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Depending on downstream applications, it is advisable to extend the notion of tokenization
from low-level character-based token boundary detection to identification of meaningful and
useful language units. This entails both identifying units composed of several single words
that form a multiword expression (MWE), as well as splitting single-word compounds into
their meaningful parts. In this article, we introduce unsupervised and knowledge-free methods
for these two tasks. The main novelty of our research is based on the fact that methods are
primarily based on distributional similarity, of which we use two flavors: a sparse count-
based and a dense neural-based distributional semantic model. First, we introduce DRUID,
which is a method for detecting MWEs. The evaluation on MWE-annotated data sets in two
languages and newly extracted evaluation data sets for 32 languages shows that DRUID compares
favorably over previous methods not utilizing distributional information. Second, we present
SECOS, an algorithm for decompounding close compounds. In an evaluation of four dedicated
decompounding data sets across four languages and on data sets extracted from Wiktionary
for 14 languages, we demonstrate the superiority of our approach over unsupervised baselines,
sometimes even matching the performance of previous language-specific and supervised methods.
In a final experiment, we show how both decompounding and MWE information can be used in
information retrieval. Here, we obtain the best results when combining word information with
MWEs and the compound parts in a bag-of-words retrieval set-up. Overall, our methodology
paves the way to automatic detection of lexical units beyond standard tokenization techniques
without language-specific preprocessing steps such as POS tagging.

Submission received: 5 July 2017; revised version received: 10 February 2018; accepted for publication:
15 May 2018.

doi:10.1162/COLI a 00325

© 2018 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/44/3/483/1809277/coli_a_00325.pdf by guest on 01 D
ecem

ber 2021



Computational Linguistics Volume 44, Number 3

1. Introduction

If we take Ron Kaplan’s motivation for tokenization seriously that the “stream of
characters in a natural language text must be broken up into distinct meaningful units”
(Kaplan 2005) to enable natural language processing beyond the character level, then
tokenization is more than the low-level preprocessing task of treating interpunctua-
tion, hyphenation, and enclitics. Rather, tokenization also should aspire to produce
meaningful units, or, as Webster and Kit (1992) define it, tokens should be linguistically
significant and methodologically useful. In practice, however, tokenizers are rather not
concerned with meaning or significance—placed right at the beginning of any NLP
pipeline and usually implemented in a rule-based fashion, they are merely workhorses
to enable higher levels of processing, which includes a reasonable split of the input
into word tokens and some normalization to cater to the sensitivity of subsequent
processing components. Although it is clear that the methodological utility of a specific
tokenization depends on the overall task, it seems much more practical to fix the
tokenization in the beginning of the text ingestion process and handle task-specific
adjustments later. The work presented in this article operationalizes lexical semantics
in order to identify meaningful units. Assuming that low-level processing has already
been performed, we devise a method that can identify multiword units, namely, word
n-grams that have a non-compositional meaning, as well as a method that can split close
compound words into their parts. Both methods are primarily based on distributional
semantics (Harris 1951): By operationalizing language unit similarity in various ways,
we are able to inform the tokenization process with semantic information, enabling us to
yield meaningful units, which are shown to be linguistically valid and methodologically
useful in a series of suitable evaluations. Both methods do not make use of language-
specific processing, thus could be applied directly after low-level tokenization without
assuming the existence of, for example, a part of speech tagger.

Depending on the task, the low-level “standard” tokenization can be too fine-
grained, as from a semiotic perspective multiword expressions (MWEs) refer to a single
concept. On the flipside, tokenization can be too coarse-grained, as close compound
words are detected as single words, whereas they are formed by the concatenation
of at least two stems and can be considered as MWEs without white spaces. In this
article, we will describe two different approaches to represent (nominal) concepts in a
similar fashion. This results in an extended tokenization, similar to the work by Hassler
and Fliedl (2006). However, they extend their tokenization solely by bracketing phrases
and MWEs and do not split text in more fine-grained units. Trim (2013) differentiates
between low-level and high-level tokenization. Whereas high-level tokenization con-
centrates on the identification of MWEs and phrases, low-level tokenization mostly
splits words that are connected by apostrophes or hyphens. Our notion of coarse-
grained tokenization is similar to high-level tokenization. However, the fine-grained
tokenization goes one step beyond low-level tokenization, as we split close compound
words.

First, we describe a method for detecting MWEs. For defining MWEs, we follow
the definition by Sag et al. (2001, page 2) that claims that MWEs are “idiosyncratic
interpretations that cross word boundaries (or spaces).” Furthermore, MWEs are made
up of compounds, phrases, or sentences. The detection of named entities (e.g., names,
locations, companies, or concepts) is often considered as a task of its own, which aims
at identifying a subset of MWEs and is relevant for information extraction (e.g., relation
extraction or event extraction), but also for information retrieval or automatic speech
recognition systems.
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As a second contribution, we present a method for splitting close compounds.
Examples for such close compounds include, for example, dishcloth (English), pancake
(English), Hefeweizen (German for wheat beer), bijenzwerm (Dutch for swarm of bees)
or hiilikuitu (Finnish for carbon fibre). Similar to MWEs, compounds are created by
combining existing words, although in close compounds the stems are not separated
by white space. Detecting the single stems, called decompounding, showed impact in
several natural language processing (NLP) applications like automatic speech recog-
nitions (Adda-Decker and Adda 2000), machine translation (Koehn and Knight 2003),
or information retrieval (IR) (Monz and de Rijke 2001) and is perceived as a crucial
component for the processing of languages that are productive with respect to this
phenomenon.

For both the detection of MWEs and the decompounding of words, most existing
approaches rely either on supervised methods or use language-dependent part-of-
speech (POS) information. In this work, we present two knowledge-free and unsuper-
vised (and therefore language-independent) methods that rely on information gained
by distributional semantic models that are computed using large unannotated corpora,
namely, word2vec (Mikolov et al. 2013) and JoBimText (Biemann and Riedl 2013). First,
we describe these methods and highlight how their information can help for both tok-
enization tasks. Then, we present results for the identification of MWEs and afterwards
show the performance of the method for decompounding. For both tasks, we first show
the performance using manually annotated gold data before we present evaluations for
multiple languages using automatically extracted data sets from Wikipedia and Wik-
tionary. Lastly, we demonstrate how both flavors of such an extended tokenization can
be used in an IR setting. The article is partly based on previous work (Riedl and Biemann
2015, 2016) that has been substantially extended by adding experiments for several
languages and showing the advantage of combining the methods in an information
retrieval evaluation.

The article is organized as follows. Section 2 describes the distributional semantic
models that are used to compute similarities between lexical units, which are the main
source of information for both fine- and coarse-grained tokenization. Then, we describe
how multiword expressions can be detected and evaluate our methodology. In Section 4,
we describe the workings and the evaluation for compound splitting. How to use both
methods for information retrieval is shown in Section 5. In Section 6, we present the
related work. Afterwards, we highlight the main findings in the conclusion in Section 7
and give an overview of future work in Section 8.

2. Using Distributional Semantics for Fine- and Coarse-Grained Tokenization

Both methods described in this article have in common that they rely on distributional
semantics, which is based on the distributional hypothesis that was conceived by
Harris (1951). This hypothesis states that words that occur in a similar context tend
to have similar meaning. Many methods have implemented that assumption in order to
compute word similarities using various contexts (e.g., neighboring words, words with
syntactic dependencies) (Hindle 1990; Grefenstette 1994; Lin 1998). Usually, words are
not only similar to synonyms but also to hypernyms, antonyms, or related terms. For
the task of splitting words, the similarity to hypernyms is interesting, as compounds are
often similar to more general terms, which are stems of the compound. For example,
the word Hefeweizenbier [yeast wheat beer] is most similar to the term Bier [beer] or
Weizenbier [wheat beer], which are words that are nested in the more specific word.
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Such information is beneficial when it comes to the task of splitting compounds, as we
shall see subsequently. When computing similarities not only for words but considering
word n-grams, we observe that concepts that are composed of several word units are
often similar to single-word terms. For example, the word hot dog is most similar to
food-related terms like hamburger or sandwich. As shown in the remainder of this article,
the information of distributional semantics is beneficial for the tasks of identifying of
MWEs but also for the task of compound splitting.

In this work, we compute semantic similarities using the dense vector-based CBOW
model from word2vec (Mikolov et al. 2013) and a symbolic graph-based approach called
JoBimText (Biemann and Riedl 2013). In order to use both models within the word
splitting and the word merging task, we transform them to a so-called distributional
thesaurus (DT) as defined by Lin (1997). A DT can be considered as a dictionary where
for each word the top n most similar words are listed, ordered by their similarity score.

The CBOW model is learned during the task of predicting a word by its context
words. For this, the input layer is defined by the contexts of a word. As output layer
we use the center word. The prediction is performed using a single hidden layer that
represents the semantic model with the specified dimensions. For the computation of
word2vec models, we use 500 dimensions, 5 negative samples, and a word window of 5.
Because the implementation by Mikolov et al. (2013)1 does not support the computation
of similarities between all n-grams within a corpus, we use the word2vecf implemen-
tation by Levy and Goldberg (2014).2 This implementation allows specifying terms and
contexts directly and features the functionality to retrieve the most relevant contexts for
a word. In order to extract a DT from models computed with word2vec and word2vecf,
we compute the cosine similarity between all terms and extract, for each term, the 200
most similar terms.

As opposed to the mainstream of using dense vector representations, the approach
by Biemann and Riedl (2013), called JoBimText, uses a sparse count-based context
representation that nevertheless scales to arbitrary amounts of data (Riedl and Biemann
2013). Furthermore, this approach has achieved competitive results to dense vector
space models like CBOW and SKIP-gram (Mikolov et al. 2013) in word similarity
evaluations (Riedl 2016; Riedl and Biemann 2017). To keep the preprocessing language
independent, we keep only words in a context window for both approaches, as opposed
to, for example, dependency-parsing-based contexts. For the task of MWE identification
we do not only represent single words but also n-grams using single-word contexts. For
the task of decompounding, only unigrams are considered.

Based on the frequencies of words/n-grams and contexts, we calculate the lexicog-
rapher’s mutual information (LMI) significance score (Evert 2005) between terms and
features and remove all context features that co-occur with more than 1,000 terms, as
these features tend to be too general. In the next step we reduce the number of context
features per term by keeping for each term only 1,000 context features with the highest
LMI score. The similarity score is defined as the number of shared features of two
terms. Such an overlap-based similarity measure is proportional to the Jaccard similarity
measure, although we do not conduct any normalization. After computing the feature
overlap between all pairs of terms, we retain the 200 most similar terms for each word
n-gram. In line with Lin (1997) we refer to such a resource as DT.

1 https://code.google.com/archive/p/word2vec/.
2 https://bitbucket.org/yoavgo/word2vecf.
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3. Merging Words: Multiword Identification

The detection of multiword units is one of the extensions needed for coarse-grained
tokenization. As summarized concisely by Blanc, Constant, and Watrin (2007, page 1),
“language is full of multiword units.” By inspecting dictionaries, we highlight the
importance of MWEs. For example, in WordNet, 41.41% of all words are MWEs, as
shown in Table 1. Whereas more than 50% of all nouns are MWEs, only about 26% of all
verbs are MWEs. As the majority of all MWEs found in WordNet are nouns (93.73%),
developing the method we focus first on the detection of terms belonging to this word
class in Section 3.6 and show the performance on all word classes in subsequent sections.

Although it seems intuitive to treat certain sequences of tokens as (single) terms,
there is still considerable controversy about the definition of what exactly constitutes a
MWE. Sag et al. (2001) pinpoint the need for an appropriate definition of MWEs. For
this, they classify a range of syntactic formations that could form MWEs and define
MWEs as being non-compositional with respect to the meaning of their parts. Although
the exact requirements of MWEs is bound to specific tasks (such as parsing, keyword
extraction, etc.), we operationalize the notion of non-compositionality by using distri-
butional semantics and introduce a measure that works well for a range of task-based
MWE definitions.

Reviewing previously introduced MWE ranking approaches (cf. Section 6.1),
most methods use the following mechanisms to determine multiwordness: POS tags,
word/multiword frequency, and significance of co-occurrence of the parts. In contrast,
our method uses an additional mechanism, which performs a ranking based on distri-
butional semantics.

Distributional semantics has already been used for MWE identification, but mainly
to discriminate between compositional and non-compositional MWEs (Schone and
Jurafsky 2001; Hermann and Blunsom 2014; Salehi, Cook, and Baldwin 2014). Here we
introduce a concept to describe the multiwordness of a term by its uniqueness. This score
measures the likeliness that a term in context can be replaced with a single word. This
measure is motivated by the semiotic consideration that due to parsimony, concepts are
often expressed as single words. Furthermore, we deploy a context-aware punishment
term, called incompleteness, which degrades the score of candidates that seem incom-
plete regarding their contexts. For example, the term red blood can be called incomplete as
the following word is most likely the word cell. Both concepts are combined into a single
score we call DRUID (DistRibutional Uniqueness and Incompleteness Degree), which is
calculated based on a DT. In the following, we show the performance of this method
for French and English and examine the effect of corpus size on MWE extraction.
This section extends work presented in Riedl and Biemann (2015). In addition, we

Table 1
Amounts and percentages of MWEs contained in WordNet 3.1 for different POS.

noun adjective adverb verb all

MWE (count) 60,337 505 695 2,838 64,375
MWE (percentage) 51.51 2.35 15.53 24.59 41.41
all words 117,953 21,499 4,475 11,540 155,467
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demonstrate the language independence of the method by evaluating it on 32 languages
and give a more detailed data analysis.

We want to emphasize that our method works in an unsupervised fashion and is not
restricted to certain POS classes. However, most of the competitive methods require POS
filtering as a pre-processing step in order to do their statistics. Hence, these methods are
mostly evaluated based on noun compounds. Because of comparison reasons, the first
evaluation that uses POS filtering (see Section 3.6) is restricted to noun compounds.
However, the remaining experiments in Sections 3.7 and 3.8 are not restricted to any
particular POS.

First, we describe the new method and show its performance on different data sets;
we briefly describe the baseline and previous approaches in the next section.

3.1 Baselines and Previous Approaches

In the first setting, we evaluate our method by comparing the MWE rankings to mul-
tiword lists that have been annotated in corpora. In order to show the performance of
the method, we introduce an upper bound and two baseline methods and give a brief
description of the competitors. Most of these methods rely on lists of pre-filtered MWE
candidate terms T. Usually these are extracted by patterns defined on POS sequences.

3.1.1 Upper Bound. As an upper bound, we consider a perfect ranking, where we rank all
positive candidates before all negative ones. Within the data set, we only have binary
labels for true and false MWEs. Thus, any ordering of the MWEs within the block of
MWEs labeled as true, respectively, false, does not change the upper bound.

3.1.2 Lower Baseline and Frequency Baseline. The ratio between true candidates and all
candidates serves as a lower baseline, which is also called baseline precision (Evert
2008). The second baseline is the frequency baseline, which ranks candidate terms
t ∈ T according to their frequency freq(t). Here, we hypothesize that words with high
frequency are multiword expressions.

3.1.3 C-value/NC-value. Frantzi, Ananiadou, and Tsujii (1998) developed the commonly
used C-value (see Equation (1)). This value is composed of two factors. As first factor,
they use the logarithm of the term length in words in order to favor longer MWEs.
The second factor is the frequency of the term reduced by the average frequency
of all candidate terms T, which nest the term t (i.e., t is a substring of the terms we
denote as Tt).

cv(t) = log2(|t|) ·

0

@freq(t)− 1
|Tt|

X

b∈Tt

freq(b)

1

A (1)

An extension of the C-value was proposed by Frantzi, Ananiadou, and Tsujii (1998) and
is called the NC-value. It takes advantage of context words Ct, which are neighboring
words of t, by assigning weights to them. As context words only nouns, adjectives, and
verbs are considered.3 Context words are weighted with Equation (2), where k denotes

3 Frantzi, Ananiadou, and Tsujii (1998) do not specify the context window size.
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the number of times the context word c ∈ Ct occurs with any of the candidate terms.
This number is normalized by the number of candidate terms.

w(c) = k
|T| (2)

The NC-value is a weighted sum of the C-value and the product of the term t occurring
with each context c, which form the term tc.

nc(t) = 0.8 · cv(t) + 0.2
X

c∈Ct

freq(tc)w(c) (3)

3.1.4 t-test. The t-test (see, e.g., Manning and Schütze 1999, page 163) is a statistical test
for the significance of co-occurrence of two words. It relies on the probabilities of the
term and its single words. The probability of a word p(w) is defined as the frequency of
the term divided by the total number of terms of the same length. The t-test statistic is
computed using Equation (4) with freq(.) being the total frequency of all unigrams.

t(w1 . . .wn) ≈ p(w1 . . .wn)−
Qn

i=1 p(wi)p
p(w1 . . .wn)/freq(.)

(4)

We then use this score to rank the candidate terms.

3.1.5 Marginal Frequency-Based Geometric Mean (FGM) Score. Nakagawa and Mori (2002,
2003) presented another method that is inspired by the C/NC-value and outperformed
a modified C-value measure.4 It is composed of two scoring mechanisms for the candi-
date term t, as shown in Equation (5).

FGM(t) = GM(t) ·MF(t) (5)

The first term in the equation is the geometric mean GM(.) of the number of distinct
direct left l(.) and right r(.) neighboring words for each single word ti within t.

GM(t) =

0

@
X

ti∈t

(|l(ti)|+ 1)(|r(ti)|+ 1)

1

A

1
2|t|

(6)

These neighboring words are extracted directly from the corpus; the method relies on
neither candidate lists nor POS tags. In contrast, the marginal frequency MF(t) relies
on the candidate list and the underlying corpus. This frequency counts how often the
candidate term occurs within the corpus and is not a subset of a candidate. Korkontzelos
(2010) showed that although scoring according to Equation (5) leads to comparatively
good results, it is consistently outperformed by the performance of MF(t).

4 They adjust the logarithmic length in order to be able to use the C-value to detect single-word terms.
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3.2 DistRibutional Uniqueness and Incompleteness Degree (DRUID)

Here, we describe the DRUID method for ranking terms regarding their multiwordness,
which consists of two mechanisms relying on semantic word similarities: A score for
the uniqueness of a term and a score that punishes its incompleteness.5 The importance
and influence of the results for the combination of both mechanisms is demonstrated in
Section 3.9. The DT is computed as described in Section 2, using n-grams (n = 1, 2, 3, 4).
When using JoBimText to compute such a DT, we use the left and right neighboring
words as context. In order to compute the DRUID score using the CBOW model, we
compute dense vector representations using word2vecf (Levy and Goldberg 2014) and
convert it to a DT by extracting the 200 most similar words for each n-gram. An example
using JoBimText for the most similar n-grams to the terms red blood cell and red blood
including their feature overlap is shown in Table 2.

3.2.1 Uniqueness Computation. The first mechanism of our MWE ranking method is
based on the following hypothesis: n-grams that are MWEs could be substituted by
single words, thus they have many single words among their most similar terms. When
a semantically non-compositional word combination is added to the vocabulary, it
expresses a concept that is necessarily similar to other concepts. Hence, if a candidate
multiword is similar to many single word terms, this indicates multiwordness.

To compute the uniqueness score (uq) of an n-gram t, we first extract the n-grams it
is similar to using the DT as described in Section 2. The function similarities(t) returns
the 200 most similar n-grams to the given n-gram t. We then compute the ratio between
unigrams and all similar n-grams considered using the formula, where the function
unigram(.) tests whether a word is a unigram:

uq(t) =
|{∀w ∈ similarities(t) | unigram(w)}|

|similarities(t)| . (7)

We illustrate the computation of our measure based on two example terms: the MWE
red blood cell and the non-MWE red blood. When considering only the ten most similar
entries for both n-grams as illustrated in Table 2, we observe a uniqueness score of
7/10 = 0.7 for both n-grams. If considering the top 200 similar n-grams, which are
also used in our experiments, we obtain 135 unigrams for the candidate red blood cell
and 100 unigrams for the n-gram red blood. We use these counts for exemplifying the
workings of the method in the remainder.

3.2.2 Incompleteness Computation. In order to avoid ranking nested terms at high
positions, we introduce a measure that punishes such “incomplete terms”. This mecha-
nism is called incompleteness (ic) and, similarly to the C/NC-value method (see
Section 3.1.3), consists of a context weighting function that punishes incomplete terms.
We show the pseudocode for the computation in Algorithm 1. First, we use the function
context(t) to extract the 1,000 most significant context features. This function returns a
list of tuples of left and right contexts.

5 The DRUID implementation is available open source and pre-computed models can be found here:
http://www.jobimtext.org/druid.
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Table 2
The ten most similar entries for the term red blood cell (left) and red blood (right). Here, seven of
ten terms are single words in both lists.

red blood cell red blood
Similar term Score Similar term Score

erythrocyte 133 red 148
red cell 129 white blood 111
RBC 95 Sertoli 93
platelet 70 Leydig 92
red-cell 37 NK 86
reticulocyte 34 mast 85
white blood 33 granulosa 81
leukocyte 29 endothelial 81
granulocyte 28 hematopoietic stem 79
the erythrocyte 28 peripheral blood monon 78

Algorithm 1 Computation of the incompleteness score
1: function ic(t)
2: contexts← context(t)
3: C← map()
4: for all (cleft, cright) in contexts do
5: C[cleft,left]← C[cleft, left] + 1
6: C[cright, right]← C[cright, right] + 1
7: end for
8: return max value(C)/|contexts|
9: end function

For JobimText, these context features are the same that are used for the similarity
computation in Section 2 and have been ranked according to the LMI measure. In the
case of word2vecf, context features are extracted per word. To be compatible with the
JoBimText contexts, we extract the 1,000 contexts with the highest cosine similarity
between word and context.

For the example term red blood, some of the contexts are 〈extravasated, cells〉,
〈uninfected, cells〉, 〈nucleated, corpuscles〉. In the next step we iterate over all contexts.
Using the first context feature results in the tuple (extravasated, cells). Then, we sepa-
rately count the occurrence of both the left and the right context, including its relative
position (left/right) as illustrated in Table 3 for the two example terms.

We subsequently return the maximal count and normalize it by the counts of fea-
tures |context(t)| considered, which is at most 1,000. This results in the incompleteness
measure ic(t). For our example terms we achieve the values ic(red blood) = 557/1, 000
and ic(red blood cell) = 48/1, 000. Whereas the uniqueness scores for the most similar
entries are close together (100 vs. 135), we now have a measure that indicates the
incompleteness of an n-gram, assigning higher scores to more incomplete terms.

3.2.3 Combining Both Measures. As shown in the previous two sections, a high uniqueness
score indicates the multiwordness and a high incompleteness score should decrease
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with xi equal to 1 if the ith ranked candidate is annotated as MWE and 0 otherwise.
For an overall performance we use the average precision (AP) as defined by Thater,
Dinu, and Pinkal (2009):

AP = 1
|Tmwe|

|T|X

k=1

xkP@k (10)

with Tmwe being the set of positive MWEs. When facing tied scores, we mix false and
true candidates randomly following Cabanac et al. (2010).

3.4 Corpora

For the first experiments, we consider two annotated (small) corpora and two unan-
notated (large) corpora for the evaluation and computation of MWEs. The language
independence of DRUID is demonstrated on various Wikipedia text corpora.

GENIA Corpus and SPMRL 2013: French Treebank. In the first experiments, we use two
small annotated corpora that serve as the gold standard MWEs. We use the medical
GENIA corpus (Kim et al. 2003), which consists of 1,999 abstracts from Medline7 and
encompasses 0.4 million words. This corpus has annotations regarding important and
biomedical terms.8 In addition, single terms are annotated in this data set, which we
ignore.

The second small corpus is based on the French Treebank (Abeillé and Barrier 2004),
which was extended for the SPMRL task (Seddah et al. 2013). This version of the corpus
also contains compounds annotated as MWEs. In our experiments, we use the training
data, which cover 0.4 million words.

Whereas the GENIA MWEs target term matching and medical information re-
trieval, the SPMRL MWEs mainly focus on improving parsing through compound
recognition.

Medline Corpus and Est Républicain Corpus (ERC). In a second experiment, the scalability
to larger corpora is tested. For this, we make use of the entire set of Medline ab-
stracts, which consists of about 1.1 billion words. The Est Républicain Corpus (Seddah
et al. 2012) is our large French corpus.9 It is made up from local French newspapers
from the eastern part of France and comprises 150 million words.

Wikipedia. Applying the methods to texts extracted from 32 Wikipedias validates their
language independence. For this, we use the following languages: Arabic, Basque,
Bulgarian, Catalan, Croatia, Czech, Danish, Dutch, English, Estonian, Finnish, French,
Galician, German, Greek, Hebrew, Hungarian, Italian, Kazakh, Latin, Latvian, Nor-
wegian, Persian, Polish, Portuguese, Romanian, Russian, Slovene, Spanish, Swedish,
Turkish, and Ukrainian.

7 The Medline corpus is available at:
http://www.nlm.nih.gov/bsd/licensee/access/medline_pubmed.html.

8 The GENIA corpus is freely available at:
http://www.nactem.ac.uk/genia/genia-corpus/pos-annotation.

9 The ERC is available at: http://www.cnrtl.fr/corpus/estrepublicain.
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3.5 Candidate Selection

In the first two experiments, we use POS filters to select candidates. We concentrate
on filters that extract noun MWEs, as they constitute the largest number of MWEs
(see Table 1) and avoid further preprocessing like lemmatization. We use the filter
introduced by Justeson and Katz (1995) for the English medical data sets (see Table 4).

Considering only terms that appear more than ten times yields 1,340 candidates
for the GENIA data set and 29,790 candidates for the Medline data set. According to
Table 5, we observe that most candidates are bigrams. Whereas about 20% of MWEs are
trigrams in both corpora, only a marginal number of longer MWEs have been marked.

For the French data sets, we apply the POS filter proposed by Daille, Gaussier, and
Langé (1994), which is suited to match nominal MWEs (see Table 4). Applying the same
filtering as for the medical corpora leads to 330 candidate terms for the SPMRL and
7,365 candidate terms for the ERC. Here the ratio between bigrams and trigrams is
more balanced but again the number of 4-grams constitutes the smallest class.

In comparison with the Medline data set, the ratio of multiwords extracted by the
POS filter on the French corpus is much lower. We attribute this to the fact that in the
French data, many adverbial, prepositional MWEs are annotated, which are not covered
by the POS filter.

The third experiment shows the performance of the method in absence of language-
specific preprocessing. Thus, we only filter the candidates by frequency and do not
make use of POS filtering. As most previous methods rely on POS-filtered data, we
cannot compare with them in this language-independent setting.

For the evaluation, we compute the scores of the competitive methods in two ways:
First, we compute the scores based on the full candidate list without any frequency
filter and prune low-frequent candidates only for the evaluation (post-prune). In the
second setting, we filter candidates according to their frequency before the computation

Table 4
POS sequences for filtering noun MWEs for English and French. Each letter is a truncated POS
tag of length one where J is an adjective, N a noun, P a preposition, and D a determiner.

Language POS filter

English (Korkontzelos 2010) (([JN]+[JN]?[NP]?[JN]?)N)
French (Daille, Gaussier, and Langé 1994) N[J]?|NN|NPDN

Table 5
Number of MWE candidates after filtering for the expected POS tag. Additionally, the table
shows the distribution over n-grams with n ∈ {1, 2, 3, 4}.

Corpus Total Number of 2-gram 3-gram 4-gram
Candidates

GENIA 1,340 1,056 243 41
Medline 29,790 22,236 6,400 1,154
SPMRL 330 197 116 17
ERC 7,365 3,639 2,889 837
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of scores (pre-prune). This leads to differences for context-aware measures, because in
the pre-pruned case a lower number of less noisy contexts is used.

The evaluation on Wikipedia is slightly different, as we do not have any gold data.
Thus, we compute the ranking regarding the multiwordness for all words in the corpus.
Based on this list, we determine the multiwordness of an n-gram by testing its existence
in the respective language’s Wiktionary.

3.6 Results Using POS

First, we present the results based on the GENIA corpus (see Table 6). Almost all
competitive methods beat the lower baseline. The C/NC-value performs best when the
pruning is done after the frequency filtering. In line with the findings of Korkontzelos
(2010) and in contrast to Frantzi, Ananiadou, and Tsujii (1998), the AP of the C-value
is slightly higher than for the NC-value. All the FGM-based methods except the GM
measure alone outperform the C-value. The results in Table 6 indicate that the best com-
petitive system is the post-pruned FGM system, as it has much higher average precision
scores and misses only 50 MWEs in the first 500 entries. A slightly different picture is
presented in Figure 1, where we plot the P@k scores against the number of candidates.
Here DRUID computed on the JoBimText similarities performs well for the top-k list
for small k, that is, it finds many valid MWEs with high confidence, thus combines
well with MF, which extends to larger k, but places too much importance of frequency
when used alone. Common errors occur for frequent prepositional phrases, such as

Table 6
Results for P@100, P@500, and the average precision (AP) for various ranking measures. The
gold standard is extracted using the GENIA corpus. This corpus is also used for computing the
measures.

Method P@100 P@500 AP

upper baseline 1.000 1.000 1.0000
lower baseline 0.713 0.713 0.7134
frequency 0.790 0.750 0.7468

t-test 0.790 0.750 0.7573
C-value (pre-pruned) 0.880 0.846 0.8447
NC-value (pre-pruned) 0.880 0.840 0.8405
GM 0.590 0.662 0.6740
MF (pre-pruned) 0.920 0.872 0.8761
FGM (pre-pruned) 0.910 0.840 0.8545
MF (post-pruned) 0.900 0.876 0.8866
FGM (post-pruned) 0.900 0.900 0.8948

DRUID 0.930 0.852 0.8663
DRUID (using word2vec) 0.800 0.740 0.7352
Uniqueness (using word2vec) 0.680 0.752 0.7283
Incompleteness (using word2vec) 0.760 0.724 0.7375
log(freq)·DRUID 0.970 0.860 0.8661
MF(post-pruned)·DRUID 0.950 0.926 0.9241
FGM(post-pruned)·DRUID 0.960 0.940 0.9262
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Figure 1
This graph shows the P@k for some measures, plotting the precision against k. Using DRUID in
combination with the MF and FGM measures yields the highest precision scores.

“in patience” (we give more details on errors in Section 3.10). Using similarities from
the word2vec model does not work well for the DRUID method. This is mainly attributed
to the fact that multiwords are mostly similar to words of the same frequency (Schnabel
et al. 2015; Riedl and Biemann 2017) and often these words are multiwords themselves.
Observing, for example, the most similar terms for the term red blood cells, we retrieve
the words peripheral blood mononuclear cell, show that the, U937 cells, basal, potent, which
are much noisier than the ones we obtain with the JoBimText model (see Table 2 in
Section 3.2.1) and within the top 10 most similar terms, we only find four single-worded
terms. This is already an indicator that the concept of uniqueness does not apply to
similarities computed with word2vec. In contrast, the JoBimText similarities are most
similar to more frequent words (we detected 7 out of 10 terms to be unigrams), and we
detect more synonyms and hypernyms that are single-word terms. Only for the P@100,
can the word2vec-based method beat the t-test and frequency baselines. However, for
all other measures, the performance is similar to these baselines or even inferior, and
significantly worse than using DRUID with JoBimText. Thus, we will not report results
for the other MWE extraction experiments.
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When looking at effects between post-pruning and pre-pruning, we observe that
FGM scores higher than MF when post-pruning, but the inverse is observed when pre-
pruning. Our JoBimText-based DRUID method can outperform FGM only on the top-
ranked 300 terms (see Figure 1 and Table 6).

Multiplying the logarithmic frequency with DRUID, the results improve slightly
and the best P@100 of 0.97 is achieved. All FGM results are outperformed when com-
bining the post-pruned FGM scores with our measure. According to Figure 1, this
combination achieves high precision for the first ranked candidates and still exploits
the good performance of the post-pruned FGM based method for the middle-ranked
candidates.

Different results are achieved for the SPMRL data set, as can be seen in Table 7.
Whereas the pre-pruned C-value again receives better results than frequency, it scores
below the lower baseline. In addition, the post-pruned FGM and MF method do not
exceed the lower baseline. Data analysis revealed that for the French data set only
ten out of the 330 candidate terms are nested within any of the candidates. This is
much lower than the 637 terms nested in the 1340 candidate terms for the GENIA
data set. As both the FGM-based methods and the C/NC-value heavily rely on nested
candidates, they cannot profit from the candidates of this data set and achieve similar
scores as ordering candidates according to their frequency. Comparing the baselines to
our scoring method, this time we obtain the best result for DRUID without additional
factors. However, multiplying DRUID with MF or log(frequency) still outperforms the
other methods and the baselines.

Most MWE evaluations have been performed on rather small corpora. Here, we
examine the performance of the measures for large corpora, to realistically simulate
a situation where the MWEs should be found automatically for an entire domain or
language.

Using the Medline corpus, all methods except the GM score outperform the lower
baseline and the frequency baseline (see Table 8). Regarding the AP the best results
are obtained when combining our DRUID method with the MF, whereas for P@100
and P@500 the log-frequency-weighted DRUID scores best. As we can observe from

Table 7
Results for MWE detection on the French SPMRL corpus. Both the generation of the gold
standard and the computations of the measures have been performed on this corpus.

Method P@100 P@200 AP

upper baseline 1.000 0.860 1.0000
lower baseline 0.521 0.521 0.5212
frequency 0.500 0.480 0.4876

t-test 0.500 0.485 0.4934
C-value (pre-pruned) 0.490 0.540 0.5107
MF (post-pruned) 0.510 0.495 0.5017
FGM (post-pruned) 0.460 0.480 0.4703

DRUID 0.790 0.690 0.7794
log(freq)·DRUID 0.770 0.675 0.7631
MF(post-pruned)·DRUID 0.700 0.630 0.6850
FGM(post-pruned)·DRUID 0.600 0.570 0.5948
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Table 8
Results of n-gram ranking on the medical data. Whereas the gold standard is extracted from the
GENIA data set, the ranking measures as well as the frequency threshold for selecting the gold
candidates are computed using the Medline corpus.

Method P@100 P@500 AP

upper baseline 1.000 1.000 1.0000
lower baseline 0.416 0.416 0.4161
frequency 0.720 0.534 0.4331

C-value (pre-pruned) 0.750 0.564 0.4519
t-test 0.720 0.542 0.4483
GM 0.210 0.272 0.3502
MF (pre-pruned) 0.550 0.542 0.4578
FGM (pre-pruned) 0.580 0.478 0.4200
MF (post-pruned) 0.530 0.500 0.4676
FGM (post-pruned) 0.490 0.446 0.4336

DRUID 0.770 0.686 0.4608
log(freq)·DRUID 0.860 0.720 0.4693
GM · DRUID 0.770 0.634 0.4497
MF(pre-pruned)·DRUID 0.730 0.634 0.4824
MF(post-pruned)·DRUID 0.730 0.626 0.4889

Figure 2, using solely the DRUID method or the combined variation with the log-
frequency lead to the best ranking for the first 1,000 ranked candidates. However,
both methods are outperformed beyond the first 1,000 ranked candidates by the MF-
informed DRUID variations. Using the combination with GM results in the lowest
scores.

In this experiment, the C-value achieves the best performance from the competitive
methods for the P@100 and P@500, followed by the t-test. But the highest AP is reached
with the post-pruned MF method, which also outperforms the sole DRUID slightly.
Contrary to the GENIA results, the MF scores are consistently higher than the FGM
scores.

In the French ERC, no nested terms are found within the candidates. Thus, the
post-pruned and pre-pruned settings are equivalent and thus MF equals frequency.
We show the results for the evaluation using the ERC in Table 9.

The best results are again obtained with our method with and without the loga-
rithmic frequency weighting. Again, the AP of the C-value and most of the FGM-based
methods are inferior to the frequency scoring. Only the t-test and the MF score slightly
higher than the frequency.10 In contrast to the results based on the smaller SPMRL data
set, the MF, FGM, and C-value can outperform the lower baseline.

In comparison to the smaller corpora, the performance for the larger corpora is
much lower. Especially low-frequent terms in the small corpora that have high frequen-
cies in the larger corpora have not been annotated as MWEs.

10 This is achieved by chance for the MF, as it is equal to the frequency. The different scores are due to the
randomly sorted tied scores used during our evaluation and reflect the variance of randomness.
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Figure 2
Precision scores when considering different number of highest ranked words for DRUID and
combined DRUID variations. Here, the gold standard is extracted from the GENIA data set,
whereas the scores for the methods are computed using the Medline corpus.

3.7 Results Without POS Filtering

Next, we apply our method to candidates without any POS filtering and report results
for candidates surpassing a frequency threshold of 10. Thus, we do not only restrict the
evaluation on noun MWEs but use all MWEs of all POS classes that have been annotated
in both corpora. As most competitive methods from the previous section rely on POS
tags, we only use the t-test for comparison.

Analysis revealed that the top-scored candidates according to the t-test begin with
stopwords. As an additional heuristic for the t-test, we shift those MWEs to the last
ranks that start or end with one of the most frequent ten words in the corpus. For
the smaller data set the best results are achieved with the sole DRUID (see Table 10)
and frequency weighting does not seem to be beneficial, as highly frequent n-grams
ending with stopwords are ranked higher in absence of POS filtering. This, however,
is not observed for larger corpora. Here, the best results for Medline are achieved with
the frequency-weighted DRUID. Whereas for French, the sole DRUID method performs
best, the difference between the DRUID and the log-frequency-weighted DRUID is rather
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Table 9
Results for ranking n-grams, according to their multiwordness, based on the French ERC.
The candidates are extracted based on the smaller SPMRL corpus.

Method P@100 P@500 AP

upper baseline 1.000 1.000 1.0000
lower baseline 0.220 0.220 0.2201
frequency 0.370 0.354 0.3105

C-value 0.420 0.366 0.3059
t-test 0.390 0.360 0.3134
GM 0.010 0.052 0.1694
MF 0.370 0.356 0.3148
FGM 0.280 0.260 0.2405

DRUID 0.700 0.568 0.3962
log(freq)·DRUID 0.760 0.582 0.4075
MF · DRUID 0.570 0.516 0.3776
FGM · DRUID 0.510 0.418 0.3234

Table 10
MWE ranking results based on different methods without using any linguistic preprocessing.

Corpora Method Medical French

P@100 AP P@100 AP

sm
al

lc
or

po
ra

upper baseline 1.000 1.0000 1.000 1.0000
lower baseline 0.107 0.1071 0.083 0.0832
frequency 0.150 0.1135 0.060 0.0906

t-test 0.160 0.1261 0.080 0.1097
t-test + sw 0.530 0.3643 0.180 0.1481
DRUID 0.700 0.4048 0.670 0.2986
log(freq)·DRUID 0.690 0.3644 0.460 0.2527

la
rg

e
co

rp
or

a

upper baseline 1.000 1.0000 1.000 1.0000
lower baseline 0.036 0.0361 0.019 0.0191
frequency 0.010 0.0361 0.060 0.0366

t-test 0.020 0.0412 0.080 0.0440
t-test + sw 0.000 0.0989 0.200 0.0485
DRUID 0.610 0.1378 0.660 0.1009
log(freq)·DRUID 0.760 0.1649 0.600 0.0988

small. The low APs can be explained by the large number of considered candidates. The
second best scores are achieved with the stopword-filtered t-test (t-test + sw). As in this
setting the C-value cannot make use of candidate filtering based on POS tags, we do not
list its performance, as it performs on par with frequency.
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3.8 Multilingual Evaluation

In order to demonstrate the performance of DRUID for several languages, we perform
an evaluation on 32 languages. For this experiment, we compute similarities on their
respective Wikipedias.11 The evaluation is performed by extracting the 1,000 highest
ranked words using DRUID. In order to determine whether a word sequence is a MWE,
we use Wiktionary as “gold” standard and test whether it occurs as word entry.12 Using
this information, we compute the AP for these 1,000 ranked words.

We present the results for this experiment in columns 2 to 5 in Table 11. The t-test
with stopword filtering mostly performs similar to the frequency baseline and improves
from an average score of 0.07 to 0.08. We observe that in comparison to two baselines,
frequency (freq.) and the t-test with stopword filtering, the DRUID method yields the best
scores for 6 out of the 32 languages. However, if we multiply the logarithmic frequency
by the DRUID measure, we gain the best performance for 30 languages. In general,
numerical scores are low—for example, for Arabic, Slovene, or Italian, we obtain APs
below 0.10. The highest scores are achieved for Swedish (0.33), German (0.36), Turkish
(0.36), French (0.44), and English (0.70). Analyzing the results, we observe that many
“false” MWEs are multiword units that are in fact multiword units, which are just
not covered in the respective language’s Wiktionary. Furthermore, we detect that these
word sequences often are titles of Wikipedia articles. The absence of word lemmatiza-
tion causes further decline, as words in Wiktionary are recorded in lemmatized form.
To alleviate this influence, we extend our evaluation and check the occurrence of word
sequences both in Wiktionary and Wikipedia. Using the Wikipedia API also normalizes
query terms and, thus, we obtain a better word sequence coverage. This is confirmed by
much higher results, as shown in columns 6 through 9 in Table 11. Using the frequency
combination with DRUID, we even gain higher APs for languages, which attained worse
scores in the previous setting (e.g., Arabic [0.62], Slovene [0.17], and Italian [0.44]).
Except for Estonian and Polish, using the logarithmic frequency weighting performs
best for all languages. For these two languages, using the sole DRUID measure performs
best. The best performance is obtained for English (0.87), Turkish (0.66), French (0.66),
German (0.62), and Portuguese (0.64). Based on these multilingual experiments, we
have demonstrated that DRUID not only performs well for English and French, but also
for other languages, showing that its elements, uniqueness and incompleteness, are
language-independent principles for multiword characterization.

3.9 Components of DRUID

Here, we show different parameters for DRUID, relying on the English GENIA data
set without POS filtering of MWE candidates and by considering only terms with a
frequency of 10 or more. Inspecting the two different components of the DRUID measure
(see Figure 3 top), we observe that the uniqueness measure contributes most to the
DRUID score. The main effect of the incompleteness component is the downranking of a
rather small number of terms with high uniqueness scores, which improves the overall

11 We use Wikipedia dumps from late 2016.
12 For querying terms, we use the Wiktionary API: https://en.wiktionary.org/w/api.php,

February 2017.
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Figure 3
Results for the components of the DRUID measure (top) and for different filtering thresholds
(bottom) of the similar entries considered for the uniqueness scoring.
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3.10 Discussion and Data Analysis

The experiments confirm that our DRUID measure, either weighted with the MF or alone,
works best across two languages and across different corpus sizes. It also achieves
the best results in absence of POS filtering for candidate term extraction. The optimal
weighting of DRUID depends on the nestedness of the MWEs: Using DRUID with the MF
should be applied when there are more than 20% of nested candidates. If there are no
nested candidates, we recommend using the log-frequency or no frequency weighting.

We present the best-ranked candidates obtained with our method and with the best
competitive method in terms of P@100 for the two smaller corpora. Using the GENIA
data set, our log-frequency based DRUID (see left column in Table 12) ranks only true
MWE within the 15 top-scored candidates.

The right-hand side shows results extracted with the pre-pruned MF method that
yields three non-MWE terms. Whereas these terms seem to be introduced as candidates
due to a POS error, the MF, and the C-value are not capable of removing terms starting
with stopwords. The DRUID score alleviates this problem with the uniqueness factor.
For the French data set, only one false candidate is ranked in the top 15 candidates.

In comparison, eight non-annotated candidates are ranked in the top 15 candidates
by the MF (post-pruned) method as shown in Table 13.

Whereas the unweighted DRUID method scores better than its competitors on the
large corpora, the best numerical results are achieved when using DRUIDwith frequency-
based weights on smaller corpora. For a direct comparison, we evaluated the small and
large corpora using an equal candidate set. We observed that all methods computed on
the large corpora achieve slightly inferior results than when computing them using the
small corpora.

Data analysis revealed that we personally would consider many of these high
ranked “false” candidates as MWEs.

For examining the effect, we extracted the top ten ranked terms, which are not
annotated as MWE from the methods with the best P@100 performance, resulting in

Table 12
Top ranked candidates from the GENIA data set using our ranking method (left) and the
competitive method (right). Each term is marked if it is an MWE (1) or not (0).

log(freq)·DRUID MF (pre-pruned)

NF-kappa B 1 T cells 1
transcription factors 1 NF-kappa B 1
transcription factor 1 transcription factors 1
I kappa B alpha 1 activated T cells 1
activated T cells 1 T lymphocytes 1
nuclear factor 1 human monocytes 1
human monocytes 1 I kappa B alpha 1
gene expression 1 nuclear factor 1
T lymphocytes 1 gene expression 1
NF-kappa B activation 1 NF-kappa B activation 1
binding sites 1 in patients 0
MHC class II 1 important role 0
tyrosine phosphorylation 1 binding sites 1
transcriptional activation 1 in B cells 0
nuclear extracts 1 transcriptional activation 1

504

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/44/3/483/1809277/coli_a_00325.pdf by guest on 01 D
ecem

ber 2021



Riedl and Biemann Using Semantics for Granularities of Tokenization

Table 13
Top ranked candidates from the SPMRL data set for the best DRUID method (left) and the best
competitive method (right). Each term is marked if it is an MWE (1) or not (0).

DRUID MF (post-pruned)

hausse des prix 1 milliards de francs 0
mise en oeuvre 1 millions de francs 0
prise de participation 1 Etats - Unis 1
chiffre d’ affaires 1 chiffre d’ affaires 1
formation professionnelle 1 taux d’ intérêt 1
population active 1 milliards de dollars 0
taux d’ intérêt 1 millions de dollars 0
politique monétaire 1 Air France 1
Etats - Unis 1 % du capital 0
Réserve fédérale 1 milliard de francse 0
comité d’ établissement 1 directeur général 1
projet de loi 1 M. Jean 0
système européen 0 an dernier 1
conseil des ministres 1 années 1
Europe centrale 1 % par rapport 0

Table 14
Top ranked terms for the Medline corpus, which are not marked as MWEs. The rank is denoted
to the left of each term and all terms, which can be found within a lexicon, are marked in bold.

log(freq)DRUID C-value (pre-pr.)

26 carboxylic acid 1 present study
28 connective tissue 7 important role
40 cathepsin B 11 degrees C
41 soft tissue 13 risk factors
42 transferrin receptor 15 significant differences
53 DNA damaging 18 other hand
61 foreign body 22 significant difference
62 radical scavenging 33 magnetic resonance
71 spatial distribution 39 first time
74 myosin heavy chain 48 significant increase

the log(freq) DRUID and the pre-pruned C-value methods. We show the terms including
their ranking position based on the GENIA data set in Table 14.

First, we observe that the first “false” candidate for our method appears at rank 26
and at rank 1 for the C-value. Additionally, only 10 out of the top 74 candidates are
not annotated as MWEs for our method, whereas the same number of 10 non-MWEs
is found in the first 48 candidates for the competitor. When searching the terms within
the MeSH dictionary, we find seven terms ranked from our method and two for the
competitive method, showing that most such errors are at least questionable, given that
these terms are contained in a domain-specific lexicon.13 This leads us to the conclusion
that our method scales to larger corpora.

13 The MeSH dictionary is available at: http://www.nlm.nih.gov/mesh/.
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Table 15
The highest ranked single-worded terms for Medline and ERC without any POS filtering, based
on the DRUID score.

Medline ERC

GATA-1 antiatherosclerotic mesure Bergé
function Smad6 activités carnets
Sp1 Evi-1 politique Bouvet
used ETS1 prix promesse
increased 3q26 réduction préoccupe
shown Tcf analyse composants
IFN-gamma LEF-1 crise aspirations
decreased hypolipidaemic stratégie hostilité
IL-10 down-regulatory tête dettes
IL-5 Xq13 campagne Brunet

In contrast to the competitive measures introduced in this section, our method is
also able to rank single-worded terms. We show the 20 highest ranked single-worded
terms in Table 15 for the Medline and the ERC corpus. In both lists we did not filter by
POS and removed numbers, which often have a high DRUID score. Both for French and
for the medical data, we observe some verbs, but mostly common and proper nouns.
These are well suited as keyword lists that are required for document indexing used,
e.g., for search engines or automatic speech recognition, as we have demonstrated in
Milde et al. (2016).

3.11 Summary on MWE Identification

In this section, we have demonstrated the capabilities of our method for the identifica-
tion of MWEs in order to treat them as single tokens. Using similarities from word2vec
does not work well for DRUID and applying the symbolic JoBimText approach works
better. This is mainly attributed to the fact that JoBimText prefers to extract similarities to
more frequent words, which are often single-worded terms (e.g., hypernyms), whereas
word2vec mostly predicts multiword expressions and words of the same frequency for
similarity queries. This is possible as JoBimText does not embed terms in a metric space
that is subject to the triangle inequality and is in line with the research by Schnabel
et al. (2015) and Riedl and Biemann (2017). These findings show that using similarities
from a symbolic semantic method brings added value when it comes to the identifica-
tion of MWEs. Uniqueness is a well-working mechanism in MWE modeling. Whereas
frequency and co-occurrence have been captured in many previous approaches (see
Manning and Schütze [1999], Ramisch, De Araujo, and Villavicencio [2012], and
Korkontzelos [2010] for a survey), we boost multiword candidates t by their grade
of distributional similarity with single word terms. We implement such contextual
substitutability with a model where the term t can consist of multiword tokens and
similarity is measured based on the right and neighboring word between all (single
and multiword) terms. Because it is the default to express concepts with single words,
a high uniqueness score is assigned to multiwords that belong to the same category
just as single words would. For example, using an English open-domain corpus, hot dog
is most similar to the terms: food, burger, hamburger, sausage, and roadside. Candidates
with a low number of single-word similarities also serve the same function, but more
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frequently we observe single n-grams with function words or modifying adjectives
concatenated with content words—for example, small dog is most similar to “various cat”,
“large amount of ”, “large dog”, “certain dog”, and “dog”. To be able to kick in, the measure
requires a certain minimum frequency for candidates in order to find enough contextual
overlap with other terms. Additionally, we demonstrate effective performance on larger
corpora and show its applicability when used in a completely unsupervised evaluation
setting. Furthermore, we have demonstrated the language independence of the measure
by evaluating it on 32 languages using Wiktionary and Wikipedia for the evaluation.

4. Splitting Words: Decompounding

In order to enable a tokenization for sub-word units, we introduce SECOS (SEmantic
COmpound Splitter), which is based on the hypothesis that compounds are similar to
their constituting word units.14 Again, our method is based on a DT. In addition, it does
not require any language-specific rules and can be applied in a knowledge-free way. We
exemplify the method based on the compound noun Bundesfinanzministerium ( federal
finance ministry), which is assembled of the words Bundes ( federal), Finanz ( finance), and
Ministerium (ministry). This section extends the work presented in Riedl and Biemann
(2016) by adding results on an Afrikaans and a Finnish data set. Additionally, we
introduce an evaluation based on automatically extracted compounds from Wiktionary
and present results for 14 languages.

4.1 SEmantic COmpound Splitter (SECOS)

Our method consists of three stages: First, we extract a candidate word set that defines
the possible sub-word units of compounds. We present several approaches to generate
such candidates. Second, we use a general method that splits the compound based on a
candidate word set. Using different candidate sets, we obtain different compound splits.
Finally, we define a mechanism that ranks these splits and returns the top-ranked one.

Candidate Extraction. For the extraction of all candidates in C, we use a DT that is
computed on a background corpus. We present three approaches for the generation
of candidate sets.

When we retrieve the l most similar terms for a word w from a DT, we observe well-
suited candidates that are nested in w. For example, Bundesfinanzministerium is similar to
Bund, Bundes, and Finanzministerium. Extracting the most similar terms that are nested
in w results in the first split candidate set, called similar candidate units. However,
only for few terms do we observe nested candidates in the most similar words. Thus,
we require methods to generate “back-off” candidates.

First, we introduce the extended similar candidate units. Here, we extract the l
most similar terms for w and then grow this set by again adding their respective l most
similar words. Based on these terms, we extract all words that are nested in w. This
results in more but less-precise decompounding candidates.

As the coverage might still be insufficient to decompound all words (e.g., entirely
unseen compounds), we propose a method to generate a global dictionary of single

14 An implementation of SECOS is available at: https://github.com/riedlma/SECOS. Furthermore,
we provide models for all the languages that have been processed in this article.
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atomic word units. For this, we iterate over the entire vocabulary of the background
corpus, applying the compound splitter (see Section 4.1) to all words where we find
similar candidate units. Then, we add these detected units to the dictionary. Finally,
for word w subject to decompounding, we first extract all nested words NW from this
dictionary. Then, we remove all words in NW that are nested itself in NW, resulting in
the candidate set we call generated dictionary.

Compound Splitting. Here, we introduce the decompounding algorithm for a given can-
didate set. For decompounding the word w, we require a set of candidate words C. Each
word in the candidate set needs to be a substring of w. We do not include candidates in
C that have less than ml characters. Additionally, we apply a frequency threshold of wc.
These mechanisms are intended to rule out spurious parts and “words” that are in fact
short abbreviations.

We show candidates, extracted from the similar candidate unit, with ml = 3 for
the example term in Table 16. Then, we iterate over each candidate ci ∈ C and add its
beginning and ending position within w to the set S. This set is then used to identify
possible split positions of w. For this, we iterate from left to right and add all split
possibilities to the word w. This approach overgenerates split points, as can be observed
for the example word, which is split into six units: Bund-e-s-finanz-minister-ium.

To merge character n-grams, we use a suffix- and prefix-based method. The suffix
merging method appends all character n-grams with n below ms to the left word. The
prefix method merges all character n-grams with n below mp to the word on the right
side. To avoid remaining prefixes/suffixes, we apply the opposite method afterwards.
For the German language, the suffix-prefix ordering mostly yields the best output.
The suffix-prefix-based approach results to Bundes-finanz-ministerium and the prefix-
suffix method to Bund-esfinanz-ministerium. However, for some words, the prefix-suffix
generates the correct compound split—for example, for the word Zuschauer-er-wartung
(audience + he + service), which is correctly decompounded as Zuschauer-erwartung
(audience+expectation).

In order to select the correct split, we compute the geometric mean of the joint
probability for each split variation. For this we use word counts from a background
corpus. In addition to the geometric mean formula introduced in Koehn and Knight
(2003), we add a smoothing factor ε to each frequency in order to assign non-zero

Table 16
Examples of the output of our algorithms for the example term Bundesfinanzministerium.

word w Bundesfinanzministerium

candidates C Finanzministerium, Ministerium,
with ml=3 Bunde, Bund, Bundes, Minister
split possibilities Bund-e-s-finanz-minister-ium

Merging character n-grams

suffix-prefix Bundes-finanz-ministerium
prefix-suffix Bund-esfinanz-ministerium
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values to unknown units.15 This yields the following formula for a compound w, which
is decomposed into the units w1, . . . , wN:

p(w) =

 
NY

i

wordcount(wi) + ε
total wordcount + ε · #words

! 1
N

(11)

Here, #word denotes the total number of words in the background corpus and
total wordcount is the sum of all word counts. Then, we select the split variation with
the highest geometric mean.16 In our example, this is the prefix-suffix-merged candidate
Bundes-finanz-ministerium.

Split Ranking. We have examined schemes of priority ordering for integrating informa-
tion from different candidate sets—for example, using the similar candidate units first
and only applying the other candidate sets if no split was found. However, preliminary
experiments revealed that it was always beneficial to generate splits based on all three
candidate sets and use the geometric mean scoring as outlined above to select the best
split as decomposition of a word.

4.2 Evaluation Setting

For the computation of our method, we use similarities computed on various languages.
First, we compute the DTs using JoBimText using the left and the right neighboring
word as context representation. In addition, we extract a DT from the CBOW method
from word2vec (Mikolov et al. 2013) using 500 dimensions, as described in Section 2.
We compute the similarities for German based on 70M sentences and for Finnish
on 4M sentences that are provided via the Leipzig Corpora Collection corpus (Richter
et al. 2006). For the generation of the Dutch similarities, we use the Dutch web
corpus (Schäfer and Bildhauer 2013), which is composed of 259 million sentences.17

Similarities for Afrikaans are computed using the Taalkommissie corpus (3M sentences)
(Taalkommissie 2011) and we use 150GB of texts for Russian.18 The evaluation for
various languages based on the automatically extracted data set is performed on simi-
larities computed on text from the respective Wikipedias.

We evaluate the performance of the algorithms using a splitwise precision and
recall measure that is inspired by the measures introduced by Koehn and Knight (2003).
Our evaluation is based on the splits of the compounds and is defined as shown:

precision =
correct split

correct split + wrong splits

recall =
correct split

correct split + missing splits

F1 = 2 · precision · recall
precision + recall

(12)

15 We set ε = 0.01. In the range of ε = [0.0001, 1] we observe marginally higher scores using smaller values.
16 Although our method mostly does not assume language knowledge, we uppercase the first letter of each

wi, when we apply our method on German nouns.
17 Available at: http://webcorpora.org/.
18 The sentences are extracted from: http://lib.rus.ec.
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As unsupervised baselines we use the semantic analogy-based splitter (SAS) from
(Daiber et al. 2015)19 and the split ranking by Koehn and Knight (2003), called KK.

4.3 Data Sets

For the intrinsic evaluation, we chose data sets of various languages. We use one small
German data set for tuning the parameters of the methods. This data set consists of 700
manually labeled German nouns from different frequency bands created by Holz and
Biemann (2008). For the evaluation, we consider two larger German data sets. The first
data set comprises 158,653 nouns from the German newspaper magazine c’t and was
created by Marek (2006).20 As second data set we use a noun compound data set of
54,571 nouns from GermaNet,21 which has been constructed by Henrich and Hinrichs
(2011).22 While converting these data sets for the task of compound splitting, we do not
separate words in the gold standard, which is made up of prepositions (e.g., the word
Abgang [outflow] is not split into Ab-gang [off walk]).

In addition, we apply our method to a Dutch data set of 21,997 compound nouns
and an Afrikaans data set that consists of 77,651 compound nouns. Both data sets have
been proposed by van Zaanen et al. (2014). Furthermore, we perform an evaluation
on a recent Finnish data set proposed by Shapiro et al. (2017) that comprises 20,001
words. In contrast to the other data set it does not only contain compound words but
also 16,968 words with a single stem that must not be split. To show the language
independence of our method, we further report results data sets for 14 languages that
we collected from Wiktionary. 23

4.4 Tuning the Method

In order to show the influence of the various candidate sets and to find the best
performing parameters of our method, we use the small German data set with 700
noun compounds. We obtain the highest F1 scores (see Table 17) considering only
candidates with a frequency above 50 (wc = 50) and that have more than four characters
(ml = 5). Furthermore, we append only prefixes and suffixes equal or shorter than three
characters (ms = 3 and mp = 3).

As observed in Table 17, the highest precision using the JoBimText similarities is
achieved with the similar candidate units. However, the recall is lowest because for
many words no information is available. Using the extended similarities, the preci-
sion decreases and the recall increases. Interestingly, we observe an opposite trend
for word2vec. However, the best overall performance is achieved with the generated
dictionary, which yields an F1 measure of 0.9583 using JoBimText and 0.9627 using
word2vec. Using geometric mean scoring to select the best compound candidate lifts
the F1 measure up to 0.9658 using JoBimText and 0.9675 using the word2vec similarities
on this data set.

19 https://github.com/jodaiber/semantic_compound_splitting.
20 Available at: http://heise.de/ct.
21 Available at: http://www.sfs.uni-tuebingen.de/lsd/documents/compounds/split_compounds_from_

GermaNet10.0.txt.
22 We follow Schiller (2005) and remove all words including dashes. This only affects the GermaNet data set

and reduces the effective test set to 53,118 nouns.
23 The data set was collected in February 2017 and is available here:

http://ltdata1.informatik.uni-hamburg.de/SECOS/datasets/wiktionary_compounds.tar.gz.
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Table 17
Precision (P), Recall (R), and F1 Measure (F1) on split positions for the 700 compound nouns
using different split candidates.

JoBimText word2vec

P R F1 P R F1

similar candidates 0.9880 0.6855 0.8094 0.9554 0.9548 0.9551
extended similar candidates 0.9617 0.7523 0.8442 0.9859 0.6813 0.8058
generated dictionary 0.9576 0.9589 0.9583 0.9644 0.9610 0.9627

geometric mean scoring 0.9698 0.9617 0.9658 0.9726 0.9624 0.9675

4.5 Decompounding Evaluation

In this section, we first show results for manually extracted data sets and then demon-
strate the multilingual capabilities of our method using a data set that was automatically
extracted from Wiktionary. We compare our results to previously available methods,
which will be discussed in Section 6.2.

4.5.1 Results for Manually Annotated Data Sets. Now, we compare the performance of our
method against unsupervised baselines and knowledge-based systems (see Table 18).

For the 700 nouns we achieve the highest precision, recall, and F1 measure using our
method with similarities from word2vec. Because we have tuned our parameters on this
comparably small data set, which might be prone to overfitting, we do not discuss these
results in depth but provide them again for completeness.

On the c’t data set, the best results are observed by using (supervised) JWordSplitter
(JWS) followed by supervised Automatische Sprachverarbeitungs Toolbox (ASV), and
our method. Here, JWS achieves significant improvements against all other methods in
terms of F1 score.24 Nevertheless, our method yields the highest precision value; SAS
and KK score lowest.

Evaluating on the GermaNet data set, our method with similarities both from
JoBimText is only outperformed by the supervised ASV method. Similar to the results
for the 700 nouns, JWS performs lower than the decompounding method from the ASV
toolbox. Whereas our method obtains lower recall than ASV and JWS, it still signif-
icantly outperforms the unsupervised baselines (KK and SAS) and yields the overall
highest precision.

On the Afrikaans data set we observe higher precision using the baseline method
(KK) than using SECOS. By approach, more words get split than using the KK method.
Whereas the KK approach identifies most compounds correctly, many compounds are
not detected at all. Here, our method performs best using JoBimText.

For Dutch, no trained models for JWS and ASV are available. Thus, we did not use
these tools but compare to the NL splitter, achieving a competitive precision but lower
recall. This is caused by many short split candidates that are not detected due to the ml
parameter. However, our method still significantly beats the KK baseline.

Furthermore, we show results based on a Finnish data set proposed by Shapiro
(2016). Whereas her method performs better in terms of recall in comparison to SECOS,

24 We perform a Wilcoxon signed-rank test between the F1 scores of each candidate assuming p < 0.01.
However, we only obtain a p-value below 0.5.
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Table 20
Number of compounds that have been split incorrectly with respect to the gold data. We report
numbers of how many of these compounds have fewer split points (under-split), too many split
points (over-split), or the correct number but wrong split points (wrongly-split). In addition,
we show the total number of missed, wrong, and correct splits for these compounds.

Data Set c’t GermaNet Dutch

number of compounds

# incorrect 35,177 13,612 7,258
% incorrect 22.17 26.63 32.60

under-split 23,773 7,972 5,849
over-split 7,843 3,578 806
wrongly-split 3,561 982 603

number of splits

missed 29,213 12,537 6,612
wrong 12,703 2,348 1,520
correct 20,381 5,216 1,743

how often our method missed a split, performed a wrong split, and split correctly (see
bottom three lines in Table 20). This analysis supports the previous finding: Most errors
of our SECOS method consist of missed splits. Depending on the application, this might
be a less detrimental behavior than splitting wrongly.

4.7 Summary on SECOSSECOSSECOS

In order to enable a fine-grained tokenization on sub-word units, we have introduced
an unsupervised method for decompounding words that is based on distributional
semantics. We have shown the impact of its components and have tuned its parameters
on a small German data set. On six data sets for four different languages, SECOS has been
shown to perform competitively to supervised and rule-based tools and to outperform
two unsupervised baselines by a large margin. Further, we demonstrated its language-
independence using automatically extracted compound data sets for 14 languages.
Comparing two methods for the generation of distributional semantic models within
SECOS, we obtain the best results for German, Dutch, and Afrikaans using word2vec.
However, for Finnish the best results are achieved with JoBimText. On the automat-
ically extracted data sets, JoBimText yields on average F1 scores of 0.8122, whereas
the word2vec-based method achieves solely scores of 0.7705, which we attribute to the
larger numbers of out-of-vocabulary words within the Wiktionary data set.

5. Using Coarse- and Fine-Grained Tokenization for Information Retrieval

In order to show the benefits of using both coarse-grained and fine-grained tokeniza-
tion, we report results on an information retrieval task. In previous research, the
incorporation of compound nouns and MWE information was used successfully in IR
(Acosta, Villavicencio, and Moreira 2011; da Silva and Rocha Souza 2012). Also splitting
compounds turned out to be a useful processing step in order to improve IR systems

515

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/44/3/483/1809277/coli_a_00325.pdf by guest on 01 D
ecem

ber 2021



Computational Linguistics Volume 44, Number 3

<top>

<num> Number: 372

<title> Native American casino

<desc> Description:

Identify documents that discuss the growth of Native American

casino gambling.

<narr> Narrative:

Relevant documents include discussions regarding Native American

casino gambling: its social implications, effects on local and

Native American economies, and legal aspects related to Native

American tribal autonomy.

</top>

Figure 4
Listing of a topic from the TREC 2004 Robust Track.

(Monz and de Rijke 2001; Koehn and Knight 2003; Witschel and Biemann 2005; Airio
2006).

For this, we selected the TREC 2004 Robust Track (Voorhees 2005), in which an IR
system is evaluated based on 250 topics for which we use titles of the topic description as
query.26 For performing the evaluation, we setup an index for 528,155 documents from
the TREC Disks 4 and 5 (without the Congressional Record on Disk 4). We use Lucene27

with Okapi BM25 and build indices based on the words of the entire documents, the
decompounded words within the documents, and also add indices for the detected
MWEs within the documents that have a DRUID score above 0.3, 0.5, and 0.7. In order to
compute models for decompounding and MWE detection, we use an English Wikipedia
dump. This experiment focuses on demonstrating the impact of using the additional
information gained by our methods in an extrinsic evaluation, rather than aiming at
state-of-the-art retrieval performance. Furthermore, we want to highlight that we do not
apply any language-dependent information. Thus, the results should generalize across
languages.

For the query, we use the title of each topic. In Figure 4, we show all content
that is available for topic 372. For building the query, we only use the title. Using the
description (<desc>)or the narrative (<narr>) requires further pre-processing and did
not yield to better scores than using solely the title. We combine the different fields for
building queries considering all fields as optional. Building the query for the example
using tokens, decompounded tokens, and MWEs, we will obtain the title itself both
querying against the tokens and decompounded tokens. In addition, we will query
for the MWE Native American. As English does not contain many close compounds,
the decompounding does not apply to many words and queries. However, words like
hydroelectric will be split into hydro and electric.

We show the mean average precision (MAP) scores for various combinations of the
queries in Table 21.

As the queries use only words from the titles, querying solely against the MWE
index does not make sense, as not all titles contain MWEs. We observe that using tokens
of the content does result in better MAP scores than using decompounded tokens.28

26 http://trec.nist.gov/data/robust/04.guidelines.html.
27 We use version 6.6.0, which is available at: https://lucene.apache.org/core/.
28 As we do not perform any pre-processing like POS-tagging, we split all words, not only nouns. This

might additionally introduce some mismatches.
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Table 21
Results on the information retrieval TREC 7 task using compound and MWE information.

tokens decompounded MWE MAP

tokens 0.3 0.5 0.7

x 0.2023
x 0.1980

x x 0.2038
x x 0.1964
x x 0.2000
x x 0.2028
x x x 0.2018
x x x 0.2037
x x x 0.2040

0.0 0.2 0.4 0.6 0.8 1.0
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0.0
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MWE (0.3) + Content
MWE (0.3)

Figure 5
Interpolated precision–recall curve for the TREC 2004 Robust task.

Creating queries with both token and decompounded tokens results in higher MAP
scores (0.2038). Combining the original content with MWE information, we obtain
inferior results when considering MWEs with a low threshold (0.3 and 0.5) and gain
some improvements when using the index with MWEs of high quality. Adding the
MWE information to original tokens and decompounded tokens improves only when
indexing MWEs with high scores (above 0.7). Using this combination performs best;
however, none of the improvements in this experiment are significant with respect
to the token-only baseline (using t-test and Wilcoxon rank sum test). Inspecting the
interpolated precision–recall curve (see Figure 5), we also observe that the best results

517

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/44/3/483/1809277/coli_a_00325.pdf by guest on 01 D
ecem

ber 2021



Computational Linguistics Volume 44, Number 3

are obtained using MWE information in combination with compounds and content
words.

6. Related Work

6.1 Related Work on Merging Words

The generation of MWE dictionaries has drawn much attention in the field of NLP.
Early computational approaches (e.g., Justeson and Katz 1995) use POS sequences as
MWE extractors.

Other approaches, relying on word frequency, statistically verify the hypothesis
whether the parts of the MWE occur more often together than would be expected by
chance (Evert 2005; Ramisch 2012). One of the first measures that consider context
information (co-occurrences) are the C-value and the NC-value, introduced by Frantzi,
Ananiadou, and Tsujii (1998). These methods first extract candidates using POS infor-
mation and then compute scores based on the frequency of the MWE and the frequency
of nested MWE candidates. The method described by Wermter and Hahn (2005) is based
on the limited modifiability of MWEs. For this, they introduce a measure that combines
frequencies of modifications of the candidate, where modifications are considered as
occurrences of the candidate where a single word is replaced with a different one.

A newer method is introduced by Lossio-Ventura et al. (2014), who re-rank scores
based on an extension of the C-value, which uses a POS-based probability and an
inverse document frequency. Using different measures and learning a classifier that
predicts the multiwordness was first proposed by Pecina (2010), who, however, restricts
his experiments to two-word MWEs for the Czech language only. Korkontzelos (2010)
comparatively evaluates several MWE ranking measures. The best MWE extractor
reported in his work is the scorer by Nakagawa and Mori (2002, 2003), who use the
un-nested frequency (called marginal frequency) of each candidate and multiply these
by the geometric mean of the distinct neighbor of each word within the candidate.

Distributional semantics is mostly used to detect compositionality of MWEs (Katz
and Giesbrecht 2006; Salehi, Cook, and Baldwin 2014). For this, most approaches com-
pare the context vector of a MWE with the combined vectors based on the constituent
words of the MWE. Then, the similarity between the vectors is used as the degree of
compositionality. In machine translation, words are sometimes considered as multi-
words if they can be translated as single term (cf. Bouamor, Semmar, and Zweigenbaum
2012; Anastasiou 2010). Although this follows the same intuition as our uniqueness
measure described in Section 3.2.1, we do not require any bilingual corpora, but rather
test if a multiword can likely be substituted for a single word.

Regarding the evaluation, mostly precision at k (P@k) and recall at k (R@k) are
applied (e.g., Frantzi, Ananiadou, and Tsujii 1998; Evert 2005; Lossio-Ventura et al.
2014). Another general approach is using the AP, which is also used in IR (Thater, Dinu,
and Pinkal 2009) and has also been applied by Ramisch, De Araujo, and Villavicencio
(2012).

6.2 Related Work on Splitting Words

Approaches to automatic decompounding can be classified into corpus-driven ap-
proaches and supervised approaches. Corpus-driven approaches are usually informed
using frequency lists (Koehn and Knight 2003), probabilistic models (Schiller 2005),
parallel corpora (Koehn and Knight 2003; Macherey et al. 2011), or periphrases (i.e.,
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reformulations) in large monolingual corpora (Holz and Biemann 2008). As with other
NLP tasks, supervised approaches are usually superior to unsupervised approaches
if sufficient training material is available. A straightforward yet effective supervised
decompounding system is contained in the ASV Toolbox (Biemann et al. 2008), which
uses trie-based (Morrison 1968; Witschel and Biemann 2005) datastructures for recur-
sively splitting compounds based on training set splits. Alfonseca, Bilac, and Pharies
(2008) combine several signals, including web anchor text, in an SVM-based supervised
splitter. More recently, Shapiro (2016) proposes another supervised method that trains
a morphology component on compounds and uses a language model and handcrafted
constraints in order to split compounds. The method is evaluated on a Finnish data set.

A widely used German decompounder is JWS, which is based on word lists of com-
pound parts as well as manually crafted blacklists and whitelists.29 The NL Splitter uses
similar technology for Dutch compound decomposition.30 An unsupervised approach is
presented in Koehn and Knight (2003): Out of several splits as given by matching parts
of the compound to a vocabulary list, they pick the split with the highest geometric
mean of word frequencies, which is entirely corpus-driven but ignores semantic rela-
tions between the compound and its parts. Daiber et al. (2015) propose an unsupervised
system using an analogy-based approach that relies on word embeddings. Ziering and
van der Plas (2016) introduced an unsupervised method based on morphology that is
informed by lemmatization information. Although this approach is unsupervised, it is
not knowledge-free, as it is informed by a language-specific morphology component.

Decompounding is evaluated either intrinsically or in a task that benefits from it,
for example, information retrieval (Monz and de Rijke 2001), machine translation
(Koehn and Knight 2003; Macherey et al. 2011), or automatic speech recognition
(Adda-Decker and Adda 2000; Ordelman, van Hessen, and de Jong 2003).

7. Conclusion

In this article, we have introduced fine-grained and coarse-grained tokenization meth-
ods. Whereas normal tokenization considers the separation of words and interpunc-
tuation marks, we have introduced two methods that join multiple words that form a
concept and another method for splitting words that are formed by several stems. Both
methods are unsupervised and knowledge-free and only rely on distributional semantic
models.

As a side note, we have evaluated two models for distributional similarity in
this context, showing that the compound splitting method works slightly better with
neural word2vec similarities when most of the words are also contained in the corpus
used for similarity computations. For the MWE identification we obtain significantly
better results when using similarities on the basis of the sparse count-based JoBimText
method, which we attribute to the different characteristics of similarity neighborhoods
produced by these models.

For the detection of MWE we have evaluated our method using two annotated
corpora of French and English medical texts. In addition, we have demonstrated the
capability of detecting MWEs for 32 languages using an automatic evaluation on
Wiktionary and Wikipedia. Furthermore, in order to split words, we have proposed
SECOS and shown its performance on five gold standard data sets for German, Dutch,

29 https://github.com/danielnaber/jwordsplitter.
30 http://ilps.science.uva.nl/resources/compound-splitter-nl/.
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Afrikaans, and Finnish. We obtain state-of-the-art performance on two out of five data
sets and additionally show the language independence of the method using an auto-
matically extracted data set from Wiktionary for 14 languages. Lastly, we have shown
that incorporating both coarse- and fine-grained tokenization results in performance
gains for information retrieval.

8. Future Work

In future work, we want to expand the fine-grained tokenization and identify even
smaller units within the compounds, which is also one of the major error classes for
the compounding. Furthermore, we want to extend the compounding method to detect
not only compounds but also morphemes. For the coarse-grained tokenization we want
to develop methods that allow labeling the parts of MWEs. Furthermore, we propose
to demonstrate the impact of our fine-grained and coarse-grained tokenization for
further tasks like machine translation (Koehn and Knight 2003), question answering
(Rinaldi et al. 2003; de Marneffe, Padó, and Manning 2009), and to apply it to texts of
different languages and domains.
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