexical
metric for phrase-based statistical MT
system optimization. In Proceedings of
HLT/NAACL, pages 555–563, Los Angeles,
CA.

Chappelier, Jean-Cédric and Martin Rajman.
1998. A generalized CYK algorithm for
parsing stochastic CFG. In Proceedings of
the 1st Workshop on Tabulation in Parsing and
Deduction, pages 133–137, Paris.

Chatterjee, Samidh and Nicola Cancedda.
2010. Minimum error rate training by
sampling the translation lattice. In
Proceedings of EMNLP, pages 606–615,
Cambridge, MA.

Chen, Stanley F. and Ronald Rosenfeld. 1999.
A Gaussian prior for smoothing maximum
entropy models. Technical report
CMU-CS-99-108, DTIC Document.
Carnegie Mellon School of Computer
Science.

Cherry, Colin and George Foster. 2012. Batch
tuning strategies for statistical machine
translation. In Proceedings of HLT/NAACL,
pages 427–436, Montréal, Canada.

Chiang, David. 2007. Hierarchical
phrase-based translation. Computational
Linguistics, 33(2):201–228.

Chiang, David. 2012. Hope and fear for
discriminative training of statistical
translation models. Journal of Machine
Learning Research, 13:1159–1187.

Chiang, David, Kevin Knight, and Wei Wang.
2009. 11,001 new features for statistical

machine translation. In Proceedings of
HLT/NAACL, pages 218–226, Boulder, CO.

Chiang, David, Yuval Marton, and Philip
Resnik. 2008. Online large-margin training
of syntactic and structural translation
features. In Proceedings of EMNLP,
pages 224–233, Honolulu, HI.

Chung, Tagyoung and Michel Galley. 2012.
Direct error rate minimization for
statistical machine translation. In
Proceedings of WMT, pages 468–479,
Montréal.

Clark, Jonathan H., Chris Dyer, and Alon
Lavie. 2014. Locally non-linear learning for
statistical machine translation via
discretization and structured
regularization. Transactions of the
Association for Computational Linguistics,
2(1):393–404.

Clark, Jonathan H., Chris Dyer, Alon Lavie,
and Noah A. Smith. 2011. Better
hypothesis testing for statistical machine
translation: Controlling for optimizer
instability. In Proceedings of ACL/HLT,
pages 176–181, Portland, OR.

Clark, Jonathan H., Alon Lavie, and Chris
Dyer. 2012. One system, many domains:
Open-domain statistical machine
translation via feature augmentation. In
Proceedings of AMTA, San Diego, CA.

Collins, Michael. 2002. Discriminative
training methods for hidden Markov
models: Theory and experiments with
perceptron algorithms. In Proceedings of
EMNLP, pages 1–8, Philadelphia, PA.

Collins, Michael, Amir Globerson, Terry Koo,
Xavier Carreras, and Peter L. Bartlett.
2008. Exponentiated gradient algorithms
for conditional random fields and
max-margin Markov networks. Journal of
Machine Learning Research, 9:1775–1822.

Collins, Michael and Brian Roark. 2004.
Incremental parsing with the perceptron
algorithm. In Proceedings of ACL,
pages 111–118, Barcelona.

Cowan, Brooke, Ivona Kuc̆erová, and
Michael Collins. 2006. A discriminative
model for tree-to-tree translation. In
Proceedings of EMNLP, pages 232–241,
Sydney.

Crammer, Koby, Ofer Dekel, Joseph Keshet,
Shai Shalev-Shwartz, and Yoram Singer.
2006. Online passive-aggressive
algorithms. Journal of Machine Learning
Research, 7:551–585.

Crammer, Koby, Alex Kulesza, and Mark
Dredze. 2009. Adaptive regularization of
weight vectors. In Proceedings of NIPS,
pages 414–422, Vancouver.

48

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

Crammer, Koby and Yoram Singer. 2003.
Ultraconservative online algorithms for
multiclass problems. Journal of Machine
Learning Research, 3:951–991.

Cui, Lei, Xilun Chen, Dongdong Zhang,
Shujie Liu, Mu Li, and Ming Zhou. 2013.
Multi-domain adaptation for SMT using
multi-task learning. In Proceedings of
EMNLP, pages 1055–1065, Seattle, WA.

Dean, Jeffrey and Sanjay Ghemawat. 2008.
Mapreduce: Simplified data processing on
large clusters. Communications of the ACM,
51(1):107–113.

DeNero, John, David Chiang, and Kevin
Knight. 2009. Fast consensus decoding
over translation forests. In Proceedings of
ACL/IJCNLP, pages 567–575, Singapore.

Denkowski, Michael, Chris Dyer, and
Alon Lavie. 2014. Learning from
post-editing: Online model adaptation for
statistical machine translation. In
Proceedings of EACL, pages 395–404,
Gothenburg.

Dreyer, Markus and Yuanzhe Dong. 2015.
APRO: All-pairs ranking optimization for
MT tuning. In Proceedings of NAACL,
pages 1018–1023, Denver, CO.

Dreyer, Markus and Daniel Marcu. 2012.
Hyter: Meaning-equivalent semantics for
translation evaluation. In Proceedings of
HLT/NAACL, pages 162–171, Montréal.

Duan, Nan, Mu Li, Tong Xiao, and Ming
Zhou. 2009. The Feature Subspace method
for SMT system combination. In
Proceedings of EMNLP, pages 1096–1104,
Singapore.

Duchi, John, Elad Hazan, and Yoram Singer.
2011. Adaptive subgradient methods
for online learning and stochastic
optimization. Journal of Machine Learning
Research, 12:2121–2159.

Duchi, John and Yoram Singer. 2009. Efficient
online and batch learning using forward
backward splitting. Journal of Machine
Learning Research, 10:2899–2934.

Duh, Kevin and Katrin Kirchhoff. 2008.
Beyond log-linear models: Boosted
minimum error rate training for n-best
re-ranking. In Proceedings of ACL/HLT:
Short Papers, pages 37–40, Columbus, OH.

Duh, Kevin, Katsuhito Sudoh, Xianchao Wu,
Hajime Tsukada, and Masaaki Nagata.
2012. Learning to translate with multiple
objectives. In Proceedings of ACL,
pages 1–10, Jeju Island.

Dyer, Chris. 2010a. A Formal Model of
Ambiguity and its Applications in Machine
Translation. Ph.D. thesis, University of
Maryland.

Dyer, Chris. 2010b. Two monolingual parses
are better than one (synchronous parse). In
Proceedings of HLT/NAACL, pages 263–266,
Los Angeles, CA.

Dyer, Chris, Hendra Setiawan, Yuval Marton,
and Philip Resnik. 2009. The University of
Maryland statistical machine translation
system for the Fourth Workshop on
Machine Translation. In Proceedings of
WMT, pages 145–149, Athens.

Eidelman, Vladimir. 2012. Optimization
strategies for online large-margin learning
in machine translation. In Proceedings of the
Seventh Workshop on Statistical Machine
Translation, pages 477–486, Montréal.

Eidelman, Vladimir, Yuval Marton, and
Philip Resnik. 2013. Online relative margin
maximization for statistical machine
translation. In Proceedings of ACL,
pages 1116–1126, Sofia.

Eisner, Jason. 2002. Parameter estimation
for probabilistic finite-state transducers.
In Proceedings of ACL, pages 1–8,
Philadelphia, PA.

Flanigan, Jeffrey, Chris Dyer, and Jaime
Carbonell. 2013. Large-scale discriminative
training for statistical machine translation
using held-out line search. In Proceedings of
HLT/NAACL, pages 248–258, Atlanta, GA.

Foster, George and Roland Kuhn. 2009.
Stabilizing minimum error rate training. In
Proceedings of WMT, pages 242–249,
Athens.

Freund, Yoav, Raj Iyer, Robert E. Schapire,
and Yoram Singer. 2003. An efficient
boosting algorithm for combining
preferences. Journal of Machine Learning
Research, 4:933–969.

Galley, Michel and Christopher D. Manning.
2008. A simple and effective hierarchical
phrase reordering model. In Proceedings of
EMNLP, pages 848–856, Honolulu, HI.

Galley, Michel and Chris Quirk. 2011.
Optimal search for minimum error rate
training. In Proceedings of EMNLP,
pages 38–49, Edinburgh.

Galley, Michel, Chris Quirk, Colin Cherry,
and Kristina Toutanova. 2013. Regularized
minimum error rate training. In Proceedings
of EMNLP, pages 1948–1959, Seattle, WA.

Gao, Jianfeng and Xiaodong He. 2013.
Training MRF-based phrase translation
models using gradient ascent. In
Proceedings of HLT/NAACL, pages 450–459,
Atlanta, GA.

Gesmundo, Andrea and James Henderson.
2011. Heuristic search for non-bottom-up
tree structure prediction. In Proceedings of
EMNLP, pages 899–908, Edinburgh.

49

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

Gimpel, Kevin, Dhruv Batra, Chris Dyer,
and Gregory Shakhnarovich. 2013.
A systematic exploration of diversity
in machine translation. In
Proceedings of EMNLP,
pages 1100–1111, Seattle, WA.

Gimpel, Kevin and Noah A. Smith. 2009.
Feature-rich translation by
quasi-synchronous lattice parsing. In
Proceedings of EMNLP, pages 219–228,
Singapore.

Gimpel, Kevin and Noah A. Smith.
2012. Structured ramp loss minimization
for machine translation. In Proceedings of
HLT/NAACL, pages 221–231, Montréal.

Graham, Yvette, Timothy Baldwin, Alistair
Moffat, and Justin Zobel. 2014. Is machine
translation getting better over time? In
Proceedings of EACL, pages 443–451,
Gothenburg.

Green, Spence, Daniel Cer, and Christopher
Manning. 2014. An empirical comparison
of features and tuning for phrase-based
machine translation. In Proceedings of
WMT, pages 466–476, Baltimore, MD.

Green, Spence, Sida Wang, Daniel Cer, and
Christopher D. Manning. 2013. Fast and
adaptive online training of feature-rich
translation models. In Proceedings of ACL,
pages 311–321, Sofia.

Green, Spence, Sida I. Wang, Jason Chuang,
Jeffrey Heer, Sebastian Schuster, and
Christopher D. Manning. 2014. Human
effort and machine learnability in
computer aided translation. In
Proceedings of EMNLP, pages 1225–1236,
Doha.

Haddow, Barry. 2013. Applying pairwise
ranked optimization to improve the
interpolation of translation models. In
Proceedings of HLT/NAACL, pages 342–347,
Atlanta, GA.

Haddow, Barry, Abhishek Arun, and Philipp
Koehn. 2011. SampleRank training for
phrase-based machine translation. In
Proceedings of WMT, pages 261–271,
Edinburgh.

Hasan, Saša, Richard Zens, and Hermann
Ney. 2007. Are very large N-best lists
useful for SMT? In Proceedings of
HLT/NAACL, pages 57–60, Rochester, NY.

Hayashi, Katsuhiko, Taro Watanabe, Hajime
Tsukada, and Hideki Isozaki. 2009.
Structural support vector machines for
log-linear approach in statistical machine
translation. In Proceedings of IWSLT,
pages 144–151, Tokyo.

He, Xiaodong and Li Deng. 2012. Maximum
expected BLEU training of phrase and

lexicon translation models. In Proceedings
of ACL, pages 292–301, Jeju Island.

He, Yifan and Andy Way. 2009. Improving
the objective function in minimum error
rate training. In Proceedings of MT Summit,
pages 238–245, Ottawa.

Herbrich, Ralf, Thore Graepel, and Klaus
Obermayer. 1999. Support vector learning
for ordinal regression. In Proceedings of
ICANN, pages 97–102, Edinburgh.

Hopkins, Mark and Jonathan May. 2011.
Tuning as ranking. In Proceedings of
EMNLP, pages 1352–1362, Edinburgh.

Hsieh, Cho-Jui, Kai-Wei Chang, Chih-Jen Lin,
S. Sathiya Keerthi, and S. Sundararajan.
2008. A dual coordinate descent method
for large-scale linear SVM. In Proceedings of
ICML, pages 408–415, Helsinki.

Huang, Liang and David Chiang. 2007.
Forest rescoring: Faster decoding with
integrated language models. In Proceedings
of ACL, pages 144–151, Prague.

Huang, Liang, Suphan Fayong, and Yang
Guo. 2012. Structured perceptron with
inexact search. In Proceedings of
HLT/NAACL, pages 142–151, Montréal.

Huang, Liang, Kevin Knight, and Aravind
Joshi. 2006. Statistical syntax-directed
translation with extended domain of
locality. In Proceedings of AMTA,
pages 66–73, Cambridge, MA.

Joachims, Thorsten. 1998. Text Categorization
with Support Vector Machines: Learning with
Many Relevant Features. Springer,
New York.

Klein, Dan and Christopher D. Manning.
2004. Parsing and hypergraphs. In Harry
Bunt, John Carroll, and Giorgio Satta,
editors, New Developments in Parsing
Technology. Kluwer Academic Publishers,
Norwell, MA, pages 351–372.

Koehn, Philipp. 2010. Statistical Machine
Translation. Cambridge University Press,
New York, NY.

Koehn, Philipp, Hieu Hoang, Alexandra
Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine
translation. In Proceedings of ACL: Demo
and Poster Sessions, pages 177–180, Prague.

Koehn, Philipp, Franz Josef Och, and Daniel
Marcu. 2003. Statistical phrase-based
translation. In Proceedings of HLT/NAACL,
pages 48–54, Edmonton.

Koehn, Philipp and Josh Schroeder. 2007.
Experiments in domain adaptation for

50

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

statistical machine translation. In
Proceedings of WMT, pages 224–227,
Prague.

Kumar, Shankar, Wolfgang Macherey, Chris
Dyer, and Franz Och. 2009. Efficient
minimum error rate training and
minimum Bayes-risk decoding for
translation hypergraphs and lattices. In
Proceedings of ACL/IJCNLP, pages 163–171,
Singapore.

Lagarda, Antonio and Francisco
Casacuberta. 2008. Applying boosting to
statistical machine translation. In
Proceedings of EAMT, pages 88–96,
Hamburg.

Leusch, Gregor, Evgeny Matusov, and
Hermann Ney. 2008. Complexity of
finding the BLEU-optimal hypothesis in a
confusion network. In Proceedings of
EMNLP, pages 839–847, Honolulu, HI.

Li, Mu, Yinggong Zhao, Dongdong Zhang,
and Ming Zhou. 2010. Adaptive
development data selection for log-linear
model in statistical machine translation. In
Proceedings of COLING, pages 662–670,
Beijing.

Li, Zhifei and Jason Eisner. 2009. First- and
second-order expectation semirings with
applications to minimum-risk training on
translation forests. In Proceedings of
EMNLP, pages 40–51, Singapore.

Li, Zhifei and Sanjeev Khudanpur. 2009.
Forest reranking for machine translation
with the perceptron algorithm. In J. Olive,
C. Christianson, & J. McCary, editors,
Handbook of Natural Language Processing
and Machine Translation. Springer,
pages 226–236.

Li, Zhifei, Ziyuan Wang, Jason Eisner,
Sanjeev Khudanpur, and Brian Roark.
2011. Minimum imputed-risk:
Unsupervised discriminative training for
machine translation. In Proceedings of
EMNLP, pages 920–929, Edinburgh.

Liang, Huashen, Min Zhang, and Tiejun
Zhao. 2012. Forced decoding for minimum
error rate training in statistical machine
translation. Journal of Computational
Information Systems, 8(2):861–868.

Liang, Percy, Alexandre Bouchard-Côté, Dan
Klein, and Ben Taskar. 2006. An end-to-end
discriminative approach to machine
translation. In Proceedings of COLING/ACL,
pages 761–768, Sydney.

Lin, Chin-Yew and Franz Josef Och. 2004.
Orange: a method for evaluating
automatic evaluation metrics for machine
translation. In Proceedings of COLING,
pages 501–507, Geneva.

Liu, Chang, Daniel Dahlmeier, and
Hwee Tou Ng. 2011. Better evaluation
metrics lead to better machine translation.
In Proceedings of EMNLP, pages 375–384,
Edinburgh.

Liu, Dong C. and Jorge Nocedal. 1989. On
the limited memory BFGS method for
large scale optimization. Mathematical
Programming, 45(3):503–528.

Liu, Lemao, Hailong Cao, Taro Watanabe,
Tiejun Zhao, Mo Yu, and Conghui Zhu.
2012. Locally training the log-linear model
for SMT. In Proceedings of EMNLP/CoNLL,
pages 402–411, Jeju Island.

Liu, Lemao and Liang Huang. 2014.
Search-aware tuning for machine
translation. In Proceedings of EMNLP,
pages 1942–1952, Doha.

Liu, Lemao, Taro Watanabe, Eiichiro Sumita,
and Tiejun Zhao. 2013. Additive neural
networks for statistical machine
translation. In Proceedings of ACL,
pages 791–801, Sofia.

Liu, Lemao, Tiejun Zhao, Taro Watanabe,
Hailong Cao, and Conghui Zhu. 2012.
Expected error minimization with
ultraconservative update for SMT. In
Proceedings of COLING: Posters,
pages 723–732, Mumbai.

Liu, Lemao, Tiejun Zhao, Taro Watanabe, and
Eiichiro Sumita. 2013. Tuning SMT with a
large number of features via online feature
grouping. In Proceedings of IJCNLP,
pages 279–285, Nagoya.

Lo, Chi-kiu, Karteek Addanki, Markus Saers,
and Dekai Wu. 2013. Improving machine
translation by training against an
automatic semantic frame based
evaluation metric. In Proceedings of ACL:
Short Papers, pages 375–381, Sofia.

Lopez, Adam. 2008. Statistical machine
translation. ACM Computing Surveys,
40(3):1–49.

Macherey, Wolfgang, Franz Och, Ignacio
Thayer, and Jakob Uszkoreit. 2008.
Lattice-based minimum error rate training
for statistical machine translation. In
Proceedings of EMNLP, pages 725–734,
Honolulu, HI.

Marton, Yuval and Philip Resnik. 2008. Soft
syntactic constraints for hierarchical
phrased-based translation. In Proceedings of
ACL/HLT, pages 1003–1011, Columbus,
OH.

Mathur, Prashant, Cettolo Mauro, and
Marcello Federico. 2013. Online learning
approaches in computer assisted
translation. In Proceedings of WMT,
pages 301–308, Sofia.

51

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

McDonald, Ryan, Koby Crammer, and
Fernando Pereira. 2005. Online
large-margin training of dependency
parsers. In Proceedings of ACL, pages 91–98,
Ann Arbor, MI.

McDonald, Ryan, Keith Hall, and Gideon
Mann. 2010. Distributed training strategies
for the structured perceptron. In
Proceedings of HLT/NAACL, pages 456–464,
Los Angeles, CA.

Moore, Robert C. and Chris Quirk. 2008.
Random restarts in minimum error rate
training for statistical machine translation.
In Proceedings of COLING, pages 585–592,
Manchester.

Nakov, Preslav, Francisco Guzman, and
Stephan Vogel. 2012. Optimizing for
sentence-level BLEU+1 yields short
translations. In Proceedings of COLING,
pages 1979–1994, Mumbai.

Nakov, Preslav, Francisco Guzmán, and
Stephan Vogel. 2013. A tale about pro and
monsters. In Proceedings of ACL: Short
Papers, pages 12–17, Sofia.

Neidert, Julia, Sebastian Schuster, Spence
Green, Kenneth Heafield, and Christopher
Manning. 2014. Stanford University’s
submissions to the WMT 2014 translation
task. In Proceedings of WMT,
pages 150–156, Baltimore, MD.

Nguyen, Patrick, Milind Mahajan, and
Xiaodong He. 2007. Training
non-parametric features for statistical
machine translation. In Proceedings of
WMT, pages 72–79, Prague.

Nocedal, Jorge and Stephen J. Wright. 2006.
Conjugate Gradient Methods. Springer,
New York.

Och, Franz Josef. 2003. Minimum error rate
training in statistical machine translation.
In Proceedings of ACL, pages 160–167,
Sapporo.

Och, Franz Josef and Hermann Ney. 2002.
Discriminative training and maximum
entropy models for statistical machine
translation. In Proceedings of ACL,
pages 295–302, Philadelphia, PA.

Och, Franz Josef and Hermann Ney. 2003.
A systematic comparison of various
statistical alignment models. Computational
Linguistics, 29(1):19–51.

Papineni, K. A. 1999. Discriminative training
via linear programming. In Proceedings of
ICASSP, pages 561–564, Phoenix, AZ.

Papineni, Kishore, Salim Roukos, Todd
Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of
machine translation. In Proceedings of ACL,
pages 311–318, Philadelphia, PA.

Pauls, Adam, John Denero, and Dan Klein.
2009. Consensus training for consensus
decoding in machine translation. In
Proceedings of EMNLP, pages 1418–1427,
Singapore.

Pecina, Pavel, Antonio Toral, and Josef van
Genabith. 2012. Simple and effective
parameter tuning for domain adaptation
of statistical machine translation. In
Proceedings of COLING, pages 2209–2224,
Mumbai.

Peitz, Stephan, Arne Mauser, Joern Wuebker,
and Hermann Ney. 2012. Forced
derivations for hierarchical machine
translation. In Proceedings of COLING:
Posters, pages 933–942, Mumbai.

Platt, John C. 1999. Fast training of support
vector machines using sequential minimal
optimization. In Bernhard Schölkopf,
Christopher J. C. Burges, and Alexander
J. Smola, editors, Advances in Kernel
Methods. MIT Press, Cambridge, MA,
pages 185–208.

Press, William H., Saul A. Teukolsky,
William T. Vetterling, and Brian P.
Flannery. 2007. Numerical Recipes 3rd
Edition: The Art of Scientific Computing.
Cambridge University Press, New York,
NY.

Razmara, Majid and Anoop Sarkar. 2013.
Stacking for statistical machine translation.
In Proceedings of ACL: Short Papers,
pages 334–339, Sofia.

Recht, Benjamin, Christopher Re, Stephen
Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing
stochastic gradient descent. In Proceedings
of NIPS, pages 693–701, Vancouver.

Rosti, Antti-Veikko, Bing Zhang, Spyros
Matsoukas, and Richard Schwartz. 2010.
BBN system description for WMT10
system combination task. In Proceedings of
WMT, pages 321–326, Uppsala.

Rosti, Antti-Veikko, Bing Zhang, Spyros
Matsoukas, and Richard Schwartz. 2011.
Expected BLEU training for graphs: BBN
system description for WMT11 system
combination task. In Proceedings of WMT,
pages 159–165, Edinburgh.

Roth, Benjamin, Andrew McCallum, Marc
Dymetman, and Nicola Cancedda. 2010.
Machine translation using overlapping
alignments and SampleRank. In
Proceedings of AMTA, Denver, CO.

Saluja, Avneesh, Ian Lane, and Ying Zhang.
2012. Machine translation with binary
feedback: A large-margin approach.
In Proceedings of AMTA, San Diego,
CA.

52

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Neubig and Watanabe Optimization for Statistical Machine Translation

Sanchis-Trilles, Germán and Francisco
Casacuberta. 2010. Log-linear weight
optimisation via Bayesian adaptation
in statistical machine translation. In
Proceedings of COLING: Posters,
pages 1077–1085, Beijing.

Sankaran, Baskaran, Anoop Sarkar, and
Kevin Duh. 2013. Multi-metric
optimization using ensemble tuning. In
Proceedings of HLT/NAACL, pages 947–957,
Atlanta, GA.

Servan, Christophe and Holger Schwenk.
2011. Optimising multiple metrics with
MERT. Prague Bulletin of Mathematical
Linguistics, 96(1):109–117.

Setiawan, Hendra and Bowen Zhou. 2013.
Discriminative training of 150 million
translation parameters and its application
to pruning. In Proceedings of HLT/NAACL,
pages 335–341, Atlanta, GA.

Shen, Libin, Anoop Sarkar, and Franz Josef
Och. 2004. Discriminative reranking for
machine translation. In Proceedings of
HLT/NAACL, pages 177–184, Boston, MA.

Simianer, Patrick, Stefan Riezler, and Chris
Dyer. 2012. Joint feature selection in
distributed stochastic learning for
large-scale discriminative training in SMT.
In Proceedings of ACL, pages 11–21, Jeju
Island.

Sindhwani, Vikas, S. Sathiya Keerthi, and
Olivier Chapelle. 2006. Deterministic
annealing for semi-supervised kernel
machines. In Proceedings of ICML,
pages 841–848, Pittsburgh, PA.

Smith, David A. and Jason Eisner. 2006.
Minimum risk annealing for training
log-linear models. In Proceedings of
COLING/ACL: Poster Sessions,
pages 787–794, Sydney.

Snover, Matthew, Bonnie Dorr, Richard
Schwartz, Linnea Micciulla, and John
Makhoul. 2006. A study of translation edit
rate with targeted human annotation. In
Proceedings of AMTA, pages 223–231,
Cambridge, MA.

Sokolov, Artem, Guillaume Wisniewski, and
Francois Yvon. 2012a. Computing lattice
BLEU oracle scores for machine
translation. In Proceedings of EACL,
pages 120–129, Avignon.

Sokolov, Artem, Guillaume Wisniewski, and
François Yvon. 2012b. Non-linear n-best
list reranking with few features. In
Proceedings of AMTA, San Diego, CA.

Sokolov, Artem and François Yvon. 2011.
Minimum error rate training semiring. In
Proceedings of EAMT, pages 241–248,
Leuven.

Suzuki, Jun, Kevin Duh, and Masaaki
Nagata. 2011. Distributed minimum error
rate training of SMT using particle swarm
optimization. In Proceedings of IJCNLP,
pages 649–657, Chiang Mai.

Tan, Ming, Tian Xia, Shaojun Wang, and
Bowen Zhou. 2013. A corpus level MIRA
tuning strategy for machine translation. In
Proceedings of EMNLP, pages 851–856,
Seattle, WA.

Taskar, Ben, Vassil Chatalbashev, Daphne
Koller, and Carlos Guestrin. 2005.
Learning structured prediction models: A
large margin approach. In Proceedings of
ICML, pages 896–903, Bonn.

Tibshirani, Robert. 1996. Regression
shrinkage and selection via the lasso.
Journal of the Royal Statistical Society.
Series B (Methodological), 58(1):267–288.

Tillman, Christoph. 2004. A unigram
orientation model for statistical machine
translation. In Proceedings of HLT/NAACL,
pages 101–104, Boston, MA.

Tillmann, Christoph and Tong Zhang. 2006.
A discriminative global training algorithm
for statistical MT. In Proceedings of
COLING/ACL, pages 721–728, Sydney.

Toutanova, Kristina and Byung-Gyu Ahn.
2013. Learning non-linear features for
machine translation using gradient
boosting machines. In Proceedings of ACL:
Short Papers, pages 406–411, Sofia.

Tromble, Roy, Shankar Kumar, Franz Och,
and Wolfgang Macherey. 2008. Lattice
minimum Bayes-risk decoding for
statistical machine translation. In
Proceedings of EMNLP, pages 620–629,
Honolulu, HI.

Turian, Joseph, Benjamin Wellington, and
I. Dan Melamed. 2006. Scalable
discriminative learning for natural
language parsing and translation. In
Proceedings of NIPS, pages 1409–1416,
Vancouver.

Ueffing, Nicola, Gholamreza Haffari, and
Anoop Sarkar. 2007. Transductive learning
for statistical machine translation. In
Proceedings of ACL, pages 25–32, Prague.

Ueffing, Nicola, Franz Josef Och, and
Hermann Ney. 2002. Generation of word
graphs in statistical machine translation. In
Proceedings of EMNLP, pages 156–163,
Philadelphia, PA.

Venugopal, Ashish and Stephan Vogel. 2005.
Considerations in maximum mutual
information and minimum classification
error training for statistical machine
translation. In Proceedings of EAMT,
pages 271–279, Budapest.

53

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

Computational Linguistics Volume 42, Number 1

Wang, Zhuoran, John Shawe-Taylor, and
Sandor Szedmak. 2007. Kernel regression
based machine translation. In
Proceedings of HLT/NAACL: Short Papers,
pages 185–188, Rochester, NY.

Watanabe, Taro. 2012. Optimized online rank
learning for machine translation. In
Proceedings of HLT/NAACL, pages 253–262,
Montréal.

Watanabe, Taro, Jun Suzuki, Hajime
Tsukada, and Hideki Isozaki. 2007. Online
large-margin training for statistical
machine translation. In Proceedings of
EMNLP/CoNLL, pages 764–773,
Prague.

Wu, Dekai. 1997. Stochastic inversion
transduction grammars and bilingual
parsing of parallel corpora. Computational
Linguistics, 23(3):377–403.

Wuebker, Joern, Arne Mauser, and Hermann
Ney. 2010. Training phrase translation
models with leaving-one-out. In
Proceedings of ACL, pages 475–484,
Uppsala.

Wuebker, Joern, Stephan Peitz, Andreas
Guta, and Hermann Ney. 2014. The RWTH
Aachen machine translation systems for
IWSLT 2014. In Proceedings of IWSLT,
pages 150–154, Lake Tahoe, NV.

Xiang, Bing and Abraham Ittycheriah. 2011.
Discriminative feature-tied mixture
modeling for statistical machine
translation. In Proceedings of ACL/HLT,
pages 424–428, Portland, OR.

Xiao, Lin. 2010. Dual averaging methods for
regularized stochastic learning and online
optimization. Journal of Machine Learning
Research, 11:2543–2596.

Xiao, Xinyan, Yang Liu, Qun Liu, and
Shouxun Lin. 2011. Fast generation
of translation forest for large-scale
SMT discriminative training. In
Proceedings of EMNLP,
pages 880–888, Edinburgh.

Xiao, Xinyan and Deyi Xiong. 2013.
Max-margin synchronous grammar
induction for machine translation. In
Proceedings of EMNLP, pages 255–264,
Seattle, WA.

Yamada, Kenji and Kevin Knight. 2001. A
syntax-based statistical translation model.
In Proceedings of ACL, pages 523–530,
Toulouse.

Yu, Heng, Liang Huang, Haitao Mi, and Kai
Zhao. 2013. Max-violation perceptron and
forced decoding for scalable MT training.
In Proceedings of EMNLP, pages 1112–1123,
Seattle, WA.

Zaidan, Omar F. and Chris Callison-Burch.
2009. Feasibility of human-in-the-loop
minimum error rate training. In Proceedings
of EMNLP, pages 52–61, Singapore.

Zens, Richard, Sasa Hasan, and Hermann
Ney. 2007. A systematic comparison of
training criteria for statistical machine
translation. In Proceedings of
EMNLP/CoNLL, pages 524–532, Prague.

Zhao, Bing and Shengyuan Chen. 2009. A
simplex Armijo downhill algorithm for
optimizing statistical machine translation
decoding parameters. In Proceedings of
HLT/NAACL: Short Papers, pages 21–24,
Boulder, CO.

Zhao, Yinggong, Shujie Liu, Yangsheng Ji,
Jiajun Chen, and Guodong Zhou. 2011.
Transductive minimum error rate training
for statistical machine translation. In
Proceedings of IJCNLP, pages 641–648,
Chiang Mai.

Zhou, Liang, Chin-Yew Lin, and Eduard
Hovy. 2006. Re-evaluating machine
translation results with paraphrase
support. In Proceedings of EMNLP,
pages 77–84, Sydney.

Zinkevich, Martin, John Langford, and
Alex J. Smola. 2009. Slow learners are fast.
In Proceedings of NIPS, pages 2331–2339,
Vancouver.

54

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/1/1/1806281/coli_a_00241.pdf by guest on 19 O
ctober 2021

