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1. Introduction

Probabilistic Finite-State Automata (PFA) and hidden Markov models (HMM) are
well-known formalisms that have been widely used in automatic speech recognition
(Ortmanns and Ney 1997), machine translation (Ueffing, Och, and Ney 2002), natural
language processing (Mohri, Pereira, and Riley 2002), and, more recently, in hand-
written text recognition (Romero, Toselli, and Vidal 2012). PFA and HMM can be con-
sidered special cases of weighted finite-state automata (WFA) (Mohri, Pereira, and Riley
2002; Dupont, Denis, and Esposito 2005). PFA and HMM were extensively researched
in Vidal et al. (2005) and interesting probabilistic properties were demonstrated. In
formal language theory, automata are considered as string acceptors, but PFA may
be considered as generative processes (see Section 2.2 in Vidal et al. [2005]). We have
followed the point of view of Vidal et al. (2005) in this article about this issue. PFA are
closely related to word lattices (WL) (Tomita 1986), which are currently a fundamental
tool for many applications because WL convey most of the hypotheses produced by a
decoder. WL have also been used for parsing (Tomita 1986), for computing confidence
measures in speech recognition (Kemp and Schaaf 1997; Ortmanns and Ney 1997;
Sanchis, Juan, and Vidal 2012), machine translation (Ueffing, Och, and Ney 2002), and
handwritten text recognition (Puigcerver, Toselli, and Vidal 2014) for interactive tran-
scription (Toselli, Vidal, and Casacuberta 2011) and term detection (Can and Saraçlar
2011). All of these applications require the WL to be correctly defined, and therefore,
knowing the stochastic properties of WL becomes very important.

This article deals with entropy-based measures that are computed for PFA and
HMM. Entropy measures give account of their expressiveness, and, therefore, the
computation of measures of this type is a fundamental problem related to these
models. Entropy measures are fundamental to studying the uncertainty that a model
has about the distribution it represents. The concepts of sequence entropy (also known
as sentential entropy) and derivational entropy for formal grammars were introduced
in Grenander (1967). Given a finite-state automaton A, the sequence entropy1 of the
model is defined as:2

H(A) = −
∑

w∈L(A)

pA(w) log pA(w) (1)

where L(A) is the set of all word sequences generated byA. Note that this expression re-
quires that the condition

∑
w∈L(A) pA(w) = 1.0 must be fulfilled. The concept of sequence

entropy of the model is different from the concept of the entropy given an observation
sequence w, which is defined in Hernando, Crespi, and Cybenko (2005):

HA(θ|w) = −
∑

θ∈ΘA(w)

pA(θ|w) log pA(θ|w) (2)

1 Although the concrete formal notation used in this article will be introduced in Section 2, in this
introduction we assume that the reader is familiar with some concepts related to finite-state automata
theory.

2 Throughout this article, we assume that 0 log 0 = 0. In addition, logarithm to base 2 is used in this article.
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where ΘA(w) is the set of all state sequences in the model A starting in an initial state
and reaching a final state such that each state sequence θ accounts for the string w. Note
that Equation (2) requires that the condition

∑
θ∈ΘA(w) pA(θ|w) = 1.0 must be fulfilled.

The derivational entropy is defined as in Grenander (1967):

Hd(A) = −
∑
θ∈Θ(A)

pA(θ) log pA(θ) (3)

where Θ(A) is the set of all state sequences in the model A starting in an initial
state and reaching a final state. Note that this expression requires that the condition∑
θ∈Θ(A) pA(θ) = 1.0 must be fulfilled. If the model is a PFA, then the derivational

entropy is computed from the probability that is accumulated in all the state sequences
of the automaton rather than the probability that is accumulated in the strings generated
by the automaton (Soule 1974). Figure 1 shows an example of a simple PFA with initial
state labeled as 0 and final state labeled as 4. In the case that the automaton is a WL,
it also has time information about when each word starts and ends. In this PFA A, the
sequence entropy is defined as:

H(A) = −pA(aa) log pA(aa)− pA(bb) log pA(bb) = −0.8 log 0.8− 0.2 log 0.2

= 0.72 bits

The sequence entropy given the string aa is:

HA(θ|aa) = −pA(034|aa) log pA(034|aa)− pA(014|aa) log pA(014|aa)

= −0.5
0.8 log 0.5

0.8 −
0.3
0.8 log 0.3

0.8 = 0.95 bits

Finally, the derivational entropy is:

Hd(A) = −pA(034) log pA(034)− pA(014) log pA(014)− pA(024) log pA(024)

= −0.5 log 0.5− 0.3 log 0.3− 0.2 log 0.2 = 1.49 bits

0 1
a  / 0.3

2

3
a / 0.5

T0

4
a / 1.0

T1

b / 0.2

T2

a / 1.0

T3

b / 1.0

T4

Figure 1
Example of a PFA. The dotted lines represent time information if we consider this model
as a WL.
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Note that if we consider the graph in Figure 1 as a WL produced by a decoder, the
lower the sequence entropy is, the better, because it means that the decoder has low
uncertainty about the output. A similar reasoning can be applied to the opposite—that
is, the lower the uncertainty about the output, the lower the sequence entropy is. In the
case of the derivational entropy, the lower it is, the lower the decoder’s uncertainty
about the output. However, the opposite is not necessarily true. Unfortunately, the
computation of Equation (1) is an open problem. Nevertheless, the sequence entropy (1)
is upper-bounded by the derivational entropy (Soule 1974), and, therefore, the lower
the derivational entropy, the lower the sequence entropy. This makes the computation
of the derivational entropy a very interesting problem. The computation of Equation (2)
was studied in Hernando, Crespi, and Cybenko (2005). In this article, we will focus on
the efficient computation of Equation (3) for PFA and HMM. If the finite-state model is
considered as a WL, then it has to be normalized because the WL produced by a decoder
is not necessarily normalized.

An algorithm that is based on a matrix inversion was introduced in Grenander
(1967) for computing Equation (3), and, therefore, the time complexity is cubic with
the number of states. Note that in the case of WL, the number of states can be thousands
in practical situations, and therefore this solution is not interesting in practice. There
is also interesting research related to the efficient computation of Equation (2). As
mentioned, an efficient computation with HMM was proposed in Hernando, Crespi,
and Cybenko (2005), and a generalized version was explored in Ilic (2011). When the
word sequence is partially known, Mann and McCallum (2007) provide an algorithm
for computing the entropy with conditional random fields. The derivational entropy
of a probabilistic context-free grammar was investigated in Corazza and Satta (2007),
and it was demonstrated that the derivational entropy coincides with the cross-entropy
when the cross-entropy is used as objective function for probabilistic estimation of the
probabilities of the rules. The computation of the derivational entropy for finite-state
models was studied in Nederhof and Satta (2008), but an approximate solution was
stated as the solution of a linear system of equations. Note that, in Hernando, Crespi,
and Cybenko (2005), Mann and McCallum (2007), and Ilic (2011), the computation
of Equation (2) is studied, whereas in this article the computation of Equation (3) is
studied, as in Grenander (1967).

Cubic algorithms with respect to the number of states have been proposed for
computing the derivational entropy of PFA without restrictions (Corazza and Satta
2007; Nederhof and Satta 2008). This article presents an algorithm that is asymptotically
more efficient for left-to-right PFA (and therefore for WL), that is, linear with respect to
the number of edges. This algorithm is then extended to left-to-right HMM. If the PFA
is obtained from a WFA, like a WL, then it has to be adequately normalized for com-
puting the derivational entropy. In this article, we adopt the normalization described
in Thompson (1974), and we improve its computation for left-to-right PFA. The pro-
posed normalization guarantees that the relative weights of the state sequences after the
normalization are preserved. Normalization of WFA and probabilistic grammars have
been studied in different articles. Thompson (1974) proposed the normalization of prob-
abilistic grammars, on which our normalization technique is based. Normalization of
WFA has also been studied in Mohri (2009), who proposed the weight pushing algorithm.
Grammar normalization is also investigated in Chi (1999) and Abney, McAllester, and
Pereira (1999). The normalization in WL is also a necessary process in order to compute
word confidence measures at the frame level for many purposes (Wessel et al. 2001).

This article is organized as follows: Section 2 specifies the notation related to
PFA, and the computation of like-forward and like-backward probabilities from these
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models. These forward and backward probabilities are not the classical probabilities
and they are necessary for subsequent computations. In the case of models that may not
be normalized, such as WL produced by a decoder, they need to be normalized before
computing the derivational entropy. This normalization is explained in Section 3. At the
end of Section 3, we include a discussion on related normalization techniques. Section 4
explains the main contribution of this article—namely, the efficient computation of the
derivational entropy. Section 5 extends the computation of the derivational entropy to
continuous HMM.

2. Left-to-Right Probabilistic Finite-State Automata

We introduce the notation related to PFA that will be used in this article following Vidal
et al. (2005).

Definition 1. A PFA is a tuple A = 〈Q, Σ, δ, I, F, P〉, where: Q is a finite set of states; Σ is
the alphabet; δ ⊆ Q× Σ×Q is a set of transitions; I : Q→ R≥0 is the probability func-
tion of a state being an initial state; P : δ→ R≥0 is a probability function of transition
between states; and F : Q→ R≥0 is the probability function of a state being a final state.
I, P, and F are functions such that:

∑
i∈Q

I(i) = 1 (4)

∀i ∈ Q, F(i) +
∑

v∈Σ,j∈Q

P(i, v, j) = 1 (5)

For the sake of notation simplification, P is assumed to be extended with P(i, v, j) =
0 for all (i, v, j) 6∈ δ. An automaton is said to be proper if it satisfies Equation (5).

In this article, we will assume that all states are nominated by integers from 0 to
|Q| − 1. For simplicity, we assume that the PFA have only one initial state, named 0,
and, therefore, the sum in Equation (4) has only one term. We assume without loss of
generality that the PFA has only one final state, named |Q| − 1, without loops. These
assumptions greatly simplify the notation. For practical reasons, and also for simplify-
ing the notation, we assume that the empty string is not in L(A). This last assumption
implies that PFA with only one state are not allowed.

In order to deal with the probability of the finite-length strings generated by a
PFA, we introduce the following notation. Let θA = (i0, v1, i1, v2, i2, . . . , ik−1, vk, ik) be a
path in A for the string w whose length is k; that is, there is a sequence of transitions
(i0, v1, i1), (i1, v2, i2), . . . , (ik−1, vk, ik) ∈ δ such that w = v1v2 . . . vk. We do not consider
empty paths and therefore k ≥ 1. The probability of generating such a path is:

pA(θA) =

 k∏
j=1

P(ij−1, vj, ij)

 =
∏

(i,v,j)∈δ
P(i, v, j)N((i,v,j),θA ) (6)

where N((i, v, j),θA) is the number of times that the transition (i, v, j) has been used in θA.

Definition 2. A valid path in a PFAA is a path θA = (i0 = 0, v1, i1, v2, i2, . . . , ik−1, vk, ik =
|Q| − 1). for some w = v1v2 . . . vk. The set of valid paths in Awill be denoted as ΘA.
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The probability of generating w with A is pA(w) =
∑
θ∈ΘA(w) pA(θ), where ΘA(w)

is the set of all valid paths in A for a given w. The language generated by a PFA A is
L(A) = {w : pA(w) > 0}. A PFA is said to be consistent if

∑
w∈L(A) pA(w) = 1. A PFA is

consistent if its states are useful, that is, all states appear in at least one valid path (Vidal
et al. 2005).

Definition 3. A left-to-right PFA3 is defined as a PFA such that each state can have loops
but it has no cycles, and if the loops are removed then a directed acyclic automaton is
obtained. The final state has no loops.

A left-to-right PFA has an equivalent left-to-right HMM4 representation and vice
versa, and they share the characteristic that once a state i has been reached, then it is not
possible to go back to state j such that j < i. If the loops are removed in a left-to-right
PFA, then a topological order might be induced on the resulting PFA. In the induced
loop-free PFA, we call this order pseudo-topological order.5 From now on, we consider
left-to-right PFA.

From Definition 2, we define ΘA(i, j, l) as the set of all paths starting in i, and ending
in j with l (l ≥ 1) different states (i and j inclusive). Note that l is not the length of the
path, but the number of states that are different in each path from i to j. For example,
in the PFA in Figure 2, the two paths (0, a, 1, a, 2) and (0, a, 0, a, 1, a, 1, b, 2) belong to
ΘA(0, 2, 3), because both start in state 0, arrive to state 2, and use three different states:
0, 1, and 2. But their lengths are different. The generated string when traversing a path
is not relevant for the computations involved in this article, so, to simplify, the symbol
information is omitted in subsequent definitions. We define the following probability:

pA(ΘA(0, i, l)) =
∑

θ∈ΘA(0,i,l)

pA(θ) (7)

as the probability that is accumulated in all prefixes generated by A going through l
different states and ending in state i. This value is necessary for normalizing a WFA,
as we describe subsequently. A similar expression to Equation (7) can be defined for
suffixes:

pA(ΘA(i, |Q| − 1, l)) =
∑

θ∈ΘA(i,|Q|−1,l)

pA(θ) (8)

is the probability that is accumulated in all suffixes generated by A traversing l dif-
ferent states and starting in state i. This expression is also necessary for normalizing
a WFA. Note that Equation (8) makes sense for l ≥ 2 because for l = 1 we have that
ΘA(|Q| − 1, |Q| − 1, 1) is empty, since we assumed only one final state without loops.
When l = |Q| then pA(ΘA(0, |Q| − 1, |Q|)) = 1.0.

For subsequent computations, the computation of the probability of all paths (sub-
strings) that can be composed from the loops of a single state is needed. If the state has
just one loop, then the computation is trivial. Given a state of a left-to-right PFA that
has two loops, each of which is labeled with a different symbol (like state 2 in Figure 2)

3 PFA of this type are also known as Bakis models (Bakis 1976).
4 HMM will be defined formally in Section 5.
5 Note that different pseudo-topological orders can exist, but this is not relevant in this article. We will

consider just one of them.
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0

a / 0.3
1

a / 0.2 2

b / 0.1

3

b / 0.4

a / 0.3

a / 0.5

b / 0.2

a / 0.4

b / 0.2

b / 0.3
4

b / 0.1

a / 0.1

b / 0.3

b / 0.6

Figure 2
Example of a left-to-right PFA.

the substrings that can be composed using the loops in state 2 in increasing length and
their probability is:

p(a) + p(b) = 0.4 + 0.2

p(aa) + p(ab) + p(ba) + p(bb) = 0.42 + 2 · 0.4 · 0.2 + 0.22

p(aaa) + p(aab) + p(aba) + p(abb) + p(baa)+

p(bab) + p(bba) + p(bbb) = 0.43 + 3 · 0.42 · 0.2 + 3 · 0.4 · 0.22 + 0.43

. . .

Note that the previous terms are related to binomial coefficients and the product of
a polynomial with two terms (there are two terms because there are two loops, each
of which has a different symbol). If we add all these terms for all possible lengths,
including the empty string, and we call r, (r < 1), the addition of all loop probabilities
in the same state, then we obtain:

+∞∑
n=0

(P(2, a, 2) + P(2, b, 2))n =
+∞∑
n=0

rn = 1
1− r

In the previous expression, when n = 0, no loop in state is used and the probability of
paths that go through the state is multiplied by 1 so its value is not changed.

If there are three loops with different symbols (e.g. {a, b, c}), with probabilities a1 =
P(i, a, i), b1 = P(i, b, i), and c1 = P(i, c, i), respectively, then the result is analogous:

p(a) + p(b) + p(c) = a1 + b1 + c1

p(aa) + p(ab) + p(ac) + p(ba) + p(bb) + p(bc)+

p(ca) + p(cb) + p(cc) = a1 + b1 + c1 + 2a1b1 + 2a1c1 + 2b1c1

. . .
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In general, we have that the addition of the probabilities of all paths using the loops of
a single state i, 0 ≤ i < |Q| − 1, is:

+∞∑
n=0

 ∑
v∈Σ:

P(i,v,i)6=0

P(i, v, i)


n

=
+∞∑
n=0

rn = 1
1− r

Proposition 1. For any i, 0 ≤ i < |Q|, it is fulfilled that
∑|Q|−i

l=2 pA(ΘA(i, |Q| − 1, l)) = 1.

Proof. Note that i affects the number of different states in the paths from i to |Q| − 1, and
this is the reason why the previous sum ranges from l = 2 to |Q| − 1− i + 1 = |Q| − i.

The proof is by induction on l and following the nodes in the reverse of the pseudo-
topological order. Note that we start the proof for i = |Q| − 2 because the final state has
no loops. In this case, the sum ranges from l = 2 to |Q| − (|Q| − 2)) = 2:

2∑
l=2

pA(ΘA(|Q| − 2, |Q| − 1, l)) =
∑

θ∈ΘA(|Q|−2,|Q|−1,2)

pA(θ) = 1
1− r|Q|−2

(1− r|Q|−2) = 1

The last product is the probability of all paths generated through the loops in state
|Q| − 2 times the transitions to the final state.

For i in the pseudo-topological order, such that 0 ≤ i < |Q| − 2,

|Q|−i∑
l=2

pA(ΘA(i, |Q| − 1, l)) =

|Q|−i∑
l=2

∑
θ∈ΘA(i,|Q|−1,l)

pA(θ)

=
∑

i<j≤|Q|−1
v∈Σ

1
1− ri

P(i, v, j)
|Q|−j∑
l=2

∑
θ∈ΘA(j,|Q|−1,l)

pA(θ)

=
∑

i<j≤|Q|−1
v∈Σ

1
1− ri

P(i, v, j)
|Q|−j∑
l=2

pA(ΘA(j, |Q| − 1, l))︸ ︷︷ ︸
1

= 1
1− ri

(1− ri) = 1

The proposition establishes that given a consistent PFA, then any PFA induced from
a node and the nodes reachable from it and the corresponding edges is also consistent.

We now describe how Equation (7) can be computed. This computation is sim-
ilar to the classical forward computation proposed for HMM (Vidal et al. 2005).
We define α̂A(i, l), 0 ≤ i ≤ |Q| − 1 and 1 ≤ l ≤ |Q| as the probability accumulated
in all prefixes with paths each of which has l different states and reaching state
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i: α̂A(i, l) = pA(ΘA(0, i, l)). The computation of α̂A(·, ·) can be performed with this new
forward algorithm:

α̂A(0, 1) = 1
1− r0

α̂A(i, l) =
∑

θ∈ΘA(0,i,l)

pA(θ) =
∑
v∈Σ,

0≤j<i

α̂A(j, l− 1)P(j, v, i) 1
1− ri

= 1
1− ri

∑
v∈Σ,

0≤j<i

α̂A(j, l− 1)P(j, v, i) 1 < l ≤ |Q|, l− 1 ≤ i ≤ |Q| − 1

where ri is the addition of all loop probabilities in state i. If i = |Q| − 1, then r|Q|−1 = 0.

Proposition 2.
∑|Q|

l=1 α̂A(|Q| − 1, l) = 1.

Similar results can be obtained for suffixes that are generated byA as can be seen in
Equation (8). We define for 0 ≤ i ≤ |Q| − 1 and 2 ≤ l ≤ |Q|,

β̂A(i, l) = pA(ΘA(i, |Q| − 1, l)) (9)

as the probability accumulated in all suffixes with paths that have l different states, start
in state i, and reach the final state |Q| − 1. This expression can be computed with this
backward algorithm:

β̂A(|Q| − 1, 1) = 1 for completeness,

β̂A(i, l) = 1
1− ri

∑
v∈Σ,

i<j≤|Q|−1

β̂A(j, l− 1)P(i, v, j) 1 < l ≤ |Q|, 0 ≤ i < |Q| − l .

Let us see an example of the computation of the α̂A(·, ·) and β̂A(·, ·) values with the
left-to-right PFA in Figure 2. First, we show the computation of the α̂A(·, ·) values:

1 2 3 4 5
0 1.429
1 0.408
2 0.357 0.714
3 0.953 0.179 0.357
4 0.608 0.179 0.214

Second, we show the computation of the β̂A(·, ·) values:

1 2 3 4 5
0 0.607 0.179 0.214
1 0.250 0.750
2 0.250 0.750
3 1.000
4 1.000
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Note that if we consider that each state is nominated with integers in increasing
order according to the pseudo-topological order, then α̂A(·, ·) have null values above the
main diagonal. Something analogous can be demonstrated for β̂A(·, ·), but, in that case,
the null values are below the other diagonal.

The following proposition can be demonstrated from Proposition 1.

Proposition 3. For all i, 0 ≤ i ≤ |Q| − 1, we have:

|Q|−i∑
l=1

β̂A(i, l) = 1 .

Values α̂A(·, ·) and β̂A(·, ·) are related to values in(·) and out(·) in Nederhof and Satta
(2008). These values can be efficiently computed with time complexity O(|δ|) following
the pseudo-topological order defined on A. Note that |δ| is at most O(|Q|2|Σ|).

3. Weighted Finite-State Automata Normalization

WFA are defined similarly to PFA, but the probability transition of PFA is substituted
by a weight function.

Definition 4. A WFA is a tupleA = 〈Q, Σ, δ, IW , FW , W〉, where: Q is a finite set of states;
Σ is the alphabet; δ ⊆ Q× Σ×Q is a set of transitions; IW : Q→ R≥0 is the weight
of a state being an initial state; W : δ→ R≥0 is the weight associated with transitions
between states; and FW : Q→ R≥0 is the weight of a state being a final state.

As we previously did with PFA, we only consider WFA with one initial state and
one final state. Each path through the WFA has an associated weight that is computed as
the product of the weights of the edges of that path. In order to compute the derivational
entropy as described in Section 4, it is necessary to guarantee that the automaton is
consistent. Therefore, the weights of the edges in the WFA have to be normalized,
because the normalization is a sufficient condition for the WFA to be consistent and
to become a PFA if all states appear at least in one path.

It is a desirable property for the normalization process of a WFA to keep the relative
weights of the paths unaffected once the WFA becomes a PFA. Note that this condition
can be guaranteed only if the loops in each state give rise to an infinite addition that
converges to some constant value. This is the case of WL, and, therefore, we only
consider WFA for which this condition is fulfilled.

A similar normalization solution proposed in Thompson (1974) for probabilistic
regular grammars is adopted in this article, and it is adapted for left-to-right finite-state
automata.

The final vector ν (Definition 12 in Thompson [1974]) of a WFA is a (|Q| − 1)× 1
column vector, where:

ν(i) =
∑
v∈Σ

W(i, v, |Q| − 1), 0 ≤ i < |Q| − 1

The following definition is related to a definition introduced in Thompson (1974)
for probabilistic grammars.
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Definition 5. The normalizing vector N of a WFA A is a |Q| × 1 column vector where
each termN (i), 0 ≤ i < |Q| − 1, is defined such that, if all transition weights W(i, v, j) ∈ δ
are multiplied by N (j)/N (i) with N (|Q| − 1) = 1, then the WFA A is transformed into
a proper PFA.

Definition 6. Given a WFA A, we define the characteristic matrix M (Thompson 1974)
of dimensions |Q| × |Q| as:

M(i, j) =
∑
v∈Σ

W(i, v, j)

If i = j then M(i, i) = ri.
The following theorem for WFA is stated in Thompson (1974) for probabilistic

regular grammars.

Theorem 1. LetA be a WFA and M, ν, andN be the corresponding characteristic matrix,
final vector, and normalizing vector, where M and ν are known, and where the row and
column of the characteristic matrix associated with state |Q| − 1 have been removed.
Then N can be computed as:

N = (I −M)−1ν (10)

Proof. We have to demonstrate how to obtain Equation (10) and that the relative weights
of the paths are unaffected. First, we demonstrate how to obtain Equation (10) as
in Thompson (1974). By definition of N , normalization takes place by changing the
transition weights W(i, v, j), 0 ≤ i, j < |Q| − 1, to W(i, v, j)N (j)/N (i). When j = |Q| − 1,
then W(i, v, |Q| − 1)/N (i). Then, the sum of the new weights have to add up to 1 for
all i. That is:

∑
v∈Σ

0≤j<|Q|−1

W(i, v, j)
N (j)
N (i) +

∑
v∈Σ

W(i, v, |Q| − 1) 1
N (i) = 1

This yields

∑
v∈Σ

0≤j<|Q|−1

W(i, v, j)N (j) +
∑
v∈Σ

W(i, v, |Q| − 1) = N (i)

∑
0≤j<|Q|−1

M(i, j)N (j) + ν(i) = N (i)

that in matrix form is MN + ν = N , which yieldsN = (I −M)−1ν. Matrix (I −M)−1 is
upper triangular with non-null diagonal for left-to-right WFA.
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Second, we demonstrate that the relative weights of the valid paths are unaffected.
Suppose that A′ is the normalized PFA obtained after normalizing a WFA A. Then, for
a given path θ in A′ of size k:

pA′ (θ) =
k∏

i=1

PA′ (si−1, vi, si) =
k∏

i=1

WA(si−1, vi, si)N (si)
N (si−1)

=
WA(0, v1, s1)N (1)

N (0) . . .
WA(sk−1, vk, |Q| − 1)

1︷ ︸︸ ︷
N (|Q| − 1)

N (sk−1)

=

∏k
i=1 WA(si−1, vi, si)

N (0) =
WA(θ)

WA(ΘA(0, |Q| − 1, ·))
The last equation is because N (0) is the weight accumulated in all paths in the WFA,
WA(ΘA(0, |Q| − 1, ·)) (as we will see below), and WA(θ) is defined in a way similar to
Equation (6). Therefore, the normalization keeps the relative weight distribution of the
paths in the normalized PFA A′.

Note that N (|Q| − 1) = 1 according to Definition 5.

Expression (10) requires the computation of a matrix inversion. Note that this
inverse matrix exists only if the condition about the convergence of the infinite additions
in loops is satisfied. As we noted previously, this condition is satisfied for WL, which is
the type of WFA that we are interested in. Let us see howN can be efficiently computed
in a left-to-right automaton by avoiding the matrix inversion. Note that

(I −M)−1 =
∞∑

k=0

Mk (11)

Each Mk(i, j) is in fact the addition of the weights of all paths from i to j (i, j 6= |Q| − 1)
with length k that have at most k + 1 different states. Therefore, if i = j, i 6= |Q| − 1,
expression (11) becomes:

∞∑
k=0

Mk(i, i) =
∞∑

k=0

rk
i = 1

1− ri
(12)

given that there are no cycles, only loops. If i 6= j, then Equation (11) becomes:

∞∑
k=0

Mk(i, j) =

|Q|−2∑
k=1

W (ΘA(i, j, k + 1)) (13)

In the summation in the right-hand side of the previous equation, k 6= |Q| − 1 because,
as stated in Theorem 1, the row and column of the characteristic matrix M associated
with state |Q| − 1 have been removed. Therefore:

N (i) =
∑

0≤j<|Q|−1

(I −M)−1(i, j)ν( j) = 1
1− ri

ν(i) +
∑

i<j<|Q|−1

|Q|−2∑
k=1

WA(ΘA(i, j, k + 1)) ν( j)

=

|Q|−1∑
k=1

WA(ΘA(i, |Q| − 1, k + 1)) (14)
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The inner part in Equation (14) is analogous to Equation (9), and it can be interpreted as
the addition of the weights of all paths from i to |Q| − 1. Note that N (0) represents the
weight accumulated in all paths in the WFAWA(ΘA(0, |Q| − 1, ·)) (as we mentioned in
Theorem 1):

N (0) =

|Q|−1∑
k=1

WA(ΘA(0, |Q| − 1, k + 1)) =WA(ΘA(0, |Q| − 1, ·)) (15)

As a final remark, note how the normalization takes place: Each transition weight
W(i, v, j) in the WFA A is changed inversely proportional to the weight accumulated in
all the paths that start in i, that is, N (i), and it is changed directly proportional to the
weight accumulated in all the paths that start in j, that is, N ( j).

Expression (14) can be computed with an algorithm that is similar to the backward
algorithm, and then summing up for all values in row i. In this way, the time complexity
for obtaining the normalizing vector is less than the cubic time required by the matrix
inversion.

Let us see an example of the normalization process with the acyclic WFA of Figure 3.
This WFA is neither proper nor consistent.

After computations in Theorem 1 and given that N (|Q| − 1) = 1.0, we get: N T =
(0.2154 0.2332 0.3571 0.5712 1.0). If we use the backward algorithm and we sum up
for each row, then we obtain the same normalizing vector but more efficiently:

1 2 3 4 5 N
0 0.1637 0.0368 0.0149 0.2154
1 0.1042 0.119 0.2232
2 0.1667 0.1904 0.3571
3 0.5712 0.5712
4 1.0000 1.0

If this normalizing vector is applied to the WFA of Figure 3, then the PFA of Figure 4
is obtained. PFA of Figure 4 is proper and consistent.

0

a / 0.2
1

a / 0.1 2

b / 0.1

3

b / 0.2

a / 0.2

a / 0.3

b / 0.2

a / 0.3

b / 0.1

b / 0.2
4

b / 0.1

a / 0.1

b / 0.2

b / 0.4

Figure 3
Example of a left-to-right WFA.
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0

a / 0.2
1

a / 0.10 2

b / 0.17

3

b / 0.53

a / 0.2

a / 0.48

b / 0.32

a / 0.3

b / 0.1

b / 0.32 4

b / 0.28

a / 0.1

b / 0.2

b / 0.7

Figure 4
PFA obtained after the normalization has been applied.

This normalization technique is related to the weight pushing algorithm (Mohri
2009) as follows: The value d[q] defined in expression (35) in Mohri (2009) is analogous
to the value N (q) that is introduced in our Definition 5. Both values represent the
accumulated weight in all state sequences from state q to the final state. The compu-
tations introduced in expressions (36)–(38) in Mohri (2009) are the same normalization
that we explicitly introduce in the proof of Theorem 1 (see an interpretation of this
normalization in the paragraph that follows our Equation (15)). The value N (q) is also
related to the norm defined in Abney, McAllester, and Pereira (1999) and with the
normalization described in Chi (1999; see Corollary 3).

One important contribution of our normalization algorithm with regard to the
normalization algorithm presented in Mohri (2009) is that the time complexity for
normalizing the graphs introduced in our article (left-to-right graphs with loops in the
states) is O(|δ|), where δ is the set of edges of the automaton. Note that |δ| ≤ |Q|2,
where Q is the set of states in the automaton. In terms of the discussion in Mohri
(2009), the semiring used in our article is (R, +,×, 0, 1) and it is a complete semiring. The
normalization for semirings of this type is O(|Q|3) according to Mohri (2009). However,
given the restricted graphs that we define, this complete semiring behaves as a k-closed
semiring (see our Equations (12) and (13)) because the characteristic matrix M is an
upper triangular matrix, and, therefore, the time complexity is O(|δ|).

The weight pushing algorithm is also related to the normalization algorithm de-
scribed in Thompson (1974) as follows: The normalization in Thompson (1974) is
applied to probabilistic regular grammars (see Theorem 6 in Thompson [1974]) and
to probabilistic incontextual grammars in Chomsky Normal Form (see Theorem 7
in Thompson [1974]), but here we only focus on probabilistic regular grammars. One
important issue in Thompson (1974) to be taken into account is that the initial prob-
abilistic regular grammar may not be proper (see Definition 3 in Thompson [1974]),
but consistent (see Definition 1 in Thompson [1974]). If the initial probabilistic regular
grammar is not consistent, the normalization in Thompson (1974) may lead to a proper
regular grammar that is not consistent. The main differences between our proposal for
the normalization with respect to Thompson (1974) are the following:

1. Thompson (1974) proposes a simultaneous normalization of the model
that requires the computation of the inverse of a matrix that is similar to
our Equation (10) (see the final expression in Theorem 8 in Thompson
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[1974]). Therefore, our proposal is more efficient for the given left-to-right
automata that we are dealing with.

2. Thompson (1974) points out a problem when the start symbol of the
grammar is not proper (see Condition 4, page 611), although he mentioned
an “intermediation” operation to overcome this problem. As he
mentioned: “The conditions restricting these problems are left as an open
problem.” This problem is not present in our proposal, as we
demonstrated in Theorem 1.

The relation between Thompson (1974) and Mohri (2009) related to point 1 is that both
normalization proposals are cubic for general regular models (grammars or automata).
With regard to point 2, normalization in Mohri (2009) and our normalization do not
have the problem of the consistency of the final model after normalization as may occur
in Thompson (1974).

4. Derivational Entropy of a Left-to-Right PFA

The concept of derivational entropy was introduced in Grenander (1967) and was fur-
ther studied in Soule (1974) for probabilistic grammars. Here we use a similar definition
of derivational entropy for a Left-to-Right PFA.

Definition 7. The derivational entropy of a PFA A is defined as:

Hd(A) = −
∑

θ∈ΘA(0,|Q|−1,·)

pA(θ) log pA(θ)

The previous sum can have an infinite number of terms because of the loops in the
states. We describe how the derivational entropy of a PFA can be efficiently computed.

We define the vector ξ, 0 ≤ i < |Q| − 1, as in Soule (1974):

ξ(i) = −
∑
v∈Σ

0≤j≤|Q|−1

P(i, v, j) log P(i, v, j) (16)

and ξ(|Q| − 1) = 0.

Theorem 2. (Theorem 4.2 in Grenander [1967]) If the largest eigenvalue of the charac-
teristic matrix M is strictly less than 1, then the derivational entropy of the model can
be computed as: Hd(A) = (1−M)−1ξ.

If the matrix M is obtained from a left-to-right PFA, then the largest eigenvalue of M
is guaranteed to be strictly less than 1 (see Theorem 5 in Wetherell [1980]). The main idea
in Theorem 2 is to compute the average number of times that state i has been used in
all valid paths of A times the entropy introduced by transitions leaving from that state
according to Equation (16). Because we are dealing with left-to-right PFA with only one
initial state, only this initial state is relevant for computing the derivational entropy,
which then becomes the following scalar:

Hd(A) =

|Q|−2∑
i=0

((I −M)−1)0i ξi (17)
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According to Theorem 2, the derivational entropy can be computed with time
complexity O(|Q|3) given the inverse matrix computation. An analogous result about
the computation of the derivational entropy is stated in Nederhof and Satta (2008) (see
Lemma 8).

We now describe how Hd(A) can be efficiently computed for left-to-right PFA.
Taking into account that we are considering PFA with only one initial state and one
final state (the final state without loops), then from Definition 7, Equation (6), and
following Nederhof and Satta (2008):

Hd(A) = −
∑

2≤l≤|Q|

∑
θ∈ΘA(0,|Q|−1,l)

pA(θ) log
∏

(i,v,j)∈δ
P(i, v, j)N((i,v,j),θ)

= −
∑

2≤l≤|Q|

∑
θ∈ΘA(0,|Q|−1,l)

pA(θ)
∑

(i,v,j)∈δ
log P(i, v, j)N((i,v,j),θ)

= −
∑

(i,v,j)∈δ
log P(i, v, j)

∑
2≤l≤|Q|

∑
θ∈ΘA(0,|Q|−1,l)

N((i, v, j),θ)pA(θ) (18)

The two inner additions in Equation (18) can be interpreted as follows: Given a path
θ ∈ ΘA(0, |Q| − 1, l), the probability pA(θ) is accumulated each time the transition (i, v, j)
is used in that path. We distinguish three different cases for computing these two inner
additions: i) edges between different states, ii) the loops in the initial state, and iii) all
the other loops.

Case i corresponds to the addition of all paths that can be seen in Figure 5, where
i < j. Therefore, taking into account the numeration of the states according to the pseudo-
topological order, Equation (18) for these nodes becomes:

−
∑
v∈Σ

0≤i<j≤|Q|−1

log P(i, v, j)
i+1∑
l=1

|Q|−j∑
m=1

α̂A(i, l)P(i, v, j)β̂A( j, m)

= −
∑
v∈Σ

0≤i<j≤|Q|−1

log P(i, v, j)
i+1∑
l=1

α̂A(i, l)P(i, v, j)
|Q|−j∑
m=1

β̂A( j, m)︸ ︷︷ ︸
1

= −
∑

0≤i<|Q|−2

∑
i<j≤|Q|−1

∑
v∈Σ

log P(i, v, j)
i+1∑
l=1

α̂A(i, l)P(i, v, j)

= −
∑

0≤i<|Q|−2

∑
i<j≤|Q|−1

∑
v∈Σ

P(i, v, j) log P(i, v, j)
i+1∑
l=1

α̂A(i, l) (19)

0 j |Q|−1i

.   .   .

v

.   .   .

Figure 5
All paths that traverse an edge between two different states in a left-to-right PFA.
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i

...

0 |Q|−1

.   .   .

i+1

|Q|−2

i

...

.   .   .

0

i −1

v

Figure 6
All paths that traverse a loop of a state in the left-to-right PFA.

Case iii in Equation (18) for a given i and v (0 < i ≤ |Q| − 2, v ∈ Σ) corresponds to
the addition of all paths that can be seen in Figure 6.

Thus, Equation (18) for these loops becomes:

−
∑

0≤i≤|Q|−2
v∈Σ

log P(i, v, i)

∑
0≤j<i
u∈Σ

j+1∑
l=1

α̂A( j, l)P( j, u, i) P(i, v, i)
(1− ri)(1− ri)︸ ︷︷ ︸

(∗)

∑
i<k≤|Q|−1

u′∈Σ

P(i, u′, k)

︸ ︷︷ ︸
1−ri

|Q|−k∑
m=1

β̂A(k, m)︸ ︷︷ ︸
1

= −
∑

0<i≤|Q|−2
v∈Σ

log P(i, v, i)
∑

0≤j<i
u∈Σ

j+1∑
l=1

α̂A( j, l)P( j, u, i)P(i, v, i)
1− ri

= −
∑

0<i≤|Q|−2
v∈Σ

P(i, v, i) log P(i, v, i)
∑

0≤j<i

∑
u∈Σ

j+1∑
l=1

α̂A( j, l)P( j, u, i) 1
1− ri

= −
∑

0<i≤|Q|−2
v∈Σ

P(i, v, i) log P(i, v, i)
i+1∑
l=1

α̂A(i, l)

= −
∑

0<i≤|Q|−2

∑
v∈Σ

P(i, v, i) log P(i, v, i)
i+1∑
l=1

α̂A(i, l) (20)

The value (∗) represents the product of all strings that can be composed by traversing
the loops in state i (1/(1− ri)) multiplied by the probability of transition (i, v, i) multi-
plied again by the product of all strings that can be composed traversing the loops in
state i.
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Case ii in Equation (18) can be written as:

−
∑
v∈Σ

log P(0, v, 0) P(0, v, 0)
(1− r0)(1− r0)

∑
i<k≤|Q|−1

u∈Σ

P(i, v, k)

︸ ︷︷ ︸
1−r0

|Q|−k∑
m=1

β̂A(k, m)︸ ︷︷ ︸
1

= −
∑
v∈Σ

log P(0, v, 0)P(0, v, 0)
(1− r0)

= −
∑
v∈Σ

P(0, v, 0) log P(0, v, 0)α̂(0, 1) (21)

Finally, combining Equations (19), (20), and (21), Equation (18) becomes:

Hd(A) = −
∑

0≤i≤|Q|−2

∑
i≤j≤|Q|−1

∑
v∈Σ

P(i, v, j) log P(i, v, j)
i+1∑
l=1

α̂A(i, l)

=
∑

0≤i≤|Q|−2

ξi

i+1∑
l=1

α̂A(i, l) (22)

The inner sum can be precomputed in O(|δ|); therefore, the time complexity of comput-
ing the derivational entropy with this method is O(|δ|). Note that this method is clearly
better than the time complexity of the method proposed in Grenander (1967), which is
cubic. Note that for dense graphs the time complexity of the new proposed method is
at most quadratic with the number of nodes in the PFA.

It is interesting to see the relation between the inner addition in Equation (22) and
the elements in the matrix of Equation (17):

i+1∑
l=1

α̂A(i, l) = ((I −M)−1)0i

For the left-to-right PFA in Section 2, (I −M)−1 is:
1.43 0.41 1.07 1.49 1.0
0.0 1.43 2.5 1.25 1.0
0.0 0.0 2.5 1.25 1.0
0.0 0.0 0.0 1.67 1.0
0.0 0.0 0.0 0.0 1.0


Each element in the first row coincides with the addition of each row of α̂(·, ·) matrix.

5. Derivational Entropy of a Continuous Left-to-Right HMM

In this section, we extend the efficient computation of the derivational entropy to
continuous left-to-right HMM. First, we introduce the notation that will be used for
HMM following the notation in Romero, Toselli, and Vidal (2012).
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Definition 8. A continuous HMM is defined as a tupleH = (Q, I, F, X, a, b) where Q is a
finite set of states; I is the initial state, I ∈ Q; F is the final state with F ∈ Q; and X is a
real d-dimensional space of observations: X ⊆ Rd. To make the subsequent equations
simpler, we will assume that X is a scalar (i.e., X ⊆ R). The extension to multidi-
mensional X is straightforward. a is the state-transition probability function, such that
for all i, 0 ≤ i < |Q| − 1: ∑

i≤j≤|Q|−1

a(i, j) = 1

b is an emission probability distribution function such that for all i, 0 ≤ i < |Q| − 1∫
x∈X

b(i, x) dx = 1 .

Note that we are considering continuous left-to-right HMM with just one initial
state and just one final state. The concept of left-to-right is analogous to Definition 3.
The emission probabilities are associated with states, not to transitions. For continuous
HMM, b(i, x) is a continuous probability density function (pdf).

Given a continuous left-to-right HMMH, a similar algorithm for computing α̂H(·, ·)
can be defined. However, first, it is necessary to compute the probability of all real
sequences that can be generated in a loop.

Let i be a state of a HMM H with ri as the loop probability, and b(i, x) as the
associated pdf. To compute the probability of all real sequences in the loop, we start
from a discrete case by sampling the pdf and then use limits to extend it to continuous:

lim
K→∞

y→−∞
∆x→0

lim
N→∞

N∑
n=0

ri

∑
xk=y+k∆x
k={1,...,K}

b(i, xk)∆x


n

= lim
N→∞

N∑
n=0

ri

 lim
K→∞

y→−∞
∆x→0

∑
xk=y+k∆x
k={1,...,K}

b(i, xk)∆x




n

= lim
N→∞

N∑
n=0

ri

∫
x

b(i, x)dx︸ ︷︷ ︸
=1


n

=
∞∑

n=0

rn
i = 1

1− ri

This result is the same as for PFA, and with this value, we can compute both the α̂H(·, ·)
and the β̂H(·, ·) probabilities as in Section 2.

Now, we obtain a similar expression to Equation (22):

Hd(H) =
∑

0≤i≤|Q|−2

i+1∑
l=1

α̂H(i, l)
∑

i≤j≤|Q|−1

∫
x

pijfi(x) log pijfi(x)dx

=
∑

0≤i≤|Q|−2

i+1∑
l=1

α̂H(i, l)
∑

i≤j≤|Q|−1

pij

log pij

∫
x

fi(x)dx︸ ︷︷ ︸
=1

+

∫
x

fi(x) log fi(x)dx


=
∑

0≤i≤|Q|−2

i+1∑
l=1

α̂H(i, l)
∑

i≤j≤|Q|−1

pij

(
log pij +

∫
x

fi(x) log fi(x)dx
)
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The last integral is the entropy of the distribution at state i, which for the case of
Gaussian mixture models, which are commonly used in practice, the entropy can be
approximated (Huber et al. 2008).

6. Conclusions

This article has studied the efficient computation of the derivational entropy for left-to-
right PFA and HMM. This efficiency is mainly based on the left-to-right nature of the
models. This efficient computation is based on algorithms that similar to the forward
and backward algorithms defined for general finite state models. The algorithms that
are introduced in this article are also necessary for normalizing the left-to-right WFA in
order to guarantee that the derivational entropy is correctly computed.
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