Patrick Hill, Simon Holland, and Robin Laney
The Open University

Centre for Research in Computing

Walton Hall

Milton Keynes MK7 6AA UK
http://www.computing.open.ac.uk/Themes/HCI
PatrickHill@bcs.org.uk

{s.holland, r.c.laney}@open.ac.uk

Computer-music composition systems serve di-
verse purposes. Some draw on contrasting comput-
ing paradigms, including procedural, object-oriented,
data-flow, functional, and logic programming. All
such systems, provided they are sufficiently devel-
oped, are Turing-complete, but different paradigms
can help facilitate different kinds approaches to mu-
sic computing and new kinds of music manipulation.

In general-purpose programming, there is a recent
development known as aspect-oriented programming
(AOP) that has been claimed, along with related tech-
niques, to offer new kinds of flexibility and ease of
variation. The system presented here, AspectMusic,
is the first substantial work we are aware of to adapt
ideas from aspect-oriented programming and related
techniques and explore how they might be applied
to facilitate new approaches to musical exploration
and manipulation. AspectMusic is an implemented
framework that applies ideas at the root of AOP to
the manipulation of musical materials and struc-
tures. To introduce AspectMusic,and more gener-
ally, aspect-oriented music representation (AOMR),
we begin by reflecting on some various well-known
features of current computer-music systems.

Interactive scoring systems effectively provide
musical “word-processor”-style environments,
enabling musical detail to be entered and edited on
a note-by-note basis. Other approaches, such as
JMusic and Common Music, attempt to provide a
generalized music programming environment, al-
beit with a prescribed musical ontology, embedded
within general-purpose programming languages.
Computer music environments such as Pope’s
MODE system (Pope 1991) have evolved out of the
requirement to support particular compositional
needs, and therefore although multiple approaches
are supported, ontological generality is not a prime
concern.

Computer Music Journal, 31:4, pp. 47-58, Winter 2007
© 2007 Massachusetts Institute of Technology.

An Introduction to Aspect-
Oriented Music
Representation

In these and other ways, most music representa-
tions allow music to be represented and manipu-
lated only within a prescribed range of preconceived
musical ontologies. In contrast, AOMR has the dis-
tinctive aim of supporting whatever ontologies may
be preferred by particular users. This is largely
achieved by abstracting music constructs in terms
of discrete areas of interest, or concerns, that may
be composed together. In this way, AOMR attempts
to support any perspective as a first-class entity; its
operations, however, may crosscut or be scattered
across existing organizational hierarchies.

In this article, we have focused on familiar and
relatively simple examples using Western tonal mu-
sic to explain AOMR as clearly as possible. For clar-
ity, we proceed from the traditional dimensions of
tonal music, and then we show how AOMR system-
atically supports various operations and concep-
tions that crosscut these dimensions.

AOMR appears to be particularly relevant for
those musical idioms in which musical composi-
tion may be characterized in terms of a typically
limited set of musical “raw materials” that are
combined and reused in various ways, addressing
different musical areas of interest within a particu-
lar piece of music. Well-known examples of such
materials in Western tonal music include pitch se-
quences, rthythmic figures, and harmonic progres-
sions that may appear in exact and transformed
forms throughout a musical work. Similar transfor-
mational processes can occur at abstract levels in
other idioms, with materials such as sequences of
parameters that form the inputs to generative pro-
cesses. Equally, AOMR is applicable to musical
works and fragments based on structural prototypes
that are formed through a finite set of combinatorial
operations. AOMR appears applicable wherever ex-
plicit support for maintaining coherence across
representational or functional shifts is useful to a
composer.

In traditional areas such as those idioms we focus

Hill et al. 47

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

on in this article, it is generally argued that the
reuse of materials such as those just mentioned is
the principal method by which a composer achieves
musical coherence and stability across different mu-
sical dimensions (Schoenberg 1967; Sloboda 1985;
Cook 1987; Belkin 1999). Additionally, of course,
composers may reuse materials inter-opus. In rele-
vant styles, the general process of musical composi-
tion therefore typically requires that the composer
merge together selected musical fragments to form
new constructs. As a consequence, musical materi-
als cannot generally be localized to any particular
musical construct.

To take a simple example, non-problematic using
conventional systems, a single melodic figure might
be merged with a number of thythmic variants,
forming different phrases. Musical materials there-
fore tend to be explicitly restated and transforma-
tional processes re-applied at each occurrence.
Hierarchical structures are prominent in music, as
indicated by the analytical work of theorists such as
Schenker as well as Lerdahl and Jackendoff (1983).
However, because the hierarchies formed in differ-
ent dimensions do not necessarily align, musical
compositions tend to contain tangled hierarchies
and polyarchies. For example, consider a simple
pitch sequence P1 consisting of two parts PA and
PB, and a simple rhythmic sequence R1 consisting
of three parts RA, RB, and RC. A single melodic fig-
ure constructed from these sequences results in a
tangled hierarchic relationship in which there is
not necessarily any correspondence between any of
the parts of P1 and those of R1. This is shown in
Figure 1a. Polyarchic relationships occur when a
node is shared between hierarchies. Consider, for
example, another pitch sequence P2 that also uses
PB, shown in Figure 1b. Tangled polyarchies occur
when elements from polyarchies in different dimen-
sions are combined.

In addition to deriving core musical materials, in
composing and arranging a musical work composers
often make associations between musical context
and events occurring in orthogonal dimensions. For
example, another simple and non-problematic ex-
ample is the modification of dynamic level at a par-
ticular point within a piece of music, either based

48

Figure 1. (a) Tangled hier-
archical relationship of
pitch and rhythm; (b) poly-
archic pitch relationship.

(@) P1 (b) P
PA PB PA PX e PY
RIA RIB R|C P2
1
R1

upon metrical location, or musical context, such as
the occurrence of a particular chord type. More so-
phisticated examples include the derivation of parts
from musical events occurring in one or more other
parts, such as accentuating particular notes through
doubling. A key point is that the potential complex-
ity of hierarchical tangling that may arise from such
derivations is, in principle, unlimited. Also, even
simple hierarchical tanglings can lead to unlimited
complexity when multiplied or iterated. An equally
important related point is that, in a finished score,
compositional intent is often lost, and again these
derivation processes must be restated and reapplied
wherever they recur. Moreover, if musical frag-
ments are to be specially treated, based upon fea-
tures relating to their derivation, then this too must
be tracked by the composer because it may not be
readily apparent from the resultant material itself
(Crochemore, Iliopoulos, and Pinzon 2001).

Furthermore, whereas music is naturally experi-
enced in a “left-to-right” fashion, it is not necessar-
ily composed in this way. Although it is true that
some composers speak of a spontaneous vision of a
work that “simply” requires transcription (Sloboda
1985), others (e.g., Spiegel 1988) describe detailed,
iterative, evolutionary processes, in which the
composition develops from possibly incomplete
sketches in different musical dimensions and at dif-
ferent levels of abstraction.

The representation of tangled, multi-dimensional,
polyarchic relationships is difficult and generally
not explicitly represented in computer-music sys-
tems. However, recent developments in computer
software, collectively termed aspect-oriented pro-
gramming (AOP), seek to address similar types of
problem that exist in software. In particular, AOP
approaches try to help manage the separation, en-
capsulation, and subsequent merging together, or
weaving, of the implementations of separately

Computer Music Journal

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

specified areas of interest or concern. Modern
object-oriented approaches to software design and
implementation (e.g., Meyer 1997; Rumbaugh et al.
1991) represent a natural evolution of the module
paradigm suggested by Parnas (1972), enabling
application-domain and design concerns to be repre-
sented as classes that encapsulate both data and the
operations that may be performed upon that data.

Even so, certain areas of interest remain difficult
or impossible to encapsulate as classes (Hiirsch and
Lopes 1995). From one perspective, the fields and
methods defined within a class might be further
grouped in terms of the concerns that they address
and the implementation of a given concern might
involve a number of methods and fields that extend
across multiple, possibly unrelated, classes. More-
over, multiple concern implementations may incor-
porate common code fragments that themselves
have no natural class association. Typical object-
oriented approaches therefore impose a decomposi-
tion scheme that is not sufficiently general to
enable separation of concerns. This has been dubbed
“the tyranny of the dominant decomposition” (Tarr
and Ossher 2000). At another level of abstraction,
certain programming concerns relate to particular
events that occur within the execution of a pro-
gram. For example, a “tracing concern” that pro-
duces diagnostics that trace entry into selected
methods typically requires the tracing implementa-
tion to be restated in every method of interest.

These complementary viewpoints identify that
certain concerns tend to be scattered across mul-
tiple, possibly unrelated, classes and intertwined or
tangled with other concern implementations. Be-
cause such concerns cannot be localized and encap-
sulated using the prevailing decomposition, they
are said to be crosscutting. Addressing such prob-
lems is precisely the purpose of AOP and cognate
techniques.

In this article, we introduce an experimental
object-oriented (OO) software system called Aspect-
Music that adapts ideas from AOP to realize an
aspect-oriented music representation. AOMR aims
to provide a general approach to the separation, or-
ganization, and composition of musical concerns
from both viewpoints outlined herein.

Symmetric and Asymmetric Composition of
Concerns

Approaches to AOP are diverse. Some, such as
Aspectual Components (Lieberherr, Lorenz, and
Mezini 1999) apply to specific programming con-
cerns, whereas others, such as Aspect] (Xerox 2002),
Hyper/] (Tarr and Ossher 2000), and Caesar (Mezini
and Ostermann 2003) address more general separa-
tion of concerns. General-purpose approaches
broadly adopt one of two paradigms: symmetric or
asymmetric. The following paragraphs briefly out-
line these approaches. In each case, the reader is di-
rected to the references for further detail. Examples
of these two approaches as applied to music are pre-
sented in later sections of this article.

Asymmetric approaches, such as Aspect] (Xerox
2002) and AspectS (Hirschfeld 2002), consider the
augmentation of a base decomposition—typically a
standard OO-decomposed program—with cross-
cutting concern implementations. In Aspect] (the
best-known example of this approach), the base de-
composition is a normal Java program. Crosscutting
concern implementations, generically termed ad-
vice, are associated with well-defined points,
termed joinpoints, in the static or dynamic struc-
ture of the base decomposition. Typically, join-
points are at method calls and variable assignments.
Particular joinpoints of interest are specified as
pointcut expressions, and advice may typically be
run before, after, or instead of (around) the join-
point. In this way, asymmetric approaches in gen-
eral enable standard programs to be non-invasively
augmented with separately encapsulated crosscut-
ting concern implementations.

In contrast, symmetric approaches, such as multi-
dimensional separation of concerns (MDSoC; Ossher
and Tarr 1999) implemented by Hyper/J (Tarr and
Ossher 2000), consider the construction of software
systems from separately specified components
(units) that each address just one concern. In MD-
SoC, these components are organized into a multi-
dimensional structure called a hyperspace, in which
each named unit is associated with a dimension
name, and the name of a concern within that di-
mension to which the unit relates. Broadly speak-

Hill et al. 49

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

ing, using an MDSoC approach, software systems
are composed by specifying those dimensions and
concerns that the resultant system should contain.
As noted in Harrison, Ossher, and Tarr (2002), no
single composition method is suitable for all re-
quirements. Therefore, symmetric and asymmetric
approaches should be regarded as complementary.

AspectMusic Overview

AspectMusic is an object-oriented, experimental
implementation of an AOMR written in Visual-
Works Smalltalk (Goldberg and Robson 1989). The
system consists of two interrelated components,
HyperMusic and MusicSpace, that respectively im-
plement symmetric and asymmetric composition
approaches.

HyperMusic provides a framework for abstract-
ing, organizing, and representing musical ideas.
Using HyperMusic, the user defines musical materi-
als and transformational processes that are then or-
ganized according to user-defined criteria into a
hyperspace. Declarative specifications are used to
compose new material from the components in the
hyperspace. These new components may them-
selves be added to the hyperspace, and thus the
hyperspace becomes an evolving repository of
compositional ideas.

MusicSpace allows components from HyperMu-
sic to be arranged in time, in a manner similar to a
MIDI sequencer. However, MusicSpace enables mu-
sic to be dynamically modified based upon context
using an approach that is similar to asymmetric
AOQP. In particular, modification-strategy imple-
mentations can be modularized and associated with
particular dynamic musical conditions in terms of
pointcut-like events that must be satisfied for the
strategy to be applied.

To link the two approaches, the construction of
materials using HyperMusic is audited through a
“Composition History” that is associated with each
symmetrically composed element. This history is
available to MusicSpace. Thus, for any musical
event in MusicSpace, it is possible to determine not
only its current state, but also how it has been de-
rived. In the remainder of this article, we describe

50

Figure 2. HyperMusic class
structure.

HyperspaceLocator Hyperspace

<<Dictionary>> <<OrderedCollection>>

ComposedMusicUnit MusicUnit

T

<<OrderedCollection>>

MusicUnitltem MusicUnitltemCollection

Primitive Composition History

the symmetric and asymmetric components of As-
pectMusic in greater detail.

Symmetric Composition of Musical Concerns
Using AspectMusic

The symmetric-composition component (HyperMu-
sic) of AspectMusic provides an extensible frame-
work that supports the definition, organization, and
combination of musical fragments (Hill, Holland,
and Laney 2006). HyperMusic is heavily influenced
by the notion of hyperspaces (Ossher and Tarr 1999)
and the Hyper/J (Tarr and Ossher 2000} implemen-
tation of hyperspaces for the Java programming lan-
guage. The principal class structure of HyperMusic
is shown in Figure 2.

Structuring in HyperMusic
Fundamental to HyperMusic is its ability to support

the separation and combination of musical ideas
from discrete musical dimensions. In this context, a

Computer Music Journal

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

Figure 4. Schematic of a
CMU representing the frag-
ment shown in Figure 3.

Figure 3. A simple music
fragment.

ComposedMusicUnit

MusicUnit (pitch)

MusicUnit (rhythm)

MusicUnititemCollection
Index #1

MusicUnititemCollection
Index #2 Index #1 Index #2

MusicUnitltemCollection MusicUnititemCollection

/—‘—\

/—‘—\

(Voice 1) (Voice 2)

MusicUnititem MusicUnititem MusicUnititem MusicUnitltem MusicUnititem
(Voice 1) (Voice 1)

MusicUnititem
(Voice 2) (Voice 1)

G C

PitchElement PitchElement PitchElement
A 1 beat 2 beats 1 beat

RhythmElement

RhythmElement RhythmElement

musical idea is generalized as an indexed collection
of events relating to the same musical dimension,
where each event may contain multiple elements
organized into discrete voices. For example, a
monophonic rhythmic idea might be expressed as a
sequence of events, where each event contains a
single object representing relative onset time and
duration. A sequence of chords, on the other hand,
might be expressed as a sequence of events in which
each event contains pitch-value representations dis-
tributed across multiple voices.

In HyperMusic, music units (MUs) represent dis-
crete musical ideas in a single musical dimension,
organized as an ordered collection. Each element of
the ordered collection within an MU contains an or-
dered collection (a MusicUnitItemCollection)of
MusicUnitItem objects that wrap user-defined
objects representing musical information. The
MusicUnitItemCollection indexes its Music-
UnitItems with values that correspond to discrete
voices. Conceptually, the wrapped objects each per-
tain to the same musical type, such as pitch, rhythm,
or dynamic information. However, HyperMusic
does not prescribe the types that can be represented;
neither does HyperMusic mandate that all wrapped
objects within an MU are of the same class. For ex-
ample, a pitch MU might contain MusicUnitItems
that wrap a mixture of object types that represent

pitch as, say, MIDI pitch values (0-127), symbolic
values such as “C#4,” or frequency values.
Complete musical ideas are typically formed
from multiple musical dimensions. A melody, for
example, can be viewed as being formed from pitch
and rhythm. In HyperMusic, MUs of different types
are aggregated into composed music units (CMUs),
represented by the class ComposedMusicUnit, in
which each component MU is identified by the
name of the type it represents. To illustrate the
structure of CMUSs, a simple musical fragment and
a schematic representation of the HyperMusic ob-
jects involved in a CMU representation of the frag-
ment are shown, respectively, in Figures 3 and 4.

Combining CMUs

CMUs are designed to be combined in various ways
to form new CMUSs that represent new musical
material. We adopt the AOP term weaving to de-
scribe these combination processes. HyperMusic
supports the musically fundamental notions of se-
quential and parallel weaving. However, it is easy
to extend the system to support other kinds of
weaving corresponding to any method through
which two CMUs can be combined, for example
weaving appoggiatura or acciaccatura (Honing 1993)

Hill et al. 51

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

configurations. It is important to note that CMUs
are not constrained to be “complete.” Although
clearly for final realization, CMUs must contain all
required musical elements in all required dimen-
sions, at any intermediate stage a CMU can be in-
complete in terms of the types that it contains
(vertically) and the number of elements in each
type (horizontally). Because there is no implied cor-
respondence among arbitrary groupings within
each type, CMUs are able to support tangled inter-
dimensional relationships.

Sequential Weaving

When two CMUSs are woven in sequence, notated
with the binary operator +, those MUs with identi-
cal type names are concatenated. If an MU type ap-
pears in only one of the woven CMUs, then it is
concatenated with an empty MU. Thus, the set of
MU types contained in the resultant CMU is the
union of the set of MU types of both the combined
CMUs. Usefully, this means that if, say, a CMU
containing only a pitch dimension is sequentially
woven with a CMU containing only rhythm, then
the resultant CMU contains the pitch sequence in
parallel with the rhythm sequence.

Parallel Weaving

When two CMUs are woven in parallel, notated
with the binary operator |, the MusicUnitItem-
Collections that exist at the same index in
MUs of the same type name are merged together,
allowing, for example, the formation of chords.
Like sequential weaving, the resultant CMU con-
tains the union of the set of MU types of both com-
bined CMUs.

Transformations

In the foregoing sections, we have described the rep-
resentation of musical data within the CMU model.
However, music composition often involves the al-
gorithmic transformation or generation of musical
material. The CMU model supports these require-
ments by enabling transformational or generative

52

code, generically termed transformations, to be
placed in the special MU type #Transform. Like
other types, the #Transform type is represented by
aMusicUnit structure, enabling ordering to be rep-
resented. A common use might be to construct
CMUs that contain just one or more transforma-
tions. However, as we will demonstrate later, the
open-ended nature of the CMU structure means
that the approach also naturally supports CMUs
that contain both transformational code and other
musical information.

Combining and Executing Transformations

Although, like other types, the #Transform type is
an MU, the semantics of non-sequential weaving
are not defined for it. Consequently, #Transform is
always woven sequentially. However, simply weav-
ing transformations into a CMU does not cause the
transformations to be applied. Rather, transforma-
tions are executed by evaluating the CMU. This ap-
proach enables sequences of transformations to be
constructed and allows the user to specify when
these transformations should be applied. Evalua-
tion, notated with the unary operator @, causes all
transformations in a CMU'’s #Transform MU to be
executed in index order and for a resultant CMU to
be produced that contains no #Transform type. A
CMU without a #Transform type is said to be fi-
nal, and the result of evaluating a final CMU is the
CMU itself, unchanged.

Organizing and Combining CMUs

CMUs represent raw musical data and transforma-
tional processes. However, CMUs are of limited
value in themselves. Rather, we want to be able to
organize CMUs according to our own ontology, and
by combination, to construct new CMUSs by refer-
ence to this organization. The organizational struc-
ture of HyperMusic, like that of MDSoC, is the
hyperspace.

Dimensions and Concerns

In the hyperspace model presented in Ossher and
Tarr (1999), units are organized according to the di-

Computer Music Journal

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

mension and concern to which they relate. In this
context, dimension and concern are arbitrary tex-
tual names whose purpose is to represent an organi-
zational structure that transcends the explicit
structure of the software itself. In object-oriented
software, for example, while a class may represent a
prototypical object that exists within some universe
of discourse, the fields contained within the class—
and the operations that may be performed on in-
stances of that class—may conceptually pertain to
different functions or concerns of the system. More-
over, the operations that pertain to a given concern
may exist in multiple classes. Thus, because the
dominant, class-based, decomposition of object-
orientation does not support such a partitioning, it
is not easily possible in object-oriented program-
ming to identify only those parts of the class graph
that relate to a particular concern.

There are many established musical representa-
tions, each with their own musical ontology, and
consequently there is no clear analog of a “domi-
nant decomposition” in music. Nonetheless, mu-
sic can be considered in terms of independent
perceptual dimensions (Loy and Abbott 1985):
pitch, thythm, dynamics, and timbre. We may also
consider music in terms of aggregates of a single
dimension, such as melodic themes, cells, tone
rows, harmonic progressions, rhythmic motifs,
or—more abstractly—arbitrary parameters and
their evolution through generative, transforma-
tional, and combinatorial processes throughout a
given musical work. We argue, therefore, that for
many purposes it is useful to consider each newly
generated musical structure as serving some iden-
tifiable compositional purpose that can be attrib-
uted to some dimension and concern within the
work. For example, different melodic fragments
might be used in an antecedent/consequent rela-
tionship, themes might be associated with extra-
musical events in similar ways to Wagner’s use of
the leitmotiv.

Hyperspace and Hyperslices

In HyperMusic, a hyperspace is a data structure that
maps between coordinates (consisting of the triplet
of dimension name, concern name, and unit name)

and CMUs. Thus, the hyperspace, represented by
the Hyperspace class, is an organized repository of
musical and transformational fragments repre-
sented as CMUs.

A hyperslice is an abstract slice through a hyper-
space, defined by a partial specification of the coor-
dinates of CMUs of interest. For example, we might
be interested in any CMU in the “Themes” dimen-
sion, or any CMU in a concern whose name begins
with “Ostinato.”

Combining CMUs

The purpose of organizing CMUs into a hyperspace
is to facilitate their subsequent composition into
new CMUs. The specification of such a composi-
tion, represented by an object of the Hypermodule-
Specification class, contains three key attributes:
one or more hyperslice specifications, a composi-
tion expression, and a composition relationship
specification.

Composition Expressions

A composition expression specifies the hyperspace
coordinates of those CMUs that are to be woven
and the weaving operations that are to be per-
formed on these CMUs to generate a new CMU.
Typical weaving operations, as described previously,
are sequence (+) and parallel (|). Additionally, the
composition expression may cause the evaluation
of CMUs, using the unary operator @. Within the
composition expression, CMU coordinates are
specified in the form dimension; concern;unit,
where dimension, concern, and unit are regular
expressions.

For example, consider the two CMUs A and B,
shown in Figure 5, and the various weavings of
these CMUs, shown in Figures 6-8. For the pur-
poses of this example, assume that A and B exist in
the C concern of dimension D. Assume also that A
and B each contain some musical information in
the #pitch dimension, and that A additionally con-
tains a transformation T that transposes pitch up by
one semitone.

As shown in Figure 6, the composition expression
D;C;A + D;C;B causes A and B to be sequentially

Hill et al. 53

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

Figure 5. CMUs A and B. Figure 6. CMU resulting
from the composition

D;C;A + D;C;B.

CMU A CMU B
MU Type Content MU Type | Content
#pitch - = #pitch =S —a—5G—
#Transtorm | T
Figure 5

MU Type Content

#pitch - <

#Transform | T

Figure 6

woven, resulting in a CMU whose content is the
pitch component of A followed by the pitch com-
ponent of B, and that also contains the transfor-
mation T.

The expression @D; C; A results in a CMU that
contains the pitch component of A that has been
transposed up by one semitone, owing to the evalu-
ation (@) of T. The evaluation also causes T to be re-
moved from the resultant CMU. This is shown in
Figure 7. The expression @ (D; C;A) + D;C;Bre-
sults in a CMU containing the pitches of A trans-
posed up by one semitone, followed by the
(untransposed) pitches of B, as shown in Figure 8.

Although specifying CMUs in terms of absolute
hyperspace coordinates is clearly useful, greater ex-
pressive power is achieved from partial specifica-
tions using regular expressions. By default, CMUs
are woven in sequence. For example, the composi-
tion expression Intro;BassGuitar;Fragment.*
represents the sequential weaving of all CMUs
whose name begins with Fragment and that exist
in the BassGuitar concern of the Intro dimen-
sion, subject to the hyperslice constraints subse-
quently described.

Hyperslice Specifications

To select CMUs for weaving, the CMU coordinates
specified by a composition expression must be
matched against CMUs that exist in the hyper-

54

Figure 7. CMU resulting
from the composition
@D; C; A.

Figure 8. CMU resulting
from the composition
@(D;C;A) + D;C;B.

MU Type Content

. N]
#pitch L P> e
o

Figure 7

MU Type Content

IR N
Ty o)

#pitch b o

1L o) <

Figure 8

space. Hyperslice specifications within a hyper-
module specification cause the search space to be
refined by restricting matched names to those exist-
ing in the specified hyperslices rather than the en-
tire hyperspace. Hyperslice specifications can be
expressed as regular expressions. Figure 9 shows the
content of several example hyperslices of the fol-
lowing Hyperspace

Themes ; Themel ; Openingl
Themes; Themel;Closingl
Rhythms; Themel;Original
Rhythms; Theme2;Original
Rhythms; Themel; lstVariation

Composition Relationships

Because composition expressions may specify CMU
coordinates as regular expressions, it is possible for
multiple CMUs to match the specification. A com-
position relationship specifies how this situation is
managed. HyperMusic contains two predefined
composition relationships, though it is possible to
add new relationships as required. In the event of
multiple matches for a CMU, the overrideByName
relationship causes the last match found to be used.
Conversely, the mergeByName relationship causes
all matching CMUs to be woven in sequence. The
results of the matching process are always returned
in ascending ASCII order. Thus, in a hyperspace
containing CMUs given by

Dim.Concern.Unitl
Dim.Concern.Unit2
Dim.Concern.Unit3

Computer Music Journal

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

Figure 9. Example hyper-
slice specifications and
their content.

Hyperslice

Hyperslice Specification Content

Themes;.* Themes;Theme1;0pening1

Themes;Theme1;Closing1

.*; Theme1 Themes;Theme1;0pening1
Themes;Theme1;Closing1
Rhythms;Theme1;Original

Rhythms;Theme1;1stVariation

Rhythms;Theme1 Rhythms;Theme1;Original

Rhythms;Theme1;1stVariation

[Themes;Theme1;0pening1 |

the regular expression Dim; Concern;Unit. *
would be matched by all three CMUs. If the over-
rideByName relationship were used, then
Dim.Concern.Unit3 would be returned. If the
mergeByName relationship were used, then a CMU
formed by the sequential composition of Dim.Con-
cern.Unitl + Dim.Concern.Unit2 +
Dim.Concern.Unit3 would be returned.

Composition History

An important feature of music is that musical ideas
evolve both inter- and intra-opus. The HyperMusic
approach enables evolution to be defined declara-
tively as hypermodule specifications that define the
weaving or transformation of existing CMUs to
form new CMUs. As part of the composition of
CMUs, each MusicUnitItemis annotated with a
““composition history” that provides an “audit
trail” of the various weavings and transformations
that have been performed and have caused the item
to be in its present location.

Refactoring

Music composition is obviously a creative and gen-
erally iterative process. As such, decisions that are
made at some point in the process might be modi-
fied at a later point. For example, a CMU might be
constructed as a single rhythmic figure R. At some
later point, it might be decided that R can be use-
fully considered as two components, R1 and R2, and

that R1, say, can be reused within the composition.
We term this kind of adjustment refactoring.

In its present form, HyperMusic does not contain
any support for automatic refactoring operations.
However, if we imagine the composition of CMUSs
being described as a sequence of weaving opera-
tions, then it is a simple matter to adjust this se-
quence such that R is described as being constructed
from R1 and R2, thus making R1 and R2 available
within the hyperspace but leaving all existing refer-
ences to R intact.

Asymmetric Composition of Musical Concerns
using AspectMusic

The HyperMusic approach to AOMR seeks to en-
able musical material, encapsulated as CMUs, to be
represented, organized, and woven together to form
new material through declarative specifications.
Although it is possible to realize CMUs as, for ex-
ample, MIDI sequences, the range of musical com-
positions that can be represented in this way is
naturally limited.

MusicSpace provides an environment in which
the events contained within CMUs can be arranged
in time. In this respect, MusicSpace resembles a
typical MIDI sequencer. However the distinguish-
ing feature of MusicSpace is its ability to enable
music to be modified in relation to context through
an approach that mirrors asymmetric aspects in
software. The chief advantages of this approach are,
first, that modification processes that occur at mul-
tiple locations (and are therefore crosscutting) can
be modularized, requiring them to be stated only
once, and second, aspects are non-invasive—there is
no requirement to make any particular a priori
arrangements within a CMU for aspects to be ap-
plied to the content of that CMU.

The MusicSpace approach enables compositional
intent to be explicitly and declaratively expressed.
For example, consider Beethoven’s Sonata in C Mi-
nor No. 8, Op. 13 (“Pathetique”). At bars 5-7, there
is a fragment in which the theme is played pp and
interspersed with ff interludes. We might suggest
that Beethoven’s structural plan was to have pp

Hill et al. 55

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

sections followed by ff sections, irrespective of what
musical content these sections ended up contain-
ing. Alternatively, Beethoven might have consid-
ered that the ff markings were to be associated with
the musical content of the interludes, irrespective
of where they were placed. Perhaps, Beethoven
wanted to accentuate those sections that were
played in the lower registers, and so ff should be ap-
plied to any section in which all parts fell below
middle C. From an analytical perspective this is pure
speculation, with some explanations being more
plausible than others. Clearly, whatever the motiva-
tion, the resultant score would look the same, and
the composer’s intent has therefore been lost.

An example from a more contemporary style
might be to consider a section of a musical work
containing pitch clusters that have been generated
using a transformation based upon, for example,
three parameters; mode, cluster size, and root. As
part of this work, the composer wishes to reinforce
particular pitches through doubling on another in-
strument, depending, say, upon the mode of the
cluster in which they appear.

Using MusicSpace, the special treatment of
events, such as alteration of dynamic level or repli-
cation to a different instrumental part, may be sepa-
rately and reusably encapsulated. Moreover, the
compositional intent that associates such addi-
tional behaviors with specific conditions, which
may include not only features of specific events, but
also features of their derivation, may be declara-
tively specified.

MusicSpace Structure

A MusicSpace can be considered as a container for
one or more named MusicSpaceParts. A Music-
SpacePart is analogous to a part on an instrumental
score, or a track within a MIDI sequencer, and con-
tains CMUs arranged in time, with the restriction
that CMUs cannot overlap within a Music-
SpacePart. Figure 10 shows the basic structure of a
MusicSpace that has been populated with two Mu-
sicSpaceParts: “Melody” and “Bass.” The CMUs
within a part cannot overlap; CMUs can, however,
overlap between parallel parts. Note also that

56

Figure 10. MusicSpace

structure.
Melody [cmut | comuz] [cmus T cmus]
Bass | CMUA [CMUB [CMUC |

CMUs are not constrained to be contiguous within
a part.

Joinpoints

As in software, some of types of crosscutting con-
cerns, termed code-Ilevel crosscuts (Bockisch et al.
2004), can be directly mapped to loci in the base de-
composition. For example, referring to the logging
example outlined earlier, it would be a relatively
simple matter to automatically modify a program’s
source code by inserting logging calls into the meth-
ods of interest. This type of crosscut could be easily
implemented (with the potential loss of traceability
and intent) as a search-and-replace-style function
operating on MusicSpacePart objects, for example,
modifying duration to achieve articulation effects.
However, dynamic crosscuts (Bockisch et al. 2004),
whose loci can only be determined at run time,
present a potentially more useful class of crosscut-
ting concern. In the case of logging, for example, we
might be interested in logging one method but only
if it has been called by another method. Similarly,
we might be interested in making particular notes
in a given CMU staccato, but only when they are
played at the same time as another CMU. To sup-
port dynamic crosscutting, the aspect model used in
MusicSpace is event-based, conceptually resembling
Axon (Aussmann and Haupt 2003) and the Event-
Condition-Action (ECA) type “triggers” that are
common in database applications. To generate
joinpoint events and process aspects, the Music-
Space is compiled against an AspectManager object
with which all required aspect objects have been
registered.

When a MusicSpace is compiled, “tick” events
are generated and propagated to all MusicSpace-
Parts. These ticks, which by default are generated at
a rate of 480 times per beat (giving good resolution
of n-tuplets), simulate the ticks of a clock source,
such as a MIDI clock. However, it should be noted
that, in the current implementation, ticks are not

Computer Music Journal

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

generated in real time, and therefore MusicSpace is
not a live-performance environment.

MusicSpace Aspects

MusicSpace aspects are implemented as standard
Smalltalk classes that define crosscutting behavior
(advice), along with a representation of the condi-
tions under which this behavior is to be executed
(pointcuts). An instance of each such class is regis-
tered with the AspectManager against which the
MusicSpace is to be compiled.

At each clock tick, the contents of all Music-
SpaceParts within the MusicSpace are queried to
build a context that describes all the events that
commence at the current tick value. This context
includes all of the composition history that is asso-
ciated with each event. The advice associated with a
MusicSpace aspect is invoked if the current context,
including temporal location, satisfies the pointcut
expressions associated with the aspect. In general,
an AspectMusic aspect can modify the content of
the current temporal location by manipulating the
events contained within the context. The advice
may also modify future (or prior) events within the
MusicSpace itself. Both before and after advice types
are supported. Before advice is executed before the
MusicSpace events contained by the current con-
text are rendered into the resultant MusicSpace, en-
abling the advice to veto or modify the rendering of
any component event of the context. After advice
executes once this process has been completed, and
therefore cannot modify the current event.

One of the perceived benefits, particularly of
asymmetric AOP, is that pointcuts are defined de-
claratively. As MusicSpace is an object-oriented
Smalltalk system, determining whether a pointcut
is satisfied or not often requires procedural code
that navigates and queries the object structures of
the joinpoint context. These kinds of query may be
arbitrarily complex and are, therefore, difficult to
generalize in an object-oriented system. This kind
of problem is, largely, more easily solved using logic
programming languages such as PROLOG. To sup-
port declarative pointcut queries, MusicSpace en-
ables joinpoint contexts, including composition

history, to be exposed as a set of AspectMusic logic
predicates expressed in the PROLOG-like Smalltalk
Open Unification Language (SOUL; Gybels 2001).
The symbiosis that exists between Smalltalk and
SOUL enables expressions in either language to be
evaluated from the other.

Rendering

The current implementation of AspectMusic en-
ables MusicSpace instances to be rendered as MIDI
sequences by transforming information relating to
pitch, thythm, and dynamics into MIDI events.
This provides a convenient method of auditioning
and visualizing generated musical compositions us-
ing external MIDI tools. However, it should be
noted that AOMR and AspectMusic systematically
avoid the limitations of any design bias towards par-
ticular rendering means such as MIDI.

Conclusions

We have proposed an approach to music representa-
tion that is particularly applicable to styles of music
in which musical ideas across various musical and
non-musical dimensions are merged together to
form new musical elements, resulting in tangled,
polyarchic relationships. We have described aspect-
oriented music representation, which draws from
aspect-oriented programming, as a means to explic-
itly and declaratively support the organization and
combination of musical and procedural elements
separately from the musical material itself. AOMR
supports the symmetric composition of musical
materials in which no one musical dimension is
dominant, using a musical hyperspace as a dynamic
repository of musical ideas. Moreover, AOMR does
not limit the kinds of musical information that can
be represented. AOMR also features an asymmetric,
context-dependent, joinpoint-interception model
through which the selective modification of these
materials is possible. Because the implementation
of our AOMR system is open, the full expressive
power of a general-purpose programming language—
in this case, Smalltalk—is available within AOMR.

Hill et al. 57

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

An AspectMusic tutorial is available in the
Open University Department of Computing Tech-
nical Report TR2006/12 (available online at
computing-reports.open.ac.uk/index.php/2006/
200612).

References

Aussmann, S., and M. Haupt. 2003. “Axon-Dynamic
AQP through Runtime Inspection and Monitoring.”
Technical Report. Darmstadt, Germany: 2003 ASARTI
Workshop.

Belkin, A. 1999. A Practical Guide to Musical Composi-
tion. Available online at www.musique.umontreal.ca/
personnel/Belkin/bk/.

Bockisch, C., M. Haupt, M. Mezini, and K. Ostermann.
2004. “Virtual Machine Support for Dynamic Join
Points.” Proceedings of the 3rd International Confer-
ence on Aspect-Oriented Software Development. New
York, New York: Association for Computing Machinery,
pp. 83-92.

Cook, N. 1987. A Guide to Musical Analysis. London:
Oxford University Press.

Crochemore, M., C. S. Iliopoulos, and Y. J. Pinzon. 2001.
“Computing Evolutionary Chains in Musical Se-
quences.” The Electronic Journal of Combinatorics
8(2). Available online at www.combinatorics.org/
Volume_8/v8i2toc.html.

Goldberg, A., and D. Robson. 1989. Smalltalk-80: The
Language. Boston, Massachusetts: Addison-Wesley.
Gybels, K. 2001. “Aspect-Oriented Programming using a
Logic Meta-Programming Language to Express Cross-
Cutting Through a Dynamic Joinpoint Structure.”
Licentiate Dissertation, Vrije Universiteit Brussels.

Harrison, W., H. Ossher, and P. Tarr. 2002. “Asymmetri-
cally vs. Symmetrically Organized Paradigms for Soft-
ware Composition.” Technical Report RC22685
(W0212-147). Yorktown Heights, NY: IBM.

Hill, P, S. Holland, and R. Laney. 2006. “Symmetric
Composition of Musical Concerns.” Proceedings of the
5th International Conference on Aspect-Oriented Pro-
gramming (AOSDO06). New York, New York: Associa-
tion for Computing Machinery, pp. 226-236.

Hirschfeld, R. 2002. “Aspect-Oriented Programming
with AspectS.” Technical Report. Munich, Germany:
DoCoMo Communications Laboratories Europe.

Honing, H. 1993. “Issues in the Representation of Time
and Structure in Music.” Contemporary Music Review
9:221-239.

58

Hursch, W., and C. Lopes. 1995. “Separation of Con-
cerns.” Technical Report NU-CCS-95-03. Boston, Mas-
sachusetts: College of Computer Science, Northeastern
University.

Lerdahl, F.,, and R. Jackendoff. 1983. A Generative Theory
of Tonal Music. Cambridge, Massachusetts: MIT Press.

Lieberherr, K., D.-H. Lorenz, and M. Mezini. 1999. “Pro-
gramming with Aspectual Components.” Technical
Report NU-CCS-99-01. Boston, Massachusetts: College
of Computer Science, Northeastern University.

Loy, G., and C. Abbott. 1985. “Programming Languages
for Computer Music Synthesis, Performance, and Com-
position.” ACM Computing Surveys 17(2):235-265.

Meyer, B. 1997. Object-Oriented Software Construction,
2nd Edition. Upper Saddle River, New Jersey:Prentice-
Hall.

Mezini, M., and K. Ostermann. 2003. “Conquering As-
pects with Caesar.” Proceedings of the 2nd Interna-
tional Conference on Aspect-Oriented Software
Development. New York: Association for Computing
Machinery, pp. 90-99.

Ossher, H., and P. Tarr. 1999. Multi-Dimensional Separa-
tion of Concerns in Hyperspace. Technical Report RC
21452 (96717) 16APR99. Yorktown Heights, New York:
IBM T. J. Watson Research Center.

Parnas, D. L. 1972. “On the Criteria to be used in Decom-
posing Systems into Modules.” Communications of
the ACM 15(12):1053-1058.

Pope, S. T. 1991. “Introduction to MODE: The Musical
Object Development Environment.” In S. T. Pope, ed.
The Well-Tempered Object: Musical Applications of
Object-Oriented Software Technology. Cambridge,
Massachusetts: MIT Press, pp. 83-106.

Rumbaugh, J., et al. 1991. Object-Oriented Modeling and
Design. Upper Saddle River, New Jersey: Prentice-Hall.

Schoenberg, A. 1967. Fundamentals of Music Composi-
tion. London: Faber and Faber.

Sloboda, J. A. 1985. The Musical Mind: The Cognitive
Psychology of Music. London: Oxford University Press.

Spiegel, L. 1988. “Old-Fashioned Composing from the In-
side Out: On Sounding Un-Digital on the Composi-
tional Level.” Paper presented at the 8th Symposium
on Small Computers in the Arts, 2-5 November,
Philadelphia.

Tarr, P., and H. Ossher. 2000. Hyper/] User and Installa-
tion Manual. Technical Report. Yorktown Heights,
NY: IBM.

Xerox. 2002. The Aspect] Programming Guide. Technical
Report. Stamford, Conneticut: Xerox Corporation.

Computer Music Journal

120z Jequisydag 6| U0 3sanb Aq Jpd'Lp' v L€ 00T [WOO/ZY61S8L/LY/Y/1E/Pd-BIoNe/Wod/NPa)W jda.Ip//:dRy Wolj papeojumoq

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Sheridan distiller settings for use with MIT Journals. No subset fonts. Only use when specified.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

