
Parsing Linear Context-Free Rewriting
Systems with Fast Matrix Multiplication

Shay B. Cohen∗
University of Edinburgh

Daniel Gildea∗∗
University of Rochester

We describe a recognition algorithm for a subset of binary linear context-free rewriting systems
(LCFRS) with running time O(nωd) where M(m) = O(mω) is the running time for m×m
matrix multiplication and d is the “contact rank” of the LCFRS—the maximal number of
combination and non-combination points that appear in the grammar rules. We also show
that this algorithm can be used as a subroutine to obtain a recognition algorithm for general
binary LCFRS with running time O(nωd+1). The currently best knownω is smaller than 2.38.
Our result provides another proof for the best known result for parsing mildly context-sensitive
formalisms such as combinatory categorial grammars, head grammars, linear indexed grammars,
and tree-adjoining grammars, which can be parsed in time O(n4.76). It also shows that inversion
transduction grammars can be parsed in time O(n5.76). In addition, binary LCFRS subsumes
many other formalisms and types of grammars, for some of which we also improve the asymptotic
complexity of parsing.

1. Introduction

The problem of grammar recognition is a decision problem of determining whether a
string belongs to a language induced by a grammar. For context-free grammars (CFGs),
recognition can be done using parsing algorithms such as the CKY algorithm (Kasami
1965; Younger 1967; Cocke and Schwartz 1970) or the Earley algorithm (Earley 1970).
The asymptotic complexity of these chart-parsing algorithms is cubic in the length of
the sentence.

In a major breakthrough, Valiant (1975) showed that context-free grammar recogni-
tion is no more complex than Boolean matrix multiplication for a matrix of size m×m
where m is linear in the length of the sentence, n. With current state-of-the-art results in
matrix multiplication, this means that CFG recognition can be done with an asymptotic
complexity of O(n2.38).

∗ School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom.
E-mail: scohen@inf.ed.ac.uk.

∗∗ Department of Computer Science, University of Rochester, Rochester, NY 14627, United States.
E-mail: gildea@cs.rochester.edu.

Submission received: 26 October 2016; revised version received: 19 January 2016; accepted for publication:
15 February 2016.

doi:10.1162/COLI a 00254

© 2016 Association for Computational Linguistics

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

In this article, we show that the problem of linear context-free rewriting system
(LCFRS) recognition can also be reduced to Boolean matrix multiplication. Current
chart-parsing algorithms for binary LCFRS have an asymptotic complexity of O(n3f),
where f is the maximal fan-out of the grammar.1 Our algorithm takes time O(nωd),
for a constant d which is a function of the grammar (and not the input string), and
where the complexity of n× n matrix multiplication is M(n) = O(nω). The parameter
d can be as small as f , meaning that we reduce parsing complexity from O(n3f) to
O(nωf), and that, in general, the savings in the exponent is larger for more complex
grammars.

LCFRS is a broad family of grammars. As such, we are able to support the find-
ings of Rajasekaran and Yooseph (1998), who showed that tree-adjoining grammar
(TAG) recognition can be done in time O(M(n2)) = O(n4.76) (TAG can be reduced to
LCFRS with d = 2). As a result, combinatory categorial grammars, head grammars,
and linear indexed grammars can be recognized in time O(M(n2)). In addition, we
show that inversion transduction grammars (ITGs; Wu 1997) can be parsed in time
O(nM(n2)) = O(n5.76), improving the best asymptotic complexity previously known for
ITGs.

1.1 Matrix Multiplication State of the Art

Our algorithm reduces the problem of LCFRS parsing to Boolean matrix multiplication.
Let M(n) be the complexity of multiplying two such n× n matrices. These matrices can
be naı̈vely multiplied in O(n3) time by computing for each output cell the dot product
between the corresponding row and column in the input matrices (each such product is
an O(n) operation). Strassen (1969) discovered a way to do the same multiplication in
O(n2.8704) time—his algorithm is a divide and conquer algorithm that eventually uses
only seven operations (instead of eight) to multiply 2× 2 matrices.

With this discovery, there have been many attempts to further reduce the com-
plexity of matrix multiplication, relying on principles similar to Strassen’s method: a
reduction in the number of operations it takes to multiply sub-matrices of the original
matrices to be multiplied. Coppersmith and Winograd (1987) identified an algorithm
that has the asymptotic complexity of O(n2.375477). Others have slightly improved that
algorithm, and currently there is an algorithm for matrix multiplication with M(n) =
O(nω) such that ω = 2.3728639 (Le Gall 2014). It is known that M(n) = Ω(n2 log n) (Raz
2002).

Although the asymptotically best matrix multiplication algorithms have large con-
stant factors lurking in the O-notation, Strassen’s algorithm does not, and is widely used
in practice. Benedı́ and Sánchez (2007) show speed improvement when parsing natural
language sentences using Strassen’s algorithm as the matrix multiplication subroutine
for Valiant’s algorithm for CFG parsing. This indicates that similar speed-ups may be
possible in practice using our algorithm for LCFRS parsing.

1.2 Main Result

Our main result is a matrix multiplication algorithm for unbalanced, single-initial
binary LCFRS with asymptotic complexity M(nd) = O(nωd) where d is the maximal

1 Without placing a bound on f , the problem of recognition of LCFRS languages is NP-hard (Satta 1992).

422

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

number of combination points in all grammar rules. The constant d can be easily
determined from the grammar at hand:

d = max
A→B C

max

 ϕ(A) +ϕ(B)−ϕ(C),
ϕ(A)−ϕ(B) +ϕ(C),
−ϕ(A) +ϕ(B) +ϕ(C)

where A→ B C ranges over rules in the grammar andϕ(A) is the fan-out of nonterminal
A. Single-initial grammars are defined in Section 2, and include common formalisms
such as tree-adjoining grammars. Any LCFRS can be converted to single-initial form by
increasing its fan-out by at most one. The notion of unbalanced grammars is introduced
in Section 4.4, and it is a condition on the set of LCFRS grammar rules that is satisfied
with many practical grammars. In cases where the grammar is balanced, our algorithm
can be used as a subroutine so that it parses the binary LCFRS in time O(nωd+1).
A similar procedure was applied by Nakanishi et al. (1998) for multiple component
context-free grammars. See more discussion of this in Section 7.5.

Our results focus on the asymptotic complexity as a function of string length. We
do not give explicit grammar constants. For other work that focuses on reducing the
grammar constant in parsing, see, for example, Eisner and Satta (1999), Dunlop, Boden-
stab, and Roark (2010), and Cohen, Satta, and Collins (2013). For a discussion of the
optimality of the grammar constants in Valiant’s algorithm, see, for example, Abboud,
Backurs, and Williams (2015).

2. Background and Notation

This section provides background on LCFRS, and establishes notation used in the
remainder of the paper. A reference table of notation is also provided in Appendix A.

For an integer n, let [n] denote the set of integers {1, . . . , n}. Let [n]0 = [n] ∪ {0}.
For a set X, we denote by X+ the set of all sequences of length 1 or more of elements
from X.

A span is a pair of integers denoting left and right endpoints for a substring in a
larger string. The endpoints are placed in the “spaces” between the symbols in a string.
For example, the span (0, 3) spans the first three symbols in the string. For a string of
length n, the set of potential endpoints is [n]0.

We turn now to give a succinct definition for binary LCFRS. For more details about
LCFRS and their relationship to other grammar formalisms, see Kallmeyer (2010). A
binary LCFRS is a tuple (L, T ,R,ϕ, S) such that:r L is the set of nonterminal symbols in the grammar.r T is the set of terminal symbols in the grammar. We assume L ∩ T = ∅.r ϕ is a function specifying a fixed fan-out for each nonterminal (ϕ : L→ N).r R is a set of productions. Each production p has the form A → g[B, C]

where A, B, C ∈ L, and g is a composition function g : (T ∗)ϕ(B) ×
(T ∗)ϕ(C) → (T ∗)ϕ(A), which specifies how to assemble the
ϕ(B) +ϕ(C) spans of the right-hand side nonterminals into the
ϕ(A) spans of the left-hand side nonterminal. We use square brackets as
part of the syntax for writing productions, and parentheses to denote
the application of the function g. The function g must be linear and

423

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

non-erasing, which means that if g is applied on a pair of tuples of strings,
then each input string appears exactly once in the output, possibly as a
substring of one of the strings in the output tuple. Rules may also take the
form A→ g[], where g returns a constant tuple of one string from T .r S ∈ L is a start symbol. Without loss of generality, we assume ϕ(S) = 1.

The language of an LCFRS G = (L, T ,R,ϕ, S) is defined as follows:r We define first the set yield(A) for every A ∈ L:

• For every A→ g[] ∈ R, g() ∈ yield(A).

• For every A→ g[B, C] ∈ R and all tuples β ∈ yield(B),
γ ∈ yield(C), g(β,γ) ∈ yield(A).

• Nothing else is in yield(A).r The string language of G is L(G) = {w | 〈w〉 ∈ yield(S)}.

Intuitively, the process of generating a string from an LCFRS grammar consists of
first choosing, top–down, a production to expand each nonterminal, and then, bottom–
up, applying the composition functions associated with each production to build the
string. As an example, the following context-free grammar:

S→ A B

A→ a

B→ b

corresponds to the following (binary) LCFRS:

S→ g1[A, B] g1(〈β1〉, 〈γ1〉) = 〈β1γ1〉 (1)

A→ g2[] g2() = 〈a〉

B→ g3[] g3() = 〈b〉

The only derivation possible under this grammar consists of the function application
g1(g2(), g3()) = 〈ab〉.

The following notation will be used to precisely represent the linear non-erasing
composition functions g used in a specific grammar. For each production rule
that operates on nonterminals A, B, and C, we define variables from the set S =
{β1, . . . , βϕ(B),γ1, . . . ,γϕ(C)}. In addition, we define variables αi for each rule where
i ∈ [ϕ(A)], taking values from S+. We write an LCFRS function as:

g(〈β1, . . . , βϕ(B)〉, 〈γ1, . . . ,γϕ(C)〉) = 〈α1, . . . ,αϕ(A)〉

where each αi = αi,1 · · ·αi,ni specifies the parameter strings that are combined to form
the ith string of the function’s result tuple. For example, for the rule in Equation (1),
α1,1 = β1 and α1,2 = γ2.

424

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

We adopt the following notational shorthand for LCFRS rules in the remainder of
the article. We write the rule:

A→ g[B, C]

g(〈β1, . . . , βϕ(B)〉, 〈γ1, . . . ,γϕ(C)〉) = 〈α1, . . . ,αϕ(A)〉

as:

A[α]→ B[β] C[γ]

where α consists of a tuple of strings from the alphabet {β1, . . . , βϕ(B),γ1, . . . ,γϕ(C)}. In
this notation, β is always the tuple 〈β1, . . . , βϕ(B)〉, and γ is always 〈γ1, . . . ,γϕ(C)〉. We
include β and γ in the rule notation merely to remind the reader of the meaning of the
symbols in α.

For example, with CFGs, rules have the form:

A[〈β1γ1〉]→ B[〈β1〉] C[〈γ1〉]

indicating that B and C each have one span, and are concatenated in order to form A.
A binary TAG can also be represented as a binary LCFRS (Vijay-Shanker and Weir

1994). Figure 1 demonstrates how the adjunction operation is done with binary LCFRS.
Each gray block denotes a span, and the adjunction operator takes the first span of
nonterminal B and concatenates it to the first span of nonterminal C (to get the first
span of A), and then takes the second span of C and concatenates it with the second
span of B (to get the second span of A). For TAGs, rules have the form:

A[〈β1γ1,γ2β2〉]→ B[〈β1, β2〉] C[〈γ1,γ2〉] (2)

The fan-out of a nonterminal is the number of spans in the input sentence that it
covers. The fan-out of CFG rules is 1, and the fan-out of TAG rules is 2. The fan-out of
the grammar, f , is the maximum fan-out of its nonterminals:

f = max
A∈L

ϕ(A) (3)

We sometimes refer to the skeleton of a grammar rule A[α]→ B[β] C[γ], which
is just the context-free rule A→ B C, omitting the variables. In that context, a logical

B

C

A

β1 β2

γ1 γ2

β1γ1 γ2β2

Figure 1
An example of a combination of spans for TAGs for the adjunction operation in terms of binary
LCFRS. The rule in Equation (2) specifies how two nonterminals B and C are combined together
into a nonterminal A.

425

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

statement such as A→ B C ∈ R is true if there is any rule A[α]→ B[β] C[γ] ∈ R with
some α, β, and γ.

For our parsing algorithm, we assume that the grammar is in a normal form such
that the variables β1, . . . , βϕ(B) appear in order in α, that is, that the spans of B are not
re-ordered by the rule, and similarly we assume that γ1, . . . ,γϕ(C) appear in order. If
this is not the case in some rule, then the grammar can be transformed by introducing
a new nonterminal for each permutation of a nonterminal that can be produced by the
grammar. We further assume that α1,1 = β1, that is, that the first span of A begins with
material produced by B rather than by C. If this not the case for some rule, B and C can
be exchanged to satisfy this condition.

We refer to an LCFRS rule A→ B C as single-initial if the leftmost endpoint of C is
internal to a span of A, and dual-initial if the leftmost endpoint of C is the beginning
of a span of A. Our algorithm will require the input LCFRS to be in single-initial form,
meaning that all rules are single-initial. We note that grammars for common formalisms
including TAG and synchronous context-free grammar (SCFG) are in this form. If a
grammar is not in single-initial form, dual-initial rules can be converted to single-initial
form by adding an empty span to B that combines with the first spans of C immediately
to its left, as shown in Figure 2. Specifically, for each dual-initial rule A→ B C, if the
first span of C appears between spans i and i + 1 of B, create a new nonterminal B′

with ϕ(B′) = ϕ(B) + 1, and add a rule B′ → B, where B′ produces B along with a span
of length zero between spans i and i + 1 of B. We then replace the rule A→ B C with
A→ B′ C, where the new span of B′ combines with C immediately to the left of C’s first
span. Because the new nonterminal B′ has fan-out one greater than B, this grammar
transformation can increase a grammar’s fan-out by at most one.

By limiting ourselves to binary LCFRS grammars, we do not necessarily restrict the
power of our results. Any LCFRS with arbitrary rank (i.e., with an arbitrary number
of nonterminals in the right-hand side) can be converted to a binary LCFRS (with
potentially a larger fan-out). See discussion in Section 7.6.

Example 1
Consider the phenomenon of cross-serial dependencies that exists in certain languages.
It has been used in the past (Shieber 1985) to argue that Swiss–German is not context-
free. One can show that there is a homomorphism between Swiss–German and the
alphabet {a, b, c, d} such that the image of the homomorphism intersected with the
regular language a∗b∗c∗d∗ gives the language L = {ambncmdn | m, n ≥ 1}. Because L is
not context-free, this implies that Swiss-German is not context-free, because context-free
languages are closed under intersection with regular languages.

Tree-adjoining grammars, on the other hand, are mildly context-sensitive for-
malisms that can handle such cross-serial dependencies in languages (where the as

B

C

A

B′

C

A

Figure 2
Conversion of a dual-initial rule to a single-initial rule.

426

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

are aligned with cs and the bs are aligned with the ds). For example, a tree-adjoining
grammar for generating L would include the following initial and auxiliary trees (nodes
marked by an asterisk are nodes where adjunction is not allowed):

Initial Auxiliary
S

A

ε

A∗

B

A∗

A∗

A

cA∗

a

B∗

B

dB∗

b

This TAG corresponds to the following LCFRS:

S→ g1[A] g1(〈β1, β2〉) = 〈β1β2〉

A→ g4[B] g4(〈β1, β2〉) = 〈β1, β2〉

A→ g2[A] g2(〈β1, β2〉) = 〈aβ1, cβ2〉

B→ g5[B] g5(〈β1, β2〉) = 〈bβ1, dβ2〉

A→ g3[] g3() = 〈ε, ε〉

B→ g6[] g6() = 〈ε, ε〉

Here we have one unary LCFRS rule for the initial tree, one unary rule for each ad-
junction tree, and one null-ary rule for each nonterminal producing a tuple of empty
strings in order to represent TAG tree nodes at which no adjunction occurs. The LCFRS
shown here does not satisfy our normal form requiring each rule to have either two
nonterminals on the right-hand side with no terminals in the composition function,
or zero nonterminals with a composition function returning fixed strings of terminals.
However, it can be converted to such a form through a process analogous to converting
a CFG to Chomsky Normal Form. For adjunction trees, the two strings returned by the
composition function correspond the the material to the left and right of the foot node.
The composition function merges terminals at the leaves of the adjunction tree with
material produced by internal nodes of the tree at which adjunction may occur.

In general, binary LCFRS are more expressive than TAGs because they can have
nonterminals with fan-out greater than 2, and because they can interleave the argu-
ments of the composition function in any order.

3. A Sketch of the Algorithm

Our algorithm for LCFRS string recognition is inspired by the algorithm of Valiant
(1975). It introduces a few important novelties that make it possible to use matrix
multiplication for the goal of LCFRS recognition.

The algorithm relies on the observation that it is possible to construct a matrix T
with a specific non-associative multiplication and addition operator such that multiply-
ing T by itself k times on the left or on the right yields k-step derivations for a given
string. The row and column indices of the matrix together assemble a set of spans in
the string (the fan-out of the grammar determines the number of spans). Each cell in
the matrix keeps track of the nonterminals that can dominate these spans. Therefore,
computing the transitive closure of this matrix yields in each matrix cell the set of

427

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

nonterminals that can dominate the assembled indices’ spans for the specific string at
hand.

There are several key differences between Valiant’s algorithm and our algorithm.
Valiant’s algorithm has a rather simple matrix-indexing scheme for the matrix: The
rows correspond to the left endpoints of a span and the columns correspond to its right
endpoints. Our matrix indexing scheme can mix both left endpoints and right endpoints
at either the rows or the columns. This is necessary because with LCFRS, spans for the
right-hand side of an LCFRS rule can combine in various ways into a new set of spans
for the left-hand side.

In addition, our indexing scheme is “over-complete.” This means that different cells
in the matrix T (or its matrix powers) are equivalent and should consist of the same
nonterminals. The reason we need such an over-complete scheme is again because of
the possible ways spans of a right-hand side can combine in an LCFRS. To address this
over-completeness, we introduce into the multiplication operator a “copy operation”
that copies nonterminals between cells in order to maintain the same set of nonterminals
in equivalent cells.

To give a preliminary example, consider the tree-adjoining grammar rule shown
in Figure 1. We consider an application of the rule with the endpoints of each span
instantiated as shown in Figure 3. With our algorithm, this operation will translate
into the following sequence of matrix transformations. We will start with the following
matrices, T1 and T2:

T1 (2, 7)

(1, 8) {. . . , B, . . .}

T2 (4, 5)

(2, 7) {. . . , C, . . .}

.

For T1, for example, the fact that B appears for the pair of addresses (1, 8) (for row)
and (2, 7) for column denotes that B spans the constituents (1, 2) and (7, 8) in the string

B

C

A

β1 β2

γ1 γ2

β1γ1 γ2β2

i j k ` m n
1 2 4 5 7 8

[C, j, k, `, m]
[B, i, j, m, n]
[A, i, k, `, n]

Figure 3
A demonstration of a parsing step for the combination of spans in Figure 1. During parsing, the
endpoints of each span are instantiated with indices into the string. The variables for these
indices shown on the left correspond to the logical induction rule on the right. The specific
choice of indices shown at the bottom is used in our matrix multiplication example in Section 3.

428

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

(this is assumed to be true—in practice, it is the result of a previous step of matrix
multiplication). Similarly, with T2, C spans the constituents (2, 4) and (5, 7).

Note that (2, 7) are the two positions in the string where B and C meet, and that
because B and C share these two endpoints, they can combine to form A. In the matrix
representation, (2, 7) appears as the column address of B and as the row address of C,
meaning that B and C appear in cells that are combined during matrix multiplication.
The result of multiplying T1 by T2 is the following:

T1T2 (4, 5)

(1, 8) {. . . , A, . . .}

.

Now A appears in the cell that corresponds to the spans (1, 4) and (5, 8). This is the
result of merging the spans (1, 2) with (2, 4) (left span of B and left span of C) into (1, 4)
and the merging of the spans (5, 7) and (7, 8) (right span of C and right span of B) into
(5, 8). Finally, an additional copying operation will lead to the following matrix:

T3 (5, 8)

(1, 4) {. . . , A, . . .}

.

Here, we copy the nonterminal A from the address with the row (1, 8) and column
(4, 5) into the address with the row (1, 4) and column (5, 8). Both of these addresses cor-
respond to the same spans (1, 4) and (5, 8). Note that matrix row and column addresses
can mix both starting points of spans and ending points of spans.

4. A Matrix Multiplication Algorithm for LCFRS

We turn next to give a description of the algorithm. Our description is constructed as
follows:r In Section 4.1 we describe the basic matrix structure used for LCFRS

recognition. This construction depends on a parameter d, the contact rank,
which is a function of the underlying LCFRS grammar we parse with. We
also describe how to create a seed matrix, for which we need to compute
the transitive closure.

429

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

k by analogy to the variables in the CKY parsing algorithm, and also because we
use the sequences as addresses for matrix rows and columns. For i, j ∈ N(d), we de-
fine m(i, j) to be the set of f ′ = 1

2 |i ∪ j| pairs {(`1, `2), (`3, `4), . . . , (`2f ′−1, `2f ′)} such that
`k < `k+1 for k ∈ [2f ′ − 1] and (`k, 0) ∈ i ∪ j for k ∈ [2f ′]. This means that m(i, j) takes
as input the two sequences in matrix indices, merges them, sorts them, then divides
this sorted list into a set of f ′ consecutive pairs. Whenever min j ≤ min i, m(i, j) is
undefined. The interpretation of this is that `1 should always belong to i and not j.
See more details in Section 4.2. In addition, if any element of i or j is marked, m(i, j) is
undefined.

We define an order< on elements i and j of N(d) by first sorting the sequences i and
j and then comparing i and j lexicographically (ignoring the bits). This ensures that i < j
if min i < min j. We assume that the rows and columns of our matrices are arranged in
this order. For the rest of the discussion, we assume that d is a constant, and refer to T(d)
as T and N(d) as N.

We also define the set of triples M as the following Cartesian product:

M = (L ∪ { , , , , , })×N ×N

where , , , , , and are six special pre-defined symbols.2 Each cell Tij in T is a set
such that Tij ⊂M.

The intuition behind matrices of the type of T (meaning T and, as we see later,
products of T with itself, or its transitive closure) is that each cell indexed by (i, j)
in such a matrix consists of all nonterminals that can be generated by the grammar
when parsing a sentence such that these nonterminals span the constituents m(i, j)
(whenever m(i, j) is defined). Our normal form for LCFRS ensures that spans of a
nonterminal are never re-ordered, meaning that it is not necessary to retain informa-
tion about which indices demarcate which components of the nonterminal, because
one can sort the indices and take the first two indices as delimiting the first span,
the second two indices as delimiting the second span, and so on. The two additional
N elements in each triplet in a cell are actually just copies of the row and column
indices of that cell. As such, they are identical for all triplets in that cell. The ad-
ditional , , , , , symbols are symbols that indicate to the matrix multipli-
cation operator that a “copying operation” should happen between equivalent cells
(Section 4.2).

Figure 4 gives an algorithm to seed the initial matrix T. Entries added in Step 2
of the algorithm correspond to entries in the LCFRS parsing chart that can be derived
immediately from terminals in the string. Entries added in Step 3 of the algorithm do not
depend on the input string or input grammar, but rather initialize elements used in the
copy operation described in detail in Section 4.2. Because the algorithm only initializes
entries with i < j, the matrix T is guaranteed to be upper triangular, a fact which we will
take advantage of in Section 4.2.

4.1.1 Configurations. Our matrix representation requires that a nonterminal appears
in more than one equivalent cell in the matrix, and the specific set of cells re-
quired depends on the specific patterns in which spans are combined in the LCFRS

2 The symbols will be used for “copying commands:” (1) ”from row” (); (2) “from column” (); (3) “to
row” (); (4) “to column” (); (5) “unmark row” (); (6) “unmark column” ().

431

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

Figure 4
An algorithm for computing the seed matrix T. The function remove(v, x) takes a sequence of
integers v and removes x from it, if it is in there. The function insert(v, x) takes a sequence of
integers and adds x to it.

grammar. We now present a precise description of these cells by defining the
configuration of a nonterminal in a rule. The concept of a configuration is designed
to represent which endpoints of spans of the rule’s right-hand side (r.h.s.) nontermi-
nals B and C meet one another to produce larger spans, and which endpoints, on
the other hand, become endpoints of spans of the left-hand side (l.h.s.) nontermi-
nal A.

For each of the three nonterminals involved in a rule, the configuration is the set
of endpoints in the row address of the nonterminal’s matrix cell. To make this precise,
for a nonterminal B with fan-out ϕ(B), we number the endpoints of spans with integers
in the range 1 to 2ϕ(B). In a rule A[α]→ B[β] C[γ], the configuration of B is the subset
of [2ϕ(B)] of endpoints of B that do not combine with endpoints of C in order to form
a single span of A. The endpoints will form the row address for B. Formally, let β =
〈β1, . . . , βϕ(B)〉, and let α = 〈α1,1 · · ·α1,n1 , . . . ,αϕ(A),1 · · ·αϕ(A),nϕ(A)

〉. Then the set of non-
combination endpoints of B is defined as:

config2(r) = {2i | βi = αj,nj for some j} ∪ {2i− 1 | βi = αj,1 for some j}

432

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

where the first set defines right ends of spans of B that are right ends of some span of A,
and the second set defines left ends of spans of B that are left ends of some span of A.
For example, given that CFG rules have the form

r = A[〈β1γ1〉]→ B[〈β1〉] C[〈γ1〉]

the configuration config2(r) is {1} because, of B’s two endpoints, only the first is also an
endpoint of A. For the TAG rule t shown in Figure 1, config2(t) = {1, 4} because, of B’s
four endpoints, the first and fourth are also endpoints of A.

For the second r.h.s. nonterminal of a rule r, the configuration consists of the set of
endpoints in the row address for C, which are the endpoints that do combine with B:

config3(r) = {2i | γi = αj,k for some 1 ≤ k < nj} ∪ {2i− 1 | γi = αj,k for some 1 < k ≤ nj}

where the first set defines right ends of spans of C that are internal to some span of A,
and the second set defines left ends of spans of C that are internal to some span of A. For
example, any CFG rule r has configuration, config3(r) = {1}, because the first endpoint
of C is internal to A. For the TAG rule t shown in Figure 1, config3(t) = {1, 4} because,
of C’s four endpoints, the first and fourth are internal A.

For the l.h.s. nonterminal A of the rule, matrix multiplication will produce an entry
in the matrix cell where the row address corresponds to the endpoints from B, and the
column address corresponds to the endpoints from C. To capture this partition of the
endpoints of A, we define

config1(r) = {2i | αi,ni = βj for some j} ∪ {2i− 1 | αi,1 = βj for some j}

where the first set defines right ends of spans of A that are formed from B, and the
second set defines left ends of spans of A that are formed from B. For example, any
CFG rule r has configuration, config1(r) = {1}, because only the first endpoint of A is
derived from B. For the TAG rule t shown in Figure 1, config1(t) = {1, 4} because, of A’s
four endpoints, the first and fourth are derived from B.

4.2 Definition of Multiplication Operator

We need to define a multiplication operator⊗ between a pair of elements R, S ⊂M. Such
a multiplication operator induces multiplication between matrices of the type of T, just
by defining for two such matrices, T1 and T2, a new matrix of the same size T1 ⊗ T2 such
that:

[T1 ⊗ T2]ij =
⋃
k∈N

(
[T1]ik ⊗ [T2]kj

)
(5)

We also use the ∪ symbol to denote coordinate-wise union of cells in the matrices it
operates on.

The operator⊗we define is not associative, but it is distributive over ∪. This means
that for R, S1, S2 ⊂M it holds that:

R⊗ (S1 ∪ S2) = (R⊗ S1) ∪ (R⊗ S2)

433

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

In addition, whenever R = ∅, then for any S, R⊗ S = S⊗ R = ∅. This property
maintains the upper-triangularity of the transitive closure of T.

Figure 5 gives the algorithm for multiplying two elements of the matrix. The algo-
rithm is composed of two components. The first component (Step 2 in Figure 5) adds
nonterminals, for example, A, to cell (i, j), if there is some B and C in (i, k) and (k, j),
respectively, such that there exists a rule A→ B C and the span endpoints denoted by k
are the points where the rule specifies that spans of B and C should meet.

In order to make this first component valid, we have to make sure that k can
indeed serve as a concatenation point for (i, j). Step 2 verifies this using the concept
of configurations defined earlier. To apply a rule r : A[α]→ B[β] C[γ], we must have an
entry for (B, i, k) in cell (i, k), where i is a set of indices corresponding to the endpoints
of B selected by config2(r) and k is a set of indices corresponding to the endpoints of
B selected by [2ϕ(B)] \ config2(r). This condition is enforced by Step 2c of Figure 5.
Similarly, we must have an entry for (C, k, j) in cell (k, j), where k is a set of indices
corresponding to the endpoints of C selected by config3(r) and j is a set of indices
corresponding to the endpoints of C selected by [2ϕ(C)] \ config3(r). This is enforced
by Step 2d. Finally, the spans defined by B and C must not overlap in the string. To

Figure 5
An algorithm for the product of two matrix elements.

434

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

guarantee that the spans do not overlap, we sort the endpoints of A and check that each
position in the sorted list is derived from either B or C as required by the configuration
of A in r. This check is performed in Step 2e of Figure 5.

Given that T is initialized to be upper-triangular, the properties of matrix multipli-
cation guarantee that all matrix powers of T are upper-triangular. We now proceed to
show that upper-triangular matrices are sufficient in terms of the grammar. In particular,
we need to show the following lemma:

Lemma 1
For each application of a single-initial rule A→ B C, it is possible to create an entry for
A by multiplying two upper-triangular matrices T1 and T2, where T1 contains an entry
for B, and T2 contains an entry for C.

Proof
A nonterminal B appears in a cell above the diagonal if its row address is smaller than
its column address, which in turn occurs if the leftmost endpoint of B appears in the row
address rather than the column address. The row address for B contains the endpoints
of B that are also endpoints of A. Our normal form for LCFRS rules ensures that the
leftmost endpoint of B forms the leftmost endpoint of A. Therefore the leftmost endpoint
of B is in B’s row address, and B is above the diagonal.

The row address of nonterminal C in T2 must contain the endpoints of C that com-
bine with endpoints of B. For single-initial rules, these endpoints include the leftmost
endpoint of C, guaranteeing that C appears above the diagonal.

Because each instance of A can be produced by combining elements of T1 and T2
that are above the diagonal, each instance of A can be produced by multiplying two
upper-triangular matrices. �

4.2.1 Copy Operations. The first component of the algorithm is sound, but not complete.
If we were to use just this component in the algorithm, then we would obtain in each
cell (i, j) of the transitive closure of T a subset of the possible nonterminals that can span
m(i, j). The reason this happens is that our addressing scheme is “over-complete.” This
means that any pair of addresses (i, j) and (k, `) are equivalent if m(i, j) = m(k, `).

We need to ensure that the transitive closure, using ⊗, propagates, or copies, non-
terminals from one cell to its equivalents. This is done by the second component of the
algorithm, in Steps 3–6. The algorithm does this kind of copying by using a set of six
special “copy” symbols, { , , , , , }. These symbols copy nonterminals from one
cell to the other in multiple stages.

Suppose that we need to copy a nonterminal from cell (i, j) to cell (k, `), where
m(i, j) = m(k, `), indicating that the two cells describe the same set of indices in the input
string. We must move the indices in i ∩ ` from the row address to the column address,
and we must move the indices in j ∩ k from the column address to the row address. We
will move one index at a time, adding nonterminals to intermediate cells along the way.

We now illustrate how our operations move a single index from a row address
to a column address (moving from column to row is similar). Let x indicate the
index we wish to move, meaning that we wish to copy a nonterminal in cell (i, j) to
cell (remove(i, x), insert(j, x)). Because we want our overall parsing algorithm to take
advantage of fast matrix multiplication, we accomplish the copy operations through
a sequence of three matrix multiplications, as shown in Figure 6. The first multipli-
cation involves the nonterminal A in cell (i, j) in the left matrix, and a symbol in
cell (j, insert(j, x̂)) in the right matrix, resulting in a matrix with nonterminal A in cell

435

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

T1 (2, 7)

(1, 8) {. . . , B, . . .}

T2 (2, 7, 8̂)

(2, 7) {. . . , , . . .}

T3 (1, 8)

(1) {. . . , , . . .}

T1T2 (2, 7, 8̂)

(1, 8) {. . . , B, . . .}

T3T1T2 (2, 7, 8̂)

(1) {. . . , B, . . .}

T4 (2, 7, 8)

(2, 7, 8̂) {. . . , , . . .}

T3T1T2T4 (2, 7, 8)

(1) {. . . , B, . . .}

Figure 6
An example of moving an index from the row address to the column address. Nonterminal B in
T1 is copied from cell (1, 8), (2, 7) to cell (1), (2, 7, 8) through three matrix multiplications. First,
multiplying by T2 on the right yields T1T2, shown in the right of the second row. Multiplying
this matrix by T3 on the left yields T1T2T3. Finally, multiplying this matrix by T4 on the right
yields T1T2T3T4, shown in the bottom row.

436

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

(i, insert(j, x̂)). This intermediate result is redundant in the sense that index x appears in
the row and index x̂ appears in the column address. To remove x from the row address,
we multiply on the left with a matrix containing the symbol in cell (remove(i, x), i),
resulting in a matrix with nonterminal A in cell (remove(i, x), insert(j, x̂)). Finally, we
multiply by a third matrix to replace the marked index x̂ with the unmarked index x.
This is done by multiplying on the right with a matrix containing the symbol in cell
(insert(j, x̂), insert(j, x)).

The key idea behind this three-step process is to copy elements from one cell to
another through intermediate cells. In matrix multiplication, only cells that share a row
or a column index actually interact when doing multiplication. Therefore, in order to
copy a nonterminal from (i, j) to another cell which represents the same set of spans, we
have to copy it through cells such as (i, insert(j, x̂)) that share the index i with (i, j).

In order to guarantee that our operations copy nonterminals only into cells with
equivalent addresses, the seed matrix contains the special symbol only in cells (j, k)
such that k = insert(j, x̂) for some x. When in cell (j, k) combines with a nonterminal A
in cell (i, j), the result contains A only if x ∈ i, guaranteeing that the index added to the
column address was originally present in the row address. In addition, the condition
that i contains only unmarked indices (in the multiplication operator) and that the
condition j contains only unmarked indices (in the initialization of the seed matrix)
guarantee that only one index is marked in the address of any non-empty matrix cell.

Similar conditions apply to the operation. The seed matrix contains only in cells
(i, k) such that i = remove(k, x) for some x, guaranteeing that the operation only removes
one index at a time. Furthermore, when in cell (i, k) combines with a nonterminal A in
cell (k, j), the result contains A only if x̂ ∈ j. This guarantees that the new entry includes
all the original indices, meaning that any index we remove from the row address is still
present as a marked index in the column address.

The operator removes the mark on index x̂ in the column address, completing
the entire copying process. The condition |i ∪ j| = ϕ(A) ensures that the removal of the
mark from x̂ does not take place until after x has been removed from the row address.

Taken together, these conditions ensure that after a sequence of one , one , and
one , A is copied into all cells having the form (remove(i, x), insert(j, x)) for some x.

To move an index from the column address to the row address, we use one
operation followed by one operation and one operation. The conditions on these
three special symbols are analogous to the conditions on , , and outlined earlier,
and ensure that we copy from cell (i, j) to cells of the form (insert(i, x), remove(j, x)) for
some x.

We now show that matrix powers of the upper-triangular seed matrix T copy
nonterminals between all equivalent cells above the diagonal.

Lemma 2
Let (i, j) and (k, `) be unmarked matrix addresses, in a seed matrix T indexed by row
and column addresses from N(d) where d > min{|i|, |j|} and d > min{|k|, |`|}. Assume
that min i = min k and either k = remove(i, x) and ` = insert(j, x) for some x, or k =
insert(i, x) and ` = remove(j, x) for some x. If A appears in cell (i, j) of T(n), then A appears
in cell (k, `) of T(n+3). Furthermore, the copy operations do not introduce nonterminals
into any other cells with unmarked addresses.

Proof
The condition on d guarantees that we can form row and column addresses long
enough to hold the redundant representations with one address shared between row

437

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

and column. This condition is only relevant in the case where i, j, k, and ` are all of
the same length; in this case we need to construct temporary indices with length one
greater, as in the example in Figure 6.

A can be added to cell (k, `) through a sequence of three matrix multiplications
by combining with symbols , , and or with , , and . Because T(n) is upper
triangular, min i = min i ∪ j, meaning that A’s leftmost index is in its row address.
The condition min i = min k implies that we are not moving this leftmost index from
row to column. The addresses of the three copy symbols required are all formed by
adding or removing x or x̂ to the row and column addresses (i, j); because the left-
most index of i is not modified, the copy symbols that are required are all above the
diagonal, and are present in the seed matrix T. Therefore, A appears in cell (k, `) of
T(n+3).

To see that nonterminals are not introduced into any other cells, observe that and
are the only symbols that introduce nonterminals into unmarked addresses. They can

only apply when a marked index is present, and when the total number indices is 2ϕ(A).
This can only occur after either has introduced a marked index and removed the
corresponding unmarked index, or has introduced a marked index and removed
the corresponding unmarked index. �

Putting together sequences of these operations to move indices, we arrive at the
following lemma:

Lemma 3
Let (i, j) and (k, `) be matrix addresses such that m(i, j) = m(k, `), in a seed matrix
T indexed by row and column addresses from N(d) where d > min{|i|, |j|} and d >
min{|k|, |`|}. Then, for any nonterminal A in cell (i, j) in T(n), A will also appear in cell
(k, `) of the power matrix T(n+6d).

Proof
Nonterminal A can be copied through a series of intermediate cells by moving one index
at a time from i to `, and from j to k. We begin by moving indices from either the row
address i to the column address if |i| > |j|, or from the column address j to the row
address otherwise. We must move up to d indices from row to column, and d indices
from column to row. Each move takes three matrix multiplications, for a total of 6d
matrix multiplications. �

4.3 Determining the Contact Rank

The dimensions of the matrix T (and its transitive closure) are |N| × |N|. The set N
is of size O(nd), where d is a function of the grammar. When a given pair of cells
in two matrices of the type of T are multiplied, we are essentially combining end-
points from the first multiplicand column address with endpoints from the second
multiplicand row address. As such, we have to ensure that d allows us to generate
all possible sequences of endpoints that could potentially combine with a given fixed
LCFRS.

We refer to the endpoints at which a rule’s r.h.s. nonterminals meet as combining
points. For example, in the simple case of a CFG with a rule S→ NP VP, there is one
combining point where NP and VP meet. For the TAG rule shown in Figure 1, there
are two combining points where nonterminals B and C meet. For each rule r in the
LCFRS grammar, we must be able to access the combining points as row and column
addresses in order to apply the rule with matrix multiplication. Thus, d must be at least

438

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

the maximum number of combining points of any rule in the grammar. The number of
combining points δ(r) for a rule r can be computed by comparing the number of spans
on the l.h.s. and r.h.s. of the rule:

δ(A[α]→ B[β] C[γ]) = ϕ(C) +ϕ(B)−ϕ(A) (6)

Note that δ(r) depends only on the skeleton of r (see Section 2), and therefore it can
be denoted by δ(A→ B C).3

For each nonterminal on the r.h.s. of the rule, the address of its matrix cell consists of
the combination points in one dimension (either row or column), and the other points in
the other dimension of the matrix. For r.h.s. nonterminal B in rule A→ B C, the number
of non-combination endpoints is:

2ϕ(B)− δ(A→ B C)

Thus, taking the maximum size over all addresses in the grammar, the largest
addresses needed are of length:

d = max
A→B C∈R

max

 δ(A→ B C),
2ϕ(B)− δ(A→ B C),
2ϕ(C)− δ(A→ B C)

We call this number the contact rank of the grammar. As examples, the contact rank

of a CFG is 1, while the contact rank of a TAG is 2. A simple algebraic manipulation
shows that the contact rank can be expressed as follows:

d = max
A→B C∈R

max

 ϕ(A) +ϕ(B)−ϕ(C),
ϕ(A)−ϕ(B) +ϕ(C),
−ϕ(A) +ϕ(B) +ϕ(C)

We require our grammars to be in single-initial form, as described in Section 2.

Because the process of converting an LCFRS grammar to single-initial form increases
its fan-out by at most one, the contact rank is also increased by at most one.

4.4 Balanced Grammars

We define the configuration set of a nonterminal A to the the set of all configurations
(Section 4.1.1) in which A appears in a grammar rule, including both appearances in the

3 To see that Equation (6) is true, consider that if we take ϕ(B) +ϕ(C) variables from the spans of the r.h.s.
and try to combine them together toϕ(A) sequences per span of the l.h.s., we will getϕ(B) +ϕ(C)−ϕ(A)
points where variables “touch.” If ϕ(A) = 1, then this is clearly true. For ϕ(A) > 1, consider that for each
span, we “lose” one contact point.

439

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

r.h.s. and as the l.h.s.

config(a) =

 ⋃
r:lhs(r)=A

{config1(r)}

 ∪
 ⋃

r:rhs1(r)=A

{config2(r)}

 ∪
 ⋃

r:rhs2(r)=A

{config3(r)}

For example, in a CFG, the configuration set of any nonterminal is {{1}}, because,
as shown in Section 4.1.1, nonterminals are always used in the unique configuration
{1}. For TAG, the configuration set of any nonterminal is {{1, 4}} because, as in CFG,
nonterminals are always used in the same configuration.

A configuration c of nonterminal B is balanced if |c| = ϕ(B). This means that the
number of contact points and non-contact points are the same.

The contact rank d defined in the previous section is the maximum size of any
configuration of any nonterminal in any rule. For a given nonterminal B, if ϕ(B) < d,
then we can copy entries between equivalent cells. To see this, suppose that we are
moving from cell (i, j) to (k, `) where the length of i is greater than the length of j. As
long as we move the first index from row to column, rather than from column to row,
the intermediate results will require addresses no longer than the length of i.

However, if ϕ(B) = d, then every configuration in which B appears is balanced:

∀c ∈ config(B) |c| = ϕ(B)

If ϕ(B) = d and B appears in more than one configuration, that is, |config(B)| > 1, it is
impossible to copy entries for B between the cells using a matrix of size (2n)d. This is
because we cannot move indices from row to column or from column to row without
creating an intermediate row or column address of length greater than d as a result of
the first or operation.

We define a balanced grammar to be a grammar containing a nonterminal B such
that ϕ(B) = d, and |config(B)| > 1. As examples, a CFG is not balanced because, al-
though for each nonterminal B, ϕ(B) = d = 1, the number of configurations |config(B)|
is 1. Similarly, TAG is not balanced, because each nonterminal has only one configura-
tion. ITGs are balanced, because, for each nonterminal B, ϕ(B) = d = 2, and nontermi-
nals can be used in two configurations, corresponding to straight and inverted rules.

The following condition will determine which of two alternative methods we use
for the top level of our parsing algorithm.

Condition 4.1
Unbalanced Grammar Condition There is no nonterminal B such that ϕ(B) = d and
|config(B)| > 1.

This condition guarantees that we can move nonterminals as necessary with matrix
multiplication:

Lemma 4
Let (i, j) and (k, `) be matrix addresses such that m(i, j) = m(k, `). Under Condition 4.1,
for any nonterminal A with |config(A)| > 1 that appears in cell (i, j) in T(n), A will also
appear in cell (k, `) of the power matrix T(n+6d).

440

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

Proof
The number of A’s endpoints is 2ϕ(A) = |i|+ |j| = |k|+ |`|. If the grammar is not bal-
anced, then d > ϕ(A), and therefore d > min{|i|, |j|} and d > min{|k|, |`|}. By Lemma 3,
A will appear in cell (k, `) of the power matrix T(n+6d). �

4.5 Computing the Transitive Closure of T

The transitive closure T+ of a matrix T is the result of repeated applications of the matrix
multiplication operator described in Equation (5). With T being the seed matrix, we
define

T+ = T(1) ∪ T(2) ∪ · · ·

where T(i) is defined recursively as:

T(1) = T

T(i) =
i−1⋃
j=1

(
T(j) ⊗ T(i−j))

Under Condition 4.1, one can show that given an LCFRS derivation tree t
over the input string, each node in t must appear in the transitive closure ma-
trix T+. Specifically, for each node in t representing nonterminal A spanning end-
points {(`1, `2), (`3, `4), . . . , (`2ϕ(A)−1, `2ϕ(A))}, at each cell T+

i,j in the matrix such that
m(i, j) = {(`1, `2), (`3, `4), . . . , (`2ϕ(A)−1, `2ϕ(A))}, contains A. This leads to the following
result:

Lemma 5
Under Condition 4.1, the transitive closure of T is such that [T+]ij represents the set of
nonterminals that are derivable for the given spans in m(i, j).

Proof
The proof is by induction over the length of the LCFRS derivations. By Lemma 1,
derivations consisting of a single rule A[α]→ B[β] C[γ] produce A ∈ T(2) for i and
j corresponding the non-combination points of B and C. For all other i and j such
that m(i, j) = {(`1, `2), (`3, `4), . . . , (`2ϕ(A)−1, `2ϕ(A))}, an entry is produced in T(6d+2)

ij by

Lemma 4. By induction, Ts(6d+2) contains entries for all LCFRS derivations of depth s,
and T+ contains entries for all LCFRS derivations of any length.

In the other direction, we need to show that all entries A in T+ correspond to a
valid LCFRS derivation of nonterminal A spanning endpoints m(i, j). This can be shown
by induction over the number of matrix multiplications. During each multiplication,
entries created in the product matrix correspond either to the application of an LCFRS
rule with l.h.s. A, or to the movement of an index between row and column address for
a previously recognized instance of A. �

The transitive closure still yields a useful result, even when Condition 4.1 does
not hold. To show how it is useful, we need to define the “copying” operator, Π,

441

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

GB (2, 7)

(1, 8) 1

HC (4, 5)

(2, 7) 1

IBC = GBHC (4, 5)

(1, 8) 1

Figure 7
Reduction of transitive closure to Boolean matrix multiplication. Boolean matrix operations
implementing the matrix multiplication example of Section 3.

where r ranges over R. The size of Gr and Hr is N ×N. If r = A[α]→ B[β]C[γ], we set
[Gr]ik to be 1 if the nonterminal B appears in [T1]ik and B, i, and k meet the conditions of
Step 2c of Figure 5. Similarly, we set [Hr]kj to be 1 if the nonterminal C appears in [T2]kj
and C, k, and j meet the conditions of Step 2d. All other cells, in both Gr and Hr, are set
to 0. Note that Gr and Hr for all r ∈ R are upper triangular Boolean matrices.

In addition, we create 2|L| pairs of matrices, GA and HA, where A ranges over the set
of nonterminals L. We set [GA]ik to be 1 if the nonterminal A appears in [T1]ik, regardless
the conditions of Step 2c of Figure 5. Similarly, we set [HA]kj to be 1 if the nonterminal A
appears in [T2]kj, regardless of the conditions of Step 2d. All other cells, in both GA and
HA, are set to 0. Again, GA and HA for all A ∈ L are upper triangular Boolean matrices.

Finally, we create six additional matrices, for each element in the set { , ,
, , , }. These matrices indicate the positions in which each symbol appears in the

seed matrix T defined in Figure 4:

1. G , for which [G]ij = 1 only if (, i, j) ∈ Tij.

2. H , for which [H]ij = 1 only if (, i, j) ∈ Tij.

3. H , for which [H]ij = 1 only if (, i, j) ∈ Tij.

4. G , for which [G]ij = 1 only if (, i, j) ∈ Tij.

5. H , for which [H]ij = 1 only if (, i, j) ∈ Tij.

6. G , for which [G]ij = 1 only if (, i, j) ∈ Tij.

443

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

Now, for each rule r ∈ R, we compute the matrix Ir = GrHr. The total number of
matrix multiplications required is |R|, which is constant in n. Now, T3 can be obtained
by multiplying these matrices, and applying the conditions of Figure 5:

1. For each A ∈ L, for each rule r = A→ B C, check whether [Ir]ij = 1. If Step
2e is satisfied for A, i, and j, then add (A, i, j) to [T3]ij.

2. For each A ∈ L, compute JA = GAH . For each (i, j), add A to [T3]ij if x̂ ∈ j
and x ∈ i for some x, and [JA]ij = 1.

3. For each A ∈ L, compute JA = G HA. For each (i, j), add A to [T3]ij x̂ ∈ j
and x 6∈ i and for some x, and [JA]ij = 1.

4. For each A ∈ L, compute JA = GAH . For each (i, j), add A to [T3]ij if
|i ∪ j| = 2ϕ(A), and [JA]ij = 1.

5. For each A ∈ L, compute JA = G HA. For each (i, j), add A to [T3]ij if x̂ ∈ i
and x ∈ j for some x, and [JA]ij = 1.

6. For each A ∈ L, compute JA = GAH . For each (i, j), add A to [T3]ij x̂ ∈ i
and x 6∈ j for some x, and [JA]ij = 1.

7. For each A ∈ L, compute JA = G HA. For each (i, j), add A to [T3]ij if
|i ∪ j| = 2ϕ(A), and [JA]ij = 1.

Lemma 7
The matrix product operation for two matrices of size (2n)d × (2n)d can be computed in
time O(nωd), if two m×m Boolean matrices can be multiplied in time O(mω).

Proof
The result of the algorithm above is guaranteed to be the same as the result of matrix
multiplication using the ⊗ operation of Figure 5 because it considers all combinations
of i, j, and k and all pairs of nonterminals and copy symbols, and applies the same set of
conditions. This is possible because each of the conditions in Figure 5 applies either to a
pair (i, k) or (k, j), in which case we apply the condition to input matrices to the Boolean
matrix multiplication, or to the pair (i, j), in which case we apply the condition to the
result of the Boolean matrix multiplication. Crucially, no condition in Figure 5 involves
i, j, and k simultaneously.

The Boolean matrix algorithm takes time O(nωd) for each matrix multiplication,
while the pre- and post-processing steps for each matrix multiplication take only O(n2d).
The number of Boolean matrix multiplications depends on the grammar, but is constant
with respect to n, yielding an overall runtime of O(nωd). �

The final parsing algorithm is given in Figure 8. It works by computing the seed
matrix T, and then finding its transitive closure. Finally, it checks whether the start
symbol appears in a cell with an address that spans the whole string. If so, the string is
in the language of the grammar.

5. Computational Complexity Analysis

As mentioned in the previous section, the algorithm in Figure 8 finds the transitive
closure of a matrix under our definition of matrix multiplication. The operations ∪
and ⊗ used in our matrix multiplication distribute. The ⊗ operator takes the cross

444

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

Figure 8
Algorithm for recognizing binary linear context-free rewriting systems when Condition 4.1 is
satisfied by the LCFRS.

product of two sets, and applies a filtering condition to the results; the fact that
(x⊗ y) ∪ (x⊗ z) = x⊗ (y ∪ x) follows from the fact that it does not matter whether we
take the cross product of the union, or the union of the cross product. However, unlike
in the case of standard matrix multiplication, our ⊗ operation is not associative. In
general, x⊗ (y⊗ z) 6= (x⊗ y)⊗ z, because the combination of y and z may be allowed
by the LCFRS grammar, whereas the combination of x and y is not.

Lemma 8
The transitive closure of a matrix of size (2n)d × (2n)d can be computed in time O(nωd),
if 2 < ω < 3, and two m×m Boolean matrices can be multiplied in time O(mω).

Proof
We can use the algorithm of Valiant for finding the closure of upper triangular matrices
under distributive, non-associative matrix multiplication. Because we can perform one
matrix product in time O(nωd) by Lemma 7, the algorithm of Valiant (1975, Theorem 2)
can be used to compute transitive closure also in time O(nωd). �

When Valiant’s paper was published, the best well-known algorithm known for
such multiplication was Strassen’s algorithm, with M(n) = O(n2.8704). Since then, it has
been found that M(n) = O(nω) for ω < 2.38 (see also Section 1). There are ongoing
attempts to further reduceω, or find lower bounds for M(n).

The algorithm for transitive closure gives one of the main results of this article:

Theorem 1
A single-initial binary LCFRS meeting Condition 4.1 can be parsed in time O(nωd),
where d is the contact rank of the grammar, 2 < ω < 3, and two m×m Boolean matrices
can be multiplied in time O(mω).

Proof
By Lemma 8, Step 2 of the algorithm in Figure 8 takes O(nωd). By Lemma 5, the result
of Step 2 gives all nonterminals that are derivable for the given spans in m(i, j). �

445

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

Parsing a binary LCFRS rule with standard chart parsing techniques requires time
O(nϕ(A)+ϕ(B)+ϕ(C)). Let p = maxA→B C∈R (ϕ(A) +ϕ(B) +ϕ(C)). The worst-case com-
plexity of LCFRS chart parsing techniques is O(np). We can now ask the question: In
which case the algorithm in Figure 8 is asymptotically more efficient than standard chart
parsing techniques with respect to n? That is, in which cases is ndω = o(np)?

Clearly, this would hold whenever dω < p. By definition of d and p, a sufficient
condition for that is that for any rule A→ B C ∈ R it holds that:4

max

 ϕ(A) +ϕ(B)−ϕ(C),
ϕ(A)−ϕ(B) +ϕ(C),
−ϕ(A) +ϕ(B) +ϕ(C)

 < 1
ω (ϕ(A) +ϕ(B) +ϕ(C))

This means that for any rule, the following conditions should hold:

ω(ϕ(A) +ϕ(B)−ϕ(C)) < ϕ(A) +ϕ(B) +ϕ(C)

ω(ϕ(A)−ϕ(B) +ϕ(C)) < ϕ(A) +ϕ(B) +ϕ(C)

ω(−ϕ(A) +ϕ(B) +ϕ(C)) < ϕ(A) +ϕ(B) +ϕ(C)

Algebraic manipulation shows that this is equivalent to having:

ϕ(A) +ϕ(B) <
(
ω+ 1
ω− 1

)
ϕ(C)

ϕ(B) +ϕ(C) <
(
ω+ 1
ω− 1

)
ϕ(A)

ϕ(C) +ϕ(A) <
(
ω+ 1
ω− 1

)
ϕ(B)

For the best well-known algorithm for matrix multiplication, it holds that:

ω+ 1
ω− 1 > 2.44

For Strassen’s algorithm, it holds that:

ω+ 1
ω− 1 > 2.06

We turn now to analyze the complexity of the algorithm in Figure 9, giving the main
result of this article for arbitrary LCFRS:

Theorem 2
A single-initial binary LCFRS can be parsed in time O(nωd+1), where d is the contact
rank of the grammar, 2 < ω < 3, and two m×m Boolean matrices can be multiplied in
time O(mω).

4 For two sets of real numbers, X and Y, it holds that if for all x ∈ X there is a y ∈ Y such that x < y, then
max X < max Y.

446

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

Figure 9
Algorithm for recognizing binary LCFRS when Condition 4.1 is not necessarily satisfied by
the LCFRS.

Proof
The algorithm of Figure 9 works by iteratively applying the transitive closure and the
copying operator until convergence. At convergence, we have recognized all derivable
nonterminals by Lemma 6. Each transitive closure has the asymptotic complexity of
O(nωd) by Lemma 8. Each Π application has the asymptotic complexity of O(n2d). As
such, the total complexity is O(tnωd), where t is the number of iterations required to
converge. At each iteration, we discover at least one new nonterminal. The total number
of nodes in the derivation for the recognized string is O(n) (assuming no unary cycles
or ε rules). As such t = O(n), and the total complexity of this algorithm is O(nωd+1). �

6. Applications

Our algorithm is a recognition algorithm that is applicable to binary LCFRS. As such,
our algorithm can be applied to any LCFRS, by first reducing it to a binary LCFRS. We
discuss results for specific classes of LCFRS in this section, and return to the general
binarization process in Section 7.6.

LCFRS subsumes context-free grammars, which was the formalism that Valiant
(1975) focused on. Valiant showed that the problem of CFG recognition can be reduced
to the problem of matrix multiplication, and, as such, the complexity of CFG recognition
in that case is O(nω). Our result generalizes Valiant’s result. CFGs (in Chomsky Normal
Form) can be reduced to a binary LCFRS with f = 1. As such, d = 1 for CFGs, and our
algorithm yields a complexity of O(nω). (Note that CFGs satisfy Condition 4.1, and
therefore we can use a single transitive closure step.)

LCFRS is a broad family of grammars, and it subsumes many other well-known
grammar formalisms, some of which were discovered or developed independently of
LCFRS. Two such formalisms are tree-adjoining grammars (Joshi and Schabes 1997)
and synchronous context-free grammars. In the next two sections, we explain how our
algorithmic result applies to these two formalisms.

6.1 Mildly Context-Sensitive Language Recognition

Linear context-free rewriting systems fall under the realm of mildly context-
sensitive grammar formalisms. They subsume four important mildly context-sensitive

447

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

formalisms that were developed independently and later shown to be weakly equiv-
alent by Vijay-Shanker and Weir (1994): tree-adjoining grammars (Joshi and Schabes
1997), linear indexed grammars (Gazdar 1988), head grammars (Pollard 1984), and
combinatory categorial grammars (Steedman 2000). Weak equivalence here refers to the
idea that any language generated by a grammar in one of these formalisms can be also
generated by some grammar in any of the other formalisms among the four. It can be
verified that all of these formalisms are unbalanced, single-initial LCFRSs, and as such,
the algorithm in Figure 8 applies to them.

Rajasekaran and Yooseph (1998) show that tree-adjoining grammars can be parsed
with an asymptotic complexity of O(M(n2)) = O(n4.76). Although they did not discuss
that, the weak equivalence between the four formalisms mentioned here implies that all
of them can be parsed in time O(M(n2)). Our algorithm generalizes this result. We now
give the details.

Our starting point for this discussion is head grammars. Head grammars are a
specific case of linear context-free rewriting systems, not just in the formal languages
they define—but also in the way these grammars are described. They are described
using concatenation production rules and wrapping production rules, which are di-
rectly transferable to LCFRS notation. Their fan-out is 2. We focus in this discussion
on “binary head grammars,” defined analogously to binary LCFRS—the rank of all
production rules has to be 2. The contact rank of binary head grammars is 2. As such,
our work shows that the complexity of recognizing binary head grammar languages is
O(M(n2)) = O(n4.76).

Vijay-Shanker and Weir (1994) show that linear indexed grammars (LIGs) can ac-
tually be reduced to binary head grammars. Linear indexed grammars are extensions
of CFGs, a linguistically motivated restricted version of indexed grammars, the latter
of which were developed by Aho (1968) for the goal of handling variable binding
in programming languages. The main difference between LIGs and CFGs is that the
nonterminals carry a “stack,” with a separate set of stack symbols. Production rules
with LIGs copy the stack on the left-hand side to one of the nonterminal stacks in the
right-hand side,5 potentially pushing or popping one symbol in the new copy of the
stack. For our discussion, the main important detail about the reduction of LIGs to head
grammars is that it preserves the rank of the production rules. As such, our work shows
that binary LIGs can also be recognized in time O(n4.76).

Vijay-Shanker and Weir (1994) additionally address the issue of reducing combina-
tory categorial grammars to LIGs. The combinators they allow are function application
and function composition. The key detail here is that their reduction of CCG is to an
LIG with rank 2, and, as such, our algorithm applies to CCGs as well, which can be
recognized in time O(n4.76).

Finally, Vijay-Shanker and Weir (1994) reduced tree-adjoining grammars to combi-
natory categorial grammars. The TAGs they tackle are in “normal form,” such that the
auxiliary trees are binary (all TAGs can be reduced to normal form TAGs). Such TAGs
can be converted to weakly equivalent CCG (but not necessarily strongly equivalent),
and as such, our algorithm applies to TAGs as well. As mentioned earlier, this finding
supports the finding of Rajasekaran and Yooseph (1998), who show that TAG can be
recognized in time O(M(n2)).

For an earlier discussion connections between TAG parsing and Boolean matrix
multiplication, see Satta (1994).

5 General indexed grammars copy the stack to multiple nonterminals on the right-hand side.

448

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

6.2 Synchronous Context-Free Grammars

SCFGs are widely used in machine translation to model the simultaneous derivation
of translationally equivalent strings in two natural languages, and are equivalent to the
syntax-directed translation schemata of Aho and Ullman (1969). SCFGs are a subclass of
LCFRS where each nonterminal has fan-out 2: one span in one language and one span
in the other. Because the first span of the l.h.s. nonterminal always contains spans from
both r.h.s. nonterminals, SCFGs are always single-initial. Binary SCFGs, also known as
ITGs, have no more than two nonterminals on the r.h.s. of a rule, and are the most
widely used model in syntax-based statistical machine translation.

Synchronous parsing with traditional tabular methods for ITG is O(n6), as each of
the three nonterminals in a rule has fan-out of two. ITGs, unfortunately, do not satisfy
Condition 4.1, and therefore we have to use the algorithm in Figure 9. Still, just like with
TAG, each rule combines two nonterminals of fan-out 2 using two combination points.
Thus, d = 2, and we achieve a bound of O(n2ω+1) for ITG, which is O(n5.76) using the
current state of the art for matrix multiplication.

We achieve even greater gains for the case of multi-language synchronous parsing.
Generalizing ITG to allow two nonterminals on the right-hand side of a rule in each of k
languages, we have an LCFRS with fan-out k. Traditional tabular parsing has an asymp-
totic complexity of O(n3k), whereas our algorithm has the complexity of O(nωk+1).

Another interesting case of a synchronous formalism that our algorithm improves
the best well-known result for is that of binary synchronous TAGs (Shieber and Schabes
1990)—that is, a TAG in which all auxiliary trees are binary. This formalism can be
reduced to a binary LCFRS. A tabular algorithm for such grammar has the asymptotic
complexity of O(n12). With our algorithm, d = 4 for this formalism, and as such its
asymptotic complexity in that case is O(n9.52).

7. Discussion and Open Problems

In this section, we discuss some extensions to our algorithm and open problems.

7.1 Turning Recognition into Parsing

The algorithm we presented focuses on recognition: Given a string and a grammar,
it can decide whether the string is in the language of the grammar or not. From an
application perspective, perhaps a more interesting algorithm is one that returns an
actual derivation tree, if it identifies that the string is in the language.

It is not difficult to adapt our algorithm to return such a parse, without changing the
asymptotic complexity of O(nωd+1). Once the transitive closure of T is computed, we
can backtrack to find such a parse, starting with the start symbol in a cell spanning the
whole string. When we are in a specific cell, we check all possible combination points
(there are d of those) and nonterminals, and if we find such pairs of combination points
and nonterminals that are valid in the chart, then we backtrack to the corresponding
cells. The asymptotic complexity of this post-processing step is O(nd+1), which is less
than O(nωd) (ω > 2, d > 1).

This post-processing step corresponds to an algorithm that finds a parse tree, given a
pre-calculated chart. If the chart was not already available when our algorithm finishes,
the asymptotic complexity of this step would correspond to the asymptotic complexity
of a naı̈ve tabular parsing algorithm. It remains an open problem to adapt our algo-
rithm to probabilistic parsing, for example—finding the highest scoring parse given a

449

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

Figure 10
Upper left: Combination of spans for SCFG rule [S→ A B C D, B D A C]. Upper right and bottom
row: Three steps in parsing binarized rule.

probabilistic or a weighted LCFRS (Kallmeyer and Maier 2010). See more details in
Section 7.3.

7.2 General Recognition for Synchronous Parsing

Similarly to LCFRS, the rank of an SCFG is the maximal number of nonterminals that
appear in the right-hand side of a rule. Any SCFG can be binarized into an LCFRS
grammar. However, when the SCFG rank is arbitrary, this means that the fan-out of
the LCFRS grammar can be larger than 2. This happens because binarization creates
intermediate nonterminals that span several substrings, denoting binarization steps of
the rule. These substrings are eventually combined into two spans, to yield the language
of the SCFG grammar (Huang et al. 2009).

Our algorithm does not always improve the asymptotic complexity of SCFG pars-
ing over tabular methods. For example, Figure 10 shows the combination of spans
for the rule [S→ A B C D, B D A C], along with a binarization into three simpler LCFRS
rules. A naı̈ve tabular algorithm for this rule would have the asymptotic complexity of
O(n10), but the binarization shown in Figure 10 reduces this to O(n8). Our algorithm
gives a complexity of O(n9.52), as the second step in the binarization shown consists of
a rule with d = 4.

7.3 Generalization to Weighted Logic Programs

Weighted logic programs (WLPs) are declarative programs, in the form of Horn clauses
similar to those that Prolog uses, that can be used to formulate parsing algorithms
such as CKY and other types of dynamic programming algorithms or NLP inference
algorithms (Eisner, Goldlust, and Smith 2005; Cohen, Simmons, and Smith 2011).

For a given Horn clause, WLPs also require a “join” operation that sums (in some
semiring) over a set of possible values in the free variables in the Horn clauses. With
CKY, for example, this sum will be performed on the mid-point concatenating two
spans. This join operation is also the type of operation we address in this paper (for
LCFRS) in order to improve their asymptotic complexity.

It remains an open question to see whether we can generalize our algorithm to
arbitrary weighted logic programs. In order to create an algorithm that takes as input

450

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

a weighted logic program (and a set of axioms) and “recognizes” whether the goal is
achievable, we would need to have a generic way of specifying the set N, which was
specialized to LCFRS in this case. Not only that, we would have to specify N in such a
way that the asymptotic complexity of the WLP would improve over a simple dynamic
programming algorithm (or a memoization technique).

In addition, in this paper we focus on the problem of recognition and parsing for
unweighted grammars. Benedı́ and Sánchez (2007) showed how to generalize Valiant’s
algorithm in order to compute inside probabilities for a PCFG and a string. Even if we
were able to generalize our addressing scheme to WLPs, it remains an open question to
see whether we can go beyond recognition (or unweighted parsing).

7.4 Rytter’s Algorithm

Rytter (1995) gives an algorithm for CFG parsing with the same time complexity
as Valiant’s, but a somewhat simpler divide-and-conquer strategy. Rytter’s algorithm
works by first recursively finding all chart items entirely within the first half of the
string and entirely within the second half of the string. The combination step uses a
shortest path computation to identify the sequence of chart items along a spine of the
final parse tree, where the spine extends from the root of the tree to the terminal in
position n/2. Rytter’s algorithm relies on the fact that this spine, consisting of chart items
that cross the midpoint of the string, forms a single path from the root to one leaf of the
derivation tree. This property does not hold for general LCFRS, because two siblings in
the derivation tree may both correspond to multiple spans in the string, each containing
material on both sides of the string midpoint. For this reason, Rytter’s algorithm does
not appear to generalize easily to LCFRS.

7.5 Relation to Multiple Context-Free Grammars

Nakanishi et al. (1998) develop a matrix multiplication parsing algorithm for multiple
context-free grammars (MCFGs). When these grammars are given in a binary form,
they can be reduced to binary LCFRS. Similarly, binary LCFRS can be reduced to binary
MCFGs. The algorithm that Nakanishi et al. develop is simpler than ours, and does not
directly tackle the problem of transitive closure for LCFRS. More specifically, Nakanishi
et al. multiply a seed matrix such as our T by itself in several steps, and then follow up
with a copying operation between equivalent cells. They repeat this n times, where n is
the sentence length. As such, the asymptotic complexity of their algorithm is identical
for both balanced and unbalanced grammars, a distinction they do not make.

The complexity analysis of Nakanishi et al. is different from ours, but in certain
cases, yields identical results. For example, if ϕ(a) = f for all a ∈ L, and the grammar is
balanced, then both our algorithm and their algorithm give a complexity of O(nωf+1). If
the grammar is unbalanced, then our algorithm gives a complexity of O(nωf), whereas
the asymptotic complexity of their algorithm remains O(nωf+1). As such, Nakanishi et
al.’s algorithm does not generalize Valiant’s algorithm—its asymptotic complexity for
context-free grammars is O(nω+1) and not O(nω).

Nakanishi et al. pose in their paper an open problem, which loosely can be re-
worded as the problem of finding an algorithm that computes the transitive closure
of T without the extra O(n) factor that their algorithm incurs. In our paper, we provide
a solution to this open problem for the case of single-initial, unbalanced grammars. The
core of the solution lies in the matrix multiplication copying mechanism described in
Section 4.2.

451

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

7.6 Optimal Binarization Strategies

The two main grammar parameters that affect the asymptotic complexity of parsing
with LCFRS (in its general form) are the fan-out of the nonterminals and the rank of
the rules. With tabular parsing, we can actually refer to the parsing complexity of a
specific rule in the grammar. Its complexity is O(np), where the parsing complexity p is
the total fan-out of all nonterminals in the rule. For binary rules of the form A→ B C,
p = ϕ(A) +ϕ(B) +ϕ(C).

To optimize the tabular algorithm time complexity of parsing with a binary LCFRS,
equivalent to another non-binary LCFRS, we would want to minimize the time com-
plexity it takes to parse each rule. As such, our goal is to minimize ϕ(A) +ϕ(B) +ϕ(C)
in the resulting binary grammar. Gildea (2011) has shown that this metric corresponds
to the tree width of a dependency graph that is constructed from the grammar. It is
not known whether finding the optimal binarization of an LCFRS is an NP-complete
problem, but Gildea shows that a polynomial time algorithm would imply improved
approximation algorithms for the treewidth of general graphs.

In general, the optimal binarization for tabular parsing may not by the same as the
optimal binarization for parsing with our algorithm based on matrix multiplication. In
order to optimize the complexity of our algorithm, we want to minimize d, which is the
maximum over all rules A→ B C of

d(A→ B C) = max{ϕ(A) +ϕ(B)−ϕ(C),ϕ(A)−ϕ(B) +ϕ(C),−ϕ(A) +ϕ(B) +ϕ(C)}

For a fixed binarized grammar, d is always less than p, the tabular parsing com-
plexity, and, hence, the optimal d∗ over binarizations of an LCFRS is always less than
the optimal p∗ for tabular parsing. However, whether any savings can be achieved with
our algorithm depends on whether ωd∗ < p∗, or ωd∗ + 1 < p∗ in the case of balanced
grammars. Our criterion does not seem to correspond closely to a well-studied graph-
theoretic concept such a treewidth, and it remains an open problem to find an efficient
algorithm that minimizes this definition of parsing complexity.

It is worth noting that d(A→ B C) ≥ 1
3 (ϕ(A) +ϕ(B) +ϕ(C)). As such, this gives a

lower bound on the time complexity of our algorithm relative to tabular parsing using
the same binarized grammar. If O(nt1) is the asymptotic complexity of our algorithm,

and O(nt2) is the asymptotic complexity of a tabular algorithm, then t1
t2
≥ ω3 > 0.79.

8. Conclusion

We described a parsing algorithm for binary linear context-free rewriting systems that
has the asymptotic complexity of O(nωd+1) where ω < 2.38, d is the “contact rank” of
the grammar (the maximal number of combination points in the rules in the grammar
in single-initial form), and n is the string length. Our algorithm has the asymptotic
complexity of O(nωd) for a subset of binary LCFRS that are unbalanced. Our result
generalizes the algorithm of Valiant (1975), and also reinforces existing results about
mildly context-sensitive parsing for tree-adjoining grammars (Rajasekaran and Yooseph
1998). Our result also implies that inversion transduction grammars can be parsed
in time O(n2ω+1) and that synchronous parsing with k languages has the asymptotic
complexity of O(nωk+1) where k is the number of languages.

452

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Computational Linguistics Volume 42, Number 3

Linguistics (NAACL-13), pages 487–496,
Atlanta, GA.

Cohen, Shay B., Robert J. Simmons, and
Noah A. Smith. 2011. Products of weighted
logic programs. Theory and Practice of
Logic Programming, 11(2–3):263–296.

Coppersmith, D. and S. Winograd.
1987. Matrix multiplication via
arithmetic progressions. In Proceedings
of the 19th Annual ACM Conference on
Theory of Computing, pages 1–6, New York,
NY.

Dunlop, Aaron, Nathan Bodenstab, and
Brian Roark. 2010. Reducing the grammar
constant: An analysis of CYK parsing
efficiency. Technical report CSLU-2010-02,
OHSU.

Earley, Jay. 1970. An efficient context-free
parsing algorithm. Communications of the
ACM, 13(2):94–102.

Eisner, Jason, Eric Goldlust, and Noah A.
Smith. 2005. Compiling Comp Ling:
Practical weighted dynamic programming
and the Dyna language. In Proceedings
of HLT-EMNLP, pages 281–290,
Vancouver.

Eisner, Jason and Giorgio Satta. 1999.
Efficient parsing for bilexical context-free
grammars and head automaton grammars.
In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics
on Computational Linguistics,
pages 457–464, Baltimore, MD.

Gazdar, Gerald. 1988. Applicability of
indexed grammars to natural languages.
Springer.

Gildea, Daniel. 2011. Grammar factorization
by tree decomposition. Computational
Linguistics, 37(1):231–248.

Huang, Liang, Hao Zhang, Daniel Gildea,
and Kevin Knight. 2009. Binarization
of synchronous context-free
grammars. Computational Linguistics,
35(4):559–595.

Joshi, Aravind K. and Yves Schabes.
1997. Tree-adjoining grammars.
In G. Rozenberg and A. Salomaa, editors,
Handbook of formal languages. Springer,
pages 69–123.

Kallmeyer, Laura. 2010. Parsing Beyond
Context-Free Grammars. Cognitive
Technologies. Springer.

Kallmeyer, Laura and Wolfgang Maier. 2010.
Data-driven parsing with probabilistic
linear context-free rewriting systems. In
Proceedings of the 23rd International
Conference on Computational Linguistics
(COLING 2010), pages 537–545,
Beijing.

Kasami, Tadao. 1965. An efficient recognition
and syntax-analysis algorithm for
context-free languages. Technical Report
AFCRL-65-758, Air Force Cambridge
Research Lab.

Le Gall, François. 2014. Powers of
tensors and fast matrix multiplication.
In Proceedings of the 39th International
Symposium on Symbolic and Algebraic
Computation, ISSAC ’14, pages 296–303,
New York, NY.

Nakanishi, Ryuichi, Keita Takada,
Hideki Nii, and Hiroyuki Seki.
1998. Efficient recognition algorithms
for parallel multiple context-free
languages and for multiple context-free
languages. IEICE TRANSACTIONS
on Information and Systems,
81(11):1148–1161.

Pollard, Carl J. 1984. Generalized Phrase
Structure Grammars, Head Grammars and
Natural Languages. Ph.D. thesis, Stanford
University.

Rajasekaran, Sanguthevar and Shibu
Yooseph. 1998. TAL parsing in O(M(n2))
time. Journal of Computer and System
Sciences, 56:83–89.

Raz, Ran. 2002. On the complexity of matrix
product. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing,
pages 144–151, Montreal.

Rytter, Wojciech. 1995. Context-free
recognition via shortest paths
computation: A version of Valiant’s
algorithm. Theoretical Computer Science,
143(2):343–352.

Satta, Giorgio. 1992. Recognition of linear
context-free rewriting systems. In
Proceedings of the 30th Annual Meeting of the
Association for Computational Linguistics,
pages 89–95, Newark, DE.

Satta, Giorgio. 1994. Tree-adjoining
grammar parsing and boolean matrix
multiplication. Computational Linguistics,
20(2):173–191.

Shieber, S. M. 1985. Evidence against the
context-freeness of natural language. In
Linguistics and Philosophy, volume 8. D.
Reidel Publishing Company,
pages 333–343.

Shieber, Stuart M and Yves Schabes.
1990. Synchronous tree-adjoining
grammars. In Proceedings of the
13th Conference on Computational
Linguistics-Volume 3, pages 253–258,
Stroudsburg, PA.

Steedman, Mark. 2000. The Syntactic Process.
Language, speech, and communication.
MIT Press, Cambridge, MA.

454

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

Cohen and Gildea Parsing LCFRS with Fast Matrix Multiplication

Strassen, V. 1969. Gaussian elimination is not
optimal. Numerische Mathematik,
14(3):354–356.

Valiant, Leslie G. 1975. General context-free
recognition in less than cubic time.
Journal of Computer and System Sciences,
10:308–315.

Vijay-Shanker, K. and David Weir.
1994. The equivalence of four
extensions of context-free grammars.

Mathematical Systems Theory,
27:511–546.

Wu, Dekai. 1997. Stochastic inversion
transduction grammars and bilingual
parsing of parallel corpora. Computational
Linguistics, 23(3):377–403.

Younger, Daniel H. 1967. Recognition
and parsing of context-free languages
in time n3. Information and Control,
10(2):189–208.

455

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/42/3/421/1807144/coli_a_00254.pdf by guest on 17 M
ay 2021

