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Longitudinal designs are frequently used in psychological research. An intuitive analytic 
approach is to adjust for previous measurements to bolster the validity of causal 
conclusions when estimating the effect of a focal predictor (i.e., treatment) on an 
outcome. This approach is routinely applied but rarely substantiated in practice. What 
are the implications of adjusting for previous measurements? Does it necessarily improve 
causal inferences? In this paper, we demonstrate that answers to these questions are far 
from straightforward. We explain how adjusting for previous measurements can reduce or 
induce bias in common longitudinal scenarios. We further demonstrate, in scenarios with 
less stringent causal assumptions, adjusting or not adjusting for previous measurements 
can induce bias one way or the other. Put differently, adjusting or not adjusting for a 
previous measurement can simultaneously strengthen and undermine causal inferences 
from longitudinal research, even in the simplest scenarios. We urge researchers to 
overcome the unwarranted complacency brought on by using longitudinal designs to test 
causality. Practical recommendations for strengthening causal conclusions in psychology 
research are provided. 

Causality is central to psychology research. Randomized 
experiments offer the most persuasive evidence for causal
ity but are often practically unfeasible or unethical. Hence, 
in many realistic scenarios, researchers turn to longitudinal 
data to address causal questions. A common practice to for
tify causal conclusions when using longitudinal data is to 
adjust for previous measurements. For example, when esti
mating the effect of microaggression at time 1 on depres
sion at time 2, a previous measurement of depression at 
time 1 is often included as a statistical control. In this pa
per, we raise the question: is this practice valid? 

In this article, we demonstrate that the answer to this 
question is far from straightforward. We clarify the nuanced 
causal conditions – routinely unspecified or unexamined in 
practice – for drawing valid causal inferences in longitudi
nal designs. We argue that longitudinal designs can create 
an unwarranted complacency for drawing causal inferences, 
leading to potential pitfalls and erroneous conclusions. By 
focusing on the intuitive analytic practice of adjusting for 
previous measurements, we highlight an often-overlooked 
conundrum in longitudinal designs: adjusting for a variable 

can simultaneously strengthen and undermine causal con
clusions. 

We will draw on concepts from the established causal di
agram framework (M. M. Glymour, 2006; Greenland et al., 
1999; Lee, 2012) to visualize the causal assumptions and 
characterize their consequences in a manner accessible to 
applied researchers.1 Causal diagrams benefit from relying 
on readily accessible yet formally rigorous graphical rules 
for assessing biases due to non-causal associations. Cru
cially, they make no distributional or functional form as
sumptions about the statistical relations between the vari
ables: the causal conclusions using causal diagrams are 
entirely nonparametric and not subject to assumptions of 
linear regression models (Pearl, 2013). We hope this article 
will empower researchers investigating causality in longi
tudinal studies to be more cognizant of the complexities of 
confounding adjustment, conduct thoughtful examinations 
of which causal assumptions are likely to hold, and make 
informed analytic decisions to fortify causal conclusions. 
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A brief summary of causal diagrams is provided in Appendix A. 
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Nuances of adjusting for previous measurements       
in longitudinal designs    

In longitudinal designs, deciding whether to adjust or 
not to adjust for2 any given variable can be contradictory. 
We pay particular attention to the routine practice of ad
justing for previous measurements. Intuitively, this ap
proach should bolster causal inferences: previous measure
ments are often either predictive of or share common 
causes with both treatment and outcome, so pre-existing 
(or pre-treatment) stable differences in the outcome can 
be obviated by adjusting for such measures. But the causal 
assumptions underpinning valid inferences are largely un
examined and routinely overlooked in practice. What are 
the implications of adjusting for previous measurements 
when analyzing longitudinal data? In this section, we aim 
to delve into this inquiry by using typical scenarios encoun
tered in longitudinal studies. As our illustrations will show, 
the implication of adjusting for previous measurements de
pends on the specific data-generating causal structures. 
Routinely adjusting for previous measurements can all too 
easily lead to incorrect causal inferences. 

We consider a minimal example with longitudinal data 
in two waves. Suppose a researcher is interested in drawing 
inferences about the causal effect of being a victim of mi
croaggression, such as being treated as irrelevant and in
visible (non-randomized treatment ) on the development 
of depression symptoms (outcome ). Variables recorded 
for each participant include relevant baseline time-invari
ant covariates, such as racial or ethnic identities, socioeco
nomic status, and unemployment (denoted collectively by 

 for simplicity), the experience of invisibility at time 1 
( ), depression symptoms within the same time point or 
wave at time 1 ( ), and a follow-up measure of depression 
symptoms after a delay (time 2; ). 

To illustrate the causal assumptions in this example, we 
use causal diagrams to visualize plausible data-generating 
scenarios which cannot be ruled out empirically without 
imposing additional restrictions using theoretical knowl

edge.3 In all causal diagrams, we denote participants’ expe
rience of perceived invisibility by  and depression symp
toms by , with subscripts denoting the measurement time 
point. Measured common causes, such as being a racial 
or ethnic minority, socioeconomic status, and unemploy
ment, are jointly denoted by .4 We adopt the convention 
of using a round node to denote a hidden or unmeasured 
variable. For example, a hidden common cause of the con
temporaneously measured  and  is denoted simply 
by . Repeated outcome measurements are likely to be 
(auto)correlated due to hidden common causes or under
lying processes; these are denoted by .5 Because  and 

 are unmeasured, they are ruled out from adjustment.6 

Throughout this paper, we focus on the average (total) 
causal effect of  on . Therefore, we seek to close or 
block all non-causal paths with treatment  and outcome 

 as the endpoints. 

Adjusting for a previous outcome measurement       
can eliminate bias    

We acknowledge that adjusting for a previous outcome 
measurement can strengthen causal conclusions. We illus
trate this point using two possible scenarios in Figure 1. 

In Figure 1(a), within the same wave at time 1, experi
encing invisibility ( ) is correlated with participants’ de
pression symptoms ( ) due to a hidden common cause , 
such as being denied a promotion opportunity at work. Par
ticipants’ depression symptoms at time 1 ( ) may have 
an autoregressive effect on their depression symptoms at 
time 2 ( ). Here, we make a stringent assumption that 
this effect of  on  is unconfounded, as indicated by 
the absence of unmeasured common causes shared by 
and . Under this scenario, adjusting for all baseline co
variates (e.g., ) and the previous outcome measurement 
( ) suffices to block all non-causal paths linking  and 

. Therefore, adjusting for the previous measurement  is 
necessary for valid causal inference. 

We now turn to a different scenario. In Figure 1(b), we 
relax the causal assumptions regarding the depression 

We thank Reviewer 1 for encouraging us to be clearer with the term “adjust for.” When estimating the effect between two variables (e.g., 
 on ), there is a wide variety of techniques by which one may adjust for (or statistically control for, or condition on) some third vari

able or set of variables (e.g.,  or ). These techniques all aim to eliminate non-causal (or “spurious”) associations generated by the lat
ter. Examples of these techniques include outcome regression-based modeling, propensity score-based methods like inverse weighting 
or matching, stratification, or restriction to a subset with the same value of the covariate(s), among others. Hernán and Robins (2020), 
Imbens and Rubin (2015), Morgan and Winship (2015), and Rosenbaum (2002) offer book-length presentations of these techniques. 
Hence, the term “adjust for” in this paper refers to the broad procedure rather than any particular technique. 

To simplify discussions of causal diagrams in this article, we will consider different measurements of the same variable, such as  and 
, as distinct variables shown as different nodes (Hernán & Robins, 2020; Pearl, 2009). 

We further assume no unmeasured common causes of treatment (e.g., ) and the later outcome (e.g., ) beyond those included in 
(Hernán & Robins, 2020; Imbens & Rubin, 2015; Morgan & Winship, 2015; Pearl, 2009). In practice, a rich selection of baseline common 
causes can be put together by including relevant covariates based on existing theoretical knowledge and external empirical information 
or in discussion with subject matter experts (Steiner et al., 2010). 

While we have assumed  and  to be independent for simplicity, one can readily relax this assumption by further including a directed 
arrow or a hidden common cause between them in the causal diagram. Nonetheless, the arguments presented in this paper are main
tained even when such an additional association is permitted because  is a non-collider on any path linking  via  to either  or . 

Note that  and  must be assumed as independent for the effect of  on  to be consistently estimated. If  and  are associated 
due to an effect or a hidden common cause between them, then it is impossible to consistently estimate the effect of  on  without 
adjusting for either  or , regardless of whether  is adjusted for or not adjusted for. 
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Figure 1. Causal diagrams with longitudinal data in two waves, where adjusting for the previous outcome               
measurement eliminates confounding bias.     
Note. The non-randomized treatment  and baseline outcome  were recorded at wave 1 ; the final outcome  was recorded at wave 2 . Subscripts denote the wave the mea
surements were recorded. The treatment effect on the outcome is drawn in black, while differences between the causal diagrams are marked in red; all other arrows are drawn in gray. 
Round nodes denote unmeasured or hidden variables. For visual clarity, the observed covariates that confound the treatment-outcome relations are collectively denoted by  and 
represented by a single node; the effects of (each covariate in)  on the other variables can have different strengths. 

symptoms at times 1 and 2. For example, suppose partic
ipants’ depression symptoms at time 1 ( ) may not only 
affect their depression symptoms at time 2 ( ), but they 
are simultaneously correlated due to unmeasured common 
causes , such as limited access to medical care.7 Another 
possible reason why  and  are (auto)correlated is that 
they are instantiations of the same latent process at two 
different times. But now, suppose that within the same 
wave at time 1, participants’ depression symptoms ( ) 
make them less likely to be engaging conversation partners, 
which contributes to their risks of being treated as invisible 
( ). This causal directionality – justifiable using theoret
ical knowledge and by measuring  before  within the 
same wave – is indicated by the arrow from  to . Fur
thermore, suppose that this causal effect of  and  is 
unconfounded (so that the hidden common cause  can be 
ruled out). Under this scenario, adjusting for the previous 
measurement  is necessary for valid causal inference. 

Adjusting for a previous outcome measurement       
can introduce bias    

Adjusting for a previous outcome measurement can be 
counterproductive and undermine causal conclusions when 
only a few minor alterations in the data-generating process 
are made. We illustrate this point using different scenarios 
in Figure 2. 

In Figure 2(a), within the same wave at time 1, experi
encing invisibility ( ) is correlated with participants’ de
pression symptoms ( ) due to a hidden common cause , 

as in Figure 1(a). Here, we assume that an autoregressive 
effect of  on  can be precluded, as indicated by the ab
sence of a  arrow. Participants’ depression symp
toms at time 1 ( ) and at time 2 ( ) are correlated merely 
due to unmeasured common cause(s) , such as limited ac
cess to medical care. Under this scenario, adjusting only 
for  suffices to block all non-causal paths linking  and 

. Crucially, adjusting for the previous measurement 
is counterproductive: doing so opens a non-causal path 
( ) and induces “collider (stratifi
cation) bias” (Cole et al., 2009; Elwert & Winship, 2014; 
Greenland, 2003; Griffith et al., 2020). Therefore, the pre
vious outcome measurement  should not be adjusted for 
(Foster, 2010; Morgan & Winship, 2015). 

We now turn to a different scenario. In Figure 2(b), 
within the same wave at time 1, experiencing invisibility 
( ) can now be justified to contribute to participants’ de
pression symptoms ), which in turn influences their de
pression symptoms at time 2 ( ). The depression symp
toms at both time points also share unmeasured common 
causes , such as limited access to medical care. Under 
this scenario, adjusting for the previous measurement 
is counterproductive: doing so not only changes the causal 
effect of interest (to the direct effect that bypasses ; 
Elashoff, 1969) but also induces collider bias in the estima
tor (Schisterman et al., 2009). For related discussions, see 
Ananth and Schisterman (2017), Montgomery, Nyhan, and 
Torres (2018) and Pearl (2016). 

See Newsom (2015, p. 117) for an example in a different context of how an association between  and  can be generated by both an 
autoregressive effect ( ) and other common causes ( ) simultaneously. 
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Figure 2. Causal diagrams with longitudinal data in two waves, where adjusting for the previous outcome               
measurement induces collider bias.     
Note. The non-randomized treatment  and baseline outcome  were recorded at wave 1 ; the final outcome  was recorded at wave 2 . Subscripts denote the wave the mea
surements were recorded. The treatment effect on the outcome is drawn in black, while differences between the causal diagrams are marked in red; all other arrows are drawn in gray. 
Round nodes denote unmeasured or hidden variables. For visual clarity, the observed covariates that confound the treatment-outcome relations are collectively denoted by  and 
represented by a single node; the effects of (each covariate in)  on the other variables can have different strengths. 

Adjusting or not adjusting for a previous        
outcome measurement can, either way, lead to        
bias  

Using the scenarios presented in Figures 1 and 2, we 
have explained how it can be clear-cut whether a previous 
outcome measurement  should be adjusted for (Figure 1) 
or not adjusted for (Figure 2) when estimating the effect of 

 on . But things are rarely so simple. The causal dia
grams up to this point represent stringent causal assump
tions valid only in specific circumstances: respectively, an 
unconfounded effect of  on  (Figure 1(a)); an uncon
founded effect of  on  (Figure 1(b)); no autoregressive 
effect of  on  (Figure 2(a)); and an unconfounded effect 
of  on  (Figure 2(b)). Relaxing these causal assump
tions – which are empirically untestable in practice – in a 
longitudinal design can quickly lead to an unavoidable co
nundrum. We will elaborate on this next. 

In Figure 3(a), within the same wave at time 1, experi
encing invisibility ( ) is correlated with participants’ de
pression symptoms ( ), similar to Figures 1(a) and 2(a). 
Furthermore, we impose fewer assumptions about partici
pants’ depression symptoms at the two time points. Specif
ically, not only are participants’ depression symptoms at 
time 1 ) allowed to have an autoregressive effect on their 
depression symptoms at time 2 ( ), but they are also al
lowed to simultaneously be autocorrelated due to unmea
sured common causes , such as limited access to medical 
care – as in Figures 1(b) and 2(b). Under this scenario in 

Figure 3(a),  adopts two conflicting roles simultaneously: 
It is a non-collider on one path ( ) and 
a collider on another path ( ).8 

Hence, not adjusting for  induces confounding bias, but 
adjusting for  induces collider bias. Simply put, consis
tent estimation of the causal effect of  and  requires si
multaneously adjusting for  and not adjusting for  (this 
conundrum is discussed in, e.g., Pearl & Robins, 1995).9 

This conundrum is not unique to Figure 3(a). In Figure 
3(b), suppose within the same wave at time 1, experiencing 
invisibility ( ) can be justified to not only contribute to 
participants’ depression symptoms ) – as in Figure 2(b) 
– but they also share a hidden common cause – as in Fig
ures 1(a) and 2(a). These causal relations are indicated by 
the  and  paths, respectively. Hence, 
for the same reasons as in Figure 2(b),  should not be 
adjusted for. But  is a non-collider on one path 
( ) and should be adjusted for. There
fore,  must simultaneously be adjusted for and not be ad
justed for to avoid biases when estimating the total effect 
of  on . 

Summary  

Under this minimal scenario with just two waves, we ex
plained why simple advice to adjust or not for a previous 
outcome measurement is credible only under strict as
sumptions about the data-generating process. Following a 
routine rule-of-thumb to either adjust or not adjust for a 

This setting is a simplification of a causal structure where a covariate is simultaneously a non-collider (in particular, a common cause of 
treatment and outcome) on one non-causal path and a collider on another non-causal path, such that adjusting for the covariate induces 
“butterfly bias” (Ding & Miratrix, 2015; Thoemmes, 2015). 

In principle, researchers can determine the relative strengths of associations generated along each non-causal path and seek to mini
mize the bias. But this is unlikely feasible because it demands intricate knowledge rarely available in practice and is limited to narrow 
statistical assumptions. 
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Figure 3. Causal diagrams with longitudinal data in two waves, where adjusting for the previous outcome               
measurement simultaneously eliminates confounding bias and introduces collider bias.          
Note. The non-randomized treatment  and baseline outcome  were recorded at wave 1 ; the final outcome  was recorded at wave 2. Subscripts denote the wave the mea
surements were recorded. The treatment effect on the outcome is drawn in black, while differences between the causal diagrams are marked in red; all other arrows are drawn in gray. 
Round nodes denote unmeasured or hidden variables. For visual clarity, the observed covariates that confound the treatment-outcome relations are collectively denoted by  and 
represented by a single node; the effects of (each covariate in)  on the other variables can have different strengths. 

previous measurement can easily lead to inconsistent es
timators in other scenarios. Critically, previous measure
ments can adopt conflicting roles simultaneously on dif
ferent non-causal paths in longitudinal designs, leading to 
unavoidable biases. 

We focused on simple probative scenarios with just two 
time points to ease the exposition. But the core issues we 
have raised apply more generally (exacerbated with more 
time points and other time-varying measured covariates) 
that encompass the scenarios described in this paper. 
Please see Appendix B for an illustration using an example 
with three waves. 

Simulation study   

We carried out a Monte Carlo simulation study to em
pirically demonstrate the biases arising from inappropriate 
adjustment for previous outcome measurements.10 We gen
erated data according to each of the six scenarios shown 
in Figures 1, 2, and 3. We used a sample size of 10,000 to 
demonstrate that these structural biases were not due to 
chance associations and persist even in large samples. For 
simplicity, we assumed no covariates in . We used lavaan 
(Rosseel, 2012) to fit two regression models: one regress
ing  on  and  (hence adjusting for )11, and another 
regressing  on  only (hence not adjusting for ). Our 

focus was on the (total) effect of  on . Results for 100 
datasets are displayed in Table 1. 

As shown in Table 1, adjusting for  yielded unbiased 
estimates only under the data-generating scenarios de
picted in Figure 1. Under the scenarios in Figure 2, adjust
ing for  yielded severely biased estimates: the estimate 
could be either smaller or larger than the true effect. Fi
nally, when data was generated under less restrictive as
sumptions, such as those depicted in Figure 3, adjusting or 
not adjusting for the previous outcome measurement led 
to incorrect causal inferences one way or the other. Un
der such scenarios, the estimate not only deviated from the 
true effect in magnitude but had opposing signs. 

Practical Recommendations   

Causal structures in longitudinal data analysis are per
petually unspecified or unexamined in practice. Yet, as we 
demonstrated in the preceding sections, this step is essen
tial to drawing valid causal conclusions. Routine analytic 
approaches, such as adjusting for previous measurements, 
are predicated on stringent causal assumptions. They are, 
therefore, prone to possibly severe bias when these as
sumptions are – unbeknownst to the researchers – violated. 

The routine advice to improve causality using observa
tional data is to adjust for confounders and merely avoid 

The full R (R Core Team, 2021) script with the data-generating process, analysis, and summarizing of the results is available in the Sup
plemental Online Materials. 

This analytic method is commonly termed ANCOVA (van Breukelen, 2013) or a basic lagged regression model (Newsom, 2015, p. 107), 
and is used in non-equivalent (control) group designs (Denny et al., 2023; Reichardt et al., 2023). 
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Table 1. Average estimates and relative biases of the effect of X1 on Y2, from either adjusting or not adjusting for                    
Y1, under each of the six data-generating scenarios in Figures           1,  2, and   3.  

Scenario Mean estimate Relative bias (%) 

Adjusting for Not adjusting for Adjusting for Not adjusting for 

Figure 1(a) 0.30 0.65 0 117 

Figure 1(b) 0.30 1.01 0 237 

Figure 2(a) 0.04 0.30 -86 -1 

Figure 2(b) 0.74 0.30 148 0 

Figure 3(a) 0.04 0.65 -86 116 

Figure 3(b) -0.22 1.00 -172 234 

Note. The value of the true effect is 0.30. The relative bias is calculated as the ratio (in %) of the bias over the true effect. 

mediators and colliders. But as we have demonstrated in 
this paper, in longitudinal settings12, this advice is inad
equate and potentially misleading. Instead, we encourage 
researchers to look beyond common causes of treatment 
and outcome when analyzing longitudinal data. For exam
ple, researchers should consider possible common causes of 
the repeated outcome measurements (such as  in Figure 
3). 

We, therefore, cannot offer blanket advice on whether 
or not to adjust for previous measurements because there 
is no one-size-fits-all panacea. Researchers seeking to reap 
the benefits of longitudinal designs for drawing causal con
clusions should carefully construct – preferably at the ini
tial stages of a research project – a causal diagram that best 
represents theoretical knowledge and the underlying data-
generating process. For example, recent tutorials offer con
crete advice on how to construct and justify a causal dia
gram in practice (Barnard-Mayers et al., 2022; Digitale et 
al., 2022; Ferguson et al., 2019; Grosz et al., 2020; Tennant 
et al., 2020). As shown in this paper, causal diagrams are 
an excellent research tool that lets researchers “draw their 
assumptions before their conclusions” (Hernán & Robins, 
2020). They are especially beneficial for guiding analytic 
choices and improving the understanding of possible 
sources of structural biases. 

With a defensible postulated causal diagram in hand, 
further examining many non-causal paths and determining 
whether each variable should or should not be adjusted 
for – as we have done in this paper – can be challenging 
and seemingly impossible in practice with many waves of 
data. Consequently, researchers may feel helpless and dis
couraged when faced with such a proposition. We encour

age researchers to use the open-source and freely available 
DAGitty tool (Textor et al., 2017). The DAGitty tool facil
itates the crucial task of clarifying and checking posited 
causal assumptions. To help researchers visualize their pos
tulated causal diagrams using DAGitty, we have provided 
an example of Figure B1 at http://dagitty.net/mei2SaP. Re
searchers can use this as a starting point to modify and 
adapt the causal diagram for their unique substantive con
texts. Crucially, researchers can then use DAGitty to au
tomatically determine for a focal causal effect whether all 
non-causal associations can be eliminated by adjusting for 
a (minimal) subset of covariates. Researchers need not enu
merate each path as we have done in this paper. This is 
achieved using the so-called “back-door criterion” that pro
vides a set of sufficient graphical conditions for determin
ing whether all non-causal paths (specifically “back-door” 
paths with an arrow pointing to treatment) linking treat
ment and outcome can be blocked by adjusting for a mini
mal set of variables (Pearl, 2009, chap. 3).13 Continuing our 
example in Figure B1, a minimal adjustment set for the ef
fect of  on  is ; whereas a minimal adjust
ment set for the effect of  on  is . 

We recommend that a best practice is to submit the 
posited causal diagram (e.g., using DAGitty), and selected 
covariates for confounding adjustment, for peer review as 
part of a Stage 1 Registered Report submission (Kiyonaga & 
Scimeca, 2019). This practice utilizes the collective sub
stantive expert knowledge of editors and reviewers to for
tify the defensibility of the postulated causal structure and 
the adequacy of the selected (and omitted) confounders. 
Using a carefully constructed and rigorously justified causal 
diagram that clearly and honestly explicates the causal as

In this paper, we focused on a simple scenario where the outcome  was repeatedly measured, but the treatment  was not. We utilized 
this simplest probative case to highlight the complexities and nuances of causal inferences in longitudinal data. The issues we raised ap
ply more generally in longitudinal designs with more time points, such as in settings where interest is in estimating reciprocal effects of 

 and  over time using cross-lagged panel models (Berry & Willoughby, 2017; Hamaker et al., 2015; Lucas, 2023; Lüdtke & Robitzsch, 
2022). But the core causal diagrammatic arguments in this paper apply similarly to such settings that encompass this simple case, which 
we focused on for expository reasons of being easier to understand. We thank Reviewer 2 for raising this point. 

More precisely, the back-door criterion for a subset is satisfied if: (i) all back-door paths linking treatment and outcome are closed after 
adjusting for the subset, and (ii) no variable in the subset is causally affected by treatment (possibly indirectly via a causal path from 
treatment). 
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sumptions – before data collection and analysis – can foster 
more principled causal inferences (Shpitser et al., 2021). 

Finally, there are further complications in longitudinal 
data analysis we did not detail in this article. In psychology 
research, treatments are often time-varying: e.g., a person 
may experience invisibility at time 1 but not at time 2. Lon
gitudinal confounders are similarly bound to be affected by 
earlier treatments. Treatment-dependent (variously termed 
post-treatment, time-varying, or treatment-induced) con
founding poses severe threats to valid causal inferences of 
the effects of a time-varying treatment (Daniel et al., 2012; 
Thoemmes & Ong, 2015). Conventional estimation meth
ods, such as a single regression model for the outcome 
given all treatments and covariates, cannot avoid undue ad
justment for measured post-treatment confounders that in
duce spurious associations (Rosenbaum, 1984). In the pres
ence of measured time-varying confounding, we 
recommend researchers utilize the well-established “g-
methods” framework (where the “g” stands for “general
ized”). G-methods have been recently introduced to the 
psychology literature (Loh & Ren, 2023a, 2023b, 2023c). 
This broad class of methods pioneered by James Robins has 
deep roots in causal inference research and is widely used 
in (bio)statistics, epidemiology, and medical sciences to as
sess time-varying treatment effects in longitudinal data 
when treatment-dependent confounding is present (Clare 
et al., 2018; Wijn et al., 2022). 

Conclusion  

Psychology researchers commonly use longitudinal data 
to answer causal questions. A widely adopted analytic ap
proach is adjusting for previous measurements. But valid 
causal conclusions rely on stringent causal assumptions 
routinely unexamined and overlooked in practice. So 
should previous measurements be adjusted for? We demon

strate in this paper that the answer is nuanced and far 
from clear-cut. The advice of simply adjusting for common 
causes and merely avoiding adjusting for mediators and 
colliders must be revised, especially in longitudinal data. 
In particular, we highlight a conundrum in longitudinal de
signs: the routine analytic practice of adjusting for previ
ous measurements can simultaneously eliminate and intro
duce non-causal associations, inadvertently leading to an 
inability to draw valid causal conclusions. We encourage 
researchers to make informed analytic decisions by con
ducting thoughtful examination and deliberate reflection of 
the causal assumptions. With this article, we hope to con
tribute to ongoing conversations on strengthening causal 
inferences from longitudinal data in psychological science. 
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Appendices  

Appendix A: A brief summary of causal diagrams         

Causal diagrams, also known as graphical causal models 
or causal Directed Acyclic Graphs (DAGs), are widely used 
to represent theorized causal relations and to establish a 
set of graphical rules sufficient for drawing valid causal in
ferences. This framework has been extensively introduced 
and explained elsewhere in the behavioral, health, and so
cial sciences literature; see, e.g., Digitale et al. (2022), Elw
ert (2013), C. Glymour (2001), M. M. Glymour (2006), Grosz, 
Rohrer, and Thoemmes (2020), Hernán and Robins (2020), 
Lee (2012), Moerkerke, Loeys, and Vansteelandt (2015, Fig
ure 2), Morgan and Winship (2015), Pearl (2012), Pearl, Gly
mour M., and Jewell (2016), and Rohrer (2018). In Table A1, 

Table A1. Basic terminology for causal diagrams.      

Terminology Description 

Node or vertex Variable (either measured or unmeasured)a 

Single-headed arrow or 
uni-directed edgeb 

Causal effect exerted by the variable the arrow emanates from on the variable the arrow enters 

Path Sequence of distinct (i.e., non-recurring) variables connected by arrows pointing in possibly different 
directions 

Causal or directed path Path with all arrows oriented in the same direction 

Non-causal path Path with at least two arrows pointing in different directions 

Open non-causal path Generates a non-causal (or spurious) association between the endpoints c; variously termed as 
unblocked, active, or d-connected 

Closed non-causal path Removes the spurious association – generated along this path when it is open – between the 
endpoints; variously termed as blocked, inactive, or d-separated 

Collider on a path Variable on a path with two arrows pointing directly at itd 

Collider (stratification) 
bias 

Bias produced when adjusting for a collider on a non-causal path pries the path opene 

Note. aA node may also represent a set of variables all having the same causal relations with other nodes in the causal diagram. 
bThe presence of an arrow permits the possibility of a causal effect of an unknown magnitude that may even be absent empirically; in contrast, the absence of an arrow represents the 
(more severe) assumption ruling out such a possibility. 
cThe spurious association generated along an open path induces a statistical dependence between the endpoints and renders bias when estimating the causal effect of one endpoint 
on the other. 
d We emphasize that a collider is not a variable-specific role but a path-specific role. That is, a variable that is a collider on one path can be a non-collider on another path, with both 
paths having the same endpoints. Moreover, a collider need not be causally affected by both endpoints on the path. 
eAdjusting for a collider on a path does not necessarily lead to bias. Adjusting for the collider(s) opens a path only if all non-colliders on the same path are unadjusted for. In other 
words, the path can be closed or blocked by adjusting for a non-collider on the same path. 

we summarize basic graph-theoretic language relevant to 
discussing the issues raised in this article. In this paper, 
we will assume that a causal diagram can be substantively 
and defensibly justified as accurately representing the un
derlying data-generating processes based on established 
theoretical knowledge and rigorous experimental evidence. 
Researchers should further exploit information from the 
measurement of the variables in their study design to sup
port the posited causal structure.14 For example, the tim
ings can be used to establish temporal precedence and rule 
out reverse causation based on temporal-logical con
straints, and the spacings can be optimized to allow suffi
cient time for the causal effects to manifest (Cinelli et al., 
2022; Deffner et al., 2022; Tate, 2015; Vowels, 2023). 

We thank Reviewer 1 for raising this point. 14 
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Appendix B: Biases can be exacerbated when        
treatment is repeatedly measured     

In this section, we explain how the unavoidable biases 
described above can quickly be exacerbated in longitudinal 
studies with repeatedly measured treatments and out
comes. To illustrate, we use a slightly more complex ex
ample with longitudinal data collected across three waves. 
Suppose that at time 1, a non-randomized treatment ( ), 
an initial measurement of the outcome ( ), and baseline 
time-invariant covariates ( ) are recorded. At time 2, the 
non-randomized treatment ( ) and the outcome ( ) are 
recorded. At time 3, the outcome ( ) is recorded. A causal 
diagram corresponding to such a setting is shown in Figure 
B1. 

To simplify elucidating the challenges, we will focus on 
the lag one causal effects of treatment (e.g., ) on the out
come at the next wave (e.g., , for ). In the main 
text, we discussed the challenges of adjusting for the ear
lier outcome measurement  when estimating the effect of 
a single treatment  on the later outcome  in a setting 
with two waves. We now explain how these challenges esca
late when the treatment is repeatedly measured by focusing 
on the effect of the intervening treatment ( ) on the final 
outcome ( ). 

First, note that the same arguments in the previous sec
tion can be applied here, with  taking the 
place of  in Figure 3(a), to realize that 
must simultaneously be adjusted and not adjusted for to 
block all non-causal paths linking  and . Therefore, 
we will inspect whether the initial treatment and outcome 
measurements (  and ) should or should not be ad
justed for. Non-causal paths linking  and  via either 
or  are displayed in Table B1. On any given path,  can 
be either a non-collider or a collider intersecting it; simi
larly,  can be either a non-collider or a collider on a path 
intersecting it. In other words, , and  must each 
be simultaneously adjusted for and not adjusted for when 
targeting the effect of  on . In causal diagrammatic 
terminology, there is no subset of the measured variables 

 that, when adjusted for, suffices to block all 
non-causal paths linking  and . Therefore, the causal 
structure in Figure B1 rules out consistent and unbiased es
timation of the  effect. 

Figure B1. Causal diagram for an example of       
longitudinal data with three waves.      
Note. The non-randomized treatment was recorded at waves  and ; the out
come was recorded at waves , and . At each time point , the pair 
of contemporaneous treatment and outcome measurements  and  share a hidden 
common cause . An unmeasured common cause or process underlying the repeated 
treatment measurements is denoted simply by . For the sole purpose of simplifying 
this illustration of whether or not to adjust for  or  when targeting the effect of 
on , the lag one effect of  on  was assumed to be absent. Descriptions of the 
nodes and arrows are provided in the caption of Figure 3. The arrows emanating from 
to the measured variables have been truncated to reduce visual clutter. This figure is 
available on DAGitty at http://dagitty.net/mei2SaP. 
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Table B1. Non-causal paths linking      and    via either     or    (but not     ) in the causal diagram of       Figure B1 ,  
and whether each of       and    is a non-collider or a collider on each path.          

Non-causal path 

Non-collider Collider 

Non-collider Collider 

Non-collider Non-collider 

Non-collider Non-collider 

Non-collider Non-collider 

Non-collider Non-collider 

Non-collider Non-collider 

Non-collider Non-collider 

Non-collider N.A. 

Non-collider N.A. 

Non-collider N.A. 

Collider Collider 

Collider Collider 

Collider Non-collider 

Collider Non-collider 

Collider Non-collider 

Non-collider Non-collider 

Non-collider Non-collider 

Non-collider Non-collider 

Non-collider N.A. 

Non-collider N.A. 

Non-collider N.A. 

Non-collider Collider 

Non-collider Non-collider 

Non-collider N.A. 

Non-collider Non-collider 

N.A. Non-collider 

N.A. Non-collider 

Non-collider Collider 

N.A. Non-collider 

Note. A variable which is absent on a path is denoted by “N.A.” 
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