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aprechtl@gmail.com
†Computing Department
The Open University
Walton Hall, Milton Keynes
Buckinghamshire, MK7 6AA UK
andymilne@tonalcentre.org,
{s.holland, r.c.laney}@open.ac.uk
∗∗Department of Design, Development,
Environment and Materials
The Open University
Walton Hall, Milton Keynes
Buckinghamshire, MK7 6AA UK
d.sharp@open.ac.uk

We present a new Dynamic Tonality MIDI se-
quencer, Hex, that aims to make sequencing music
in and across a large variety of novel tunings as
straightforward as sequencing in twelve-tone equal
temperament. In order to enable the intuitive visu-
alization and dynamic manipulation of tuning, it
replaces the piano roll used in conventional MIDI
sequencers with a two-dimensional lattice roll (see
Figure 1). It is compatible with the Dynamic Tonal-
ity line of software—which currently consists of
the microtonal synthesizers TransFormSynth, The
Viking, and 2032—and, for static tunings, with any
synthesizer that handles channel pitch bend.

In conventional piano roll sequencers, a piano
keyboard is displayed on the left side of the window,
and white and black note lanes extend horizontally
to the right, into which a user can draw a sequence
of notes. Similarly, in Hex, a button lattice is
displayed in its own pane on the left side of the
window, and horizontal lines are drawn from the
center of each note to the right. These lines function
as generalized note lanes, just like in piano roll
sequencers, but with the added benefit that each
note lane’s height is always proportional to its pitch,
even if the user changes the tuning. The presence
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of the button lattice on the left side of the window
illustrates exactly which buttons a performer would
play in order to replicate the sequence when playing
a physical button lattice instrument, such as the
C-Thru AXiS-49 (www.c-thru-music.com) or the
Thummer (www.thummer.com).

Dynamic Tonality is an audio synthesis and con-
trol framework that helps musicians explore novel
tunings using a small number of intuitive parame-
ters, and provides several new musical opportuni-
ties. First, it enables users to morph between many
well-known tunings and demonstrates both their
structure and their relation to a broad continuum of
tunings. For example, a single parameter moves the
tuning of tones in a repeating scale through a contin-
uum containing a variety of notable tunings, such
as seven-tone equal temperament (7-TET), 19-TET,
various meantones, 12-TET, Pythagorean, 17-TET,
22-TET, and 5-TET (Milne, Sethares, and Plamondon
2007). Second, it affords a two-dimensional isomor-
phic note layout—a representation (see Figure 2) for
visualizing, manipulating, and fingering pitch sets
in a way that is consistent across key transpositions
(Keislar 1987) and many diverse tunings (Milne,
Sethares, and Plamondon 2007, 2008). Finally, it can
temper the partials of individual tones to match
the underlying scale’s tuning, which allows sensory
dissonance to be minimized in any tuning, and
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Figure 1. Hex uses a lattice
roll in place of the
traditional piano roll. This
enables unfamiliar
microtonal scales to be
intuitively visualized, and
their tuning to be

dynamically manipulated.
In this example, three
octaves of a ten-tone
microtonal moment of
symmetry (MOS) scale are
indicated by the
light-colored buttons and

lanes. The light
buttons/lanes can be
thought of as generalized
“diatonic” tones, the dark
buttons/lanes as
generalized “chromatic”
tones.

Figure 1.

Figure 2. A
two-dimensional
isomorphic note layout.

Figure 2.

introduces novel classes of timbre (Sethares 2004;
Sethares et al. 2009).

We hope that this combination of features
will facilitate the exploration of tuning as a cre-
ative tool in compositions and performances.
For example, Andrew Milne’s Magic Traveller
and Hanson demonstrate how Dynamic Tonality
can be used to explore scales and tunings radi-
cally different from those used in conventional

Western music. (Hex project files are available
online at www.dynamictonality.com.) William
Sethares’ C to Shining C (www.cae.wisc.edu/
∼sethares/spectoolsCMJ.html) demonstrates how
Dynamic Tonality can be used to create progressions
of extravagant tuning bends that seem to function
similarly to chord progressions in Western tonal
harmony. C to Shining C actually gets its name
from its use of a progression of C major chords
tuned in different ways, rather than a progression
of different chords. Dynamic Tonality can also dy-
namically adjust intonation for expressive purposes,
as (for example) advanced string players commonly
do (Sundberg, Friberg, and Frydén 1989). We hope
the addition of Hex to the current line of software
can enable Dynamic Tonality to reach a larger com-
munity, particularly those who prefer to compose
music with a sequencer rather than by playing in
real time, and those who do not have access to a
specialized hardware controller.
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Hex is a standalone application built in Cycling
74’s Max/MSP, and runs on Windows and Macin-
tosh systems. It can be downloaded as freeware
from the Dynamic Tonality online resource at
www.dynamictonality.com.

Tuning and Scale Theory

Hex’s principal task is to represent a variety of micro-
tonal tunings (specifically, two-dimensional tunings,
which are defined subsequently) as effectively as
piano roll sequencers represent the familiar 12-TET.
In order to approach this, Hex utilizes isomorphic
note layouts, a widely studied class of note layouts
that are invariant over transpositions (Helmholtz
1954 [1877]; Bosanquet 1877; Wilson 1974; Keislar
1987) and different tunings (Milne, Sethares, and
Plamondon 2008). In this article, we describe how
Hex additionally introduces three novel extensions
to the current theory of isomorphic note layouts.
First, we describe how controlled transformations of
isomorphic layouts can ensure that the pitch height
of each note is proportional to its spatial height,
and that notes an octave apart are always vertically
aligned. Second, we introduce a class of isomorphic
note layouts, adjacent predominant steps layouts,
that generalize many of the useful properties of
the Wicki (1896) accordion note layout over a wide
variety of microtonal scales. Third, we show how
note coloration can be used to indicate generalized
diatonic and chromatic scales, called moment of
symmetry (MOS) scales, which are formally defined
subsequently. Before we describe how each of these
extensions is achieved in Hex, we will first outline
pertinent tuning and scale theory.

An r-dimensional tuning is one whose intervals
can be generated by independent iterations (a linear
combination) of at least r linearly independent
intervals called generators (Milne, Sethares, and
Plamondon 2008), which together constitute a basis
of the tuning. Linear independence in this context
simply means that the ratio of the generators is
irrational when measured in a logarithmic unit like
cents. In other words, starting from some origin,
independently iterating the generators will never
result in an exactly matching pitch. If the number

of iterations of each of the r generators is denoted
by j, k, l, . . . , then the coordinates ( j, k, l, . . . ) ∈ Z

r

uniquely specify every possible pitch—there is a
one-to-one mapping between coordinates and pitch.
For example, (2, –2, 3) represents a uniquely sized in-
terval created by combining the values of two of the
first generator, negative two of the second generator,
and three of the third generator (a positive number
of iterations represents adding generator values in
cents, or another logarithmic unit, while a negative
number of iterations represents subtracting them).

An r -dimensional tuning may be specified by the
sizes of its r generators, conventionally notated in
cents. For example, 12-TET is a one-dimensional
(1-D) tuning with a generator of 100 cents, because
iterating that interval alone can generate every
one of its tones. Indeed, all n-TETs are 1-D tunings
and vice versa. However, 2-D and 3-D tunings are
commonplace. For example, quarter-comma mean-
tone, a common eighteenth-century tuning (Barbour
1951), is a 2-D tuning with generators of 1200 and
approximately 696.6 cents: iterating those intervals
can generate every one of its tones. Similarly, 5-limit
just intonation is a 3-D tuning with generators of
1200 cents (a frequency ratio of 2/1), 702.0 cents (a
ratio of 3/2), and 386.3 cents (a ratio of 5/4).

A 1-D tuning like 12-TET can also be generated
by two or more non-linearly independent intervals,
such as 1200 cents and 700 cents (which have a high-
est common factor of 100 cents). In such a case, these
intervals do not constitute a basis of the tuning, but
instead are a spanning set, meaning that the coordi-
nates ( j, k, l, . . . ) always refer to a pitch, but any given
pitch can be identified by infinitely many different
values of the coordinates. In other words, there is a
many-to-one mapping from coordinates to pitch. In
this way, it is possible to treat any 1-D tuning as an
instance of a degenerate higher-dimensional tuning;
for example, 12-TET is a member of a degenerate
2-D tuning that occurs when one generator is 1200
cents and the other is 700 cents.

Two-dimensional tunings play an important
role in historical Western music, as exemplified
by tunings such as Pythagorean and the various
meantones (Barbour 1951). However, they are
equally important in modern microtonal music that
uses tunings suitable for temperaments—mappings
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Table 1. Generation of the Diatonic Scale Using a Period of 1200 Cents and a
Generator of 700 Cents

Interval size (cents)

Iteration unreduced period reduced Scale degree of the major mode Example

0 0 0 4 F
1 700 700 1 C
2 1400 200 5 G
3 2100 900 2 D
4 2800 400 6 A
5 3500 1100 3 E
6 4200 600 7 B

Note how the starting point (iteration “0”) and iterations 1 through 4 form the pentatonic scale.

from higher-dimensional to lower-dimensional
tunings—such as meantone, Mavila, porcupine,
srutal, magic, Hanson, and so forth (Erlich 2006;
Milne, Sethares, and Plamondon 2008). Each of these
temperaments is a different mapping from 5-limit
just intonation (which is 3-D) to a 2-D tuning. For
reasons explained below, Dynamic Tonality and Hex
focus specifically on 2-D and degenerate 2-D tunings.

In the interest of clarity, we will briefly review
some conventions and terminology relevant to 2-D
tunings. One of the generators in a 2-D tuning is
typically referred to as the period, and the other
simply as the generator, even though both are
technically generators. Ideally, the period should
be chosen so that notes separated by an integer
multiple of it are functionally equivalent in some
sense. The inspiration and model for the concept of
a functionally equivalent interval is the octave. In
most music, the period is typically an octave. Other
intervals, however, such as the tritave (Moreno
1995; Pierce 2001) and octave subdivisions (e.g.,
1200/2 = 600, 1200/3 = 400, and 1200/4 = 300
cents), have also been suggested (Erlich 2006). In
this article, with no loss of generality, and where
not stated otherwise, we will assume that the period
is always an octave. By contrast, the other generator
can be any interval.

To construct a scale using a 2-D tuning, the
generator is iterated a chosen number of times, then
reduced back into the span of a single period using
period equivalence, and finally ordered by ascending
pitch. The intervals between adjacent notes in the

scale are referred to as steps. For different purposes,
the distance between any two notes in a scale can
be expressed either as a generic size—an integer
number of scale steps—or as a specific size—a real
number in a logarithmic unit such as cents or
semitones. A 2-D scale is defined as any selection of
notes taken from a 2-D tuning.

Moment of Symmetry Scales

In order to narrow the enormous range of different
scales found within 2-D tunings and isolate the
ones that are the most musically interesting and
practical, Hex utilizes a family of scales known as
MOS scales (Wilson 1975), or well-formed scales
(Carey and Clampitt 1989). These are special cases
of 2-D scales, each of whose generic intervals
(e.g., steps) comes in no more than two specific
sizes. In order to construct an MOS scale given a
specific period and generator, the generator must
be iterated precisely a number of times that yields
a scale satisfying these requirements. The familiar
(anhemitonic) pentatonic and diatonic scales are
MOS scales with a period of 1200 cents and a
generator of approximately 700 cents—the generator
is iterated four times for the pentatonic scale,
and two additional times for the diatonic scale.
Numerous unfamiliar possibilities become available
with non-standard tunings (Erlich 2006), however.
Table 1 demonstrates the generation of the diatonic
scale using this method.
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Any MOS scale can be characterized by two
co-prime (i.e., with no non-unity common divi-
sors) positive integers indicating the number of
large and small steps. Together, these integers are
known as the MOS signature, and their sum re-
veals the total number of notes in the scale. For
example, because the diatonic scale contains five
large and two small steps, its MOS signature can
be written as 5L, 2s—this is the notation used
(among other places) on the Xenharmonic Wiki at
xenharmonic.wikispaces.com—and it has 5 + 2 = 7
notes.

MOS scales have many properties widely thought
to be desirable, of which we note five. First, as we
have already mentioned, every generic interval (i.e.,
characterized by the number of steps it spans) in an
MOS scale comes in one of just two different specific
sizes, which is known as Myhill’s property (Clough
and Myerson 1986). Second, the two step sizes are
distributed with maximal evenness; for example, in
the diatonic scale, there is no way of distributing the
two different step interval sizes more evenly than
the circular pattern of M2-M2-m2-M2-M2-M2-m2.
Third, they have uniqueness within each period,
meaning that every scale degree is surrounded by a
different set of specific intervals. This means each
scale degree has the potential to serve a unique
musical role within the scale, which may be a
prerequisite for tonal functionality (Balzano 1982).
Fourth, within a large portion of their valid tuning
range (we will discuss this concept in the following
section) they are proper (Rothenberg 1978)—also
known as coherent (Balzano 1980)—which means
that there is a monotonic relationship between
generic and specific interval sizes. For example, in
the diatonic scale with a generator less than 700
cents, all thirds are larger in cents than all seconds,
all fourths are larger in cents than all thirds, all fifths
are larger in cents than all fourths, and so on. Finally,
they have transpositional simplicity (Balzano 1982),
which means that transposition of the scale by one
generator will produce a new scale that shares all
but one pitch class with the untransposed scale.
For example, if the diatonic scale is transposed by
a perfect fifth (its generator), the resulting scale
contains just one different pitch class—a sharpened
or flattened version of one of the original scale’s

pitch classes. This facilitates modulation because
closely related keys are always available.

In combination, these properties indicate that
MOS scales may be a good compromise between the
simplicity of equal step scales, and the complexity of
wholly irregular scales (Carey 2007). Furthermore,
some MOS scales with relatively few tones can be
tuned so that they contain many consonant intervals
and chords (Erlich 2006), making them potentially
rich resources for both melody and harmony in
microtonal compositions.

Valid Tuning Ranges and Embeddings
of MOS Scales

Varying the size of the generator in an MOS scale
causes the sizes of the small steps and the large steps
to co-vary such that when one is made smaller, the
other becomes larger, and vice versa. Because of this
relationship, each MOS scale, as characterized by its
number of small and large steps, has a valid tuning
range: a range of generator values over which its
number of small and large steps is preserved. The
boundaries of an MOS scale’s valid tuning range
occur where (a) the size of the small steps reduces to
zero, and (b) the size of the small steps increases to
the size of the large steps. In the diatonic scale (5L,
2s), for example, the two boundaries occur at 5-TET,
which has a generator of 720 cents, and 7-TET,
which has a generator of 685.7 cents.

Interestingly, the size of the small steps can
always be legitimately increased even beyond the
size of the large steps, in which case the numbers of
large and small steps simply swap; for example, 5L,
2s becomes 2L, 5s. This reflects the fact that every
MOS scale has an inverse in which the numbers
of large and small steps in the MOS signature are
reversed. The legitimacy of any MOS scale’s inverse
is guaranteed because, irrespective of order, its
defining integers remain co-prime.

A final important property of MOS scales is that
each one can be viewed as embedded in another MOS
scale. For example, the pentatonic scale (2L, 3s) can
be viewed as embedded in the diatonic scale (5L, 2s).
In this case, the pentatonic scale’s small steps (whole
tones) correspond to the diatonic scale’s large steps,
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while the diatonic scale’s small steps (semitones)
are smaller than any steps in the pentatonic scale.
The diatonic scale’s small steps emerge because the
generator is stacked for exactly two iterations more
than for the pentatonic scale; each of these final
iterations splits one of the pentatonic scale’s large
steps (an interval of three semitones) into one small
step in the pentatonic scale and a remainder that
becomes a small step in the diatonic scale. This
splitting process occurs whenever an MOS scale is
embedded in another MOS scale.

Another example is the embedding of the diatonic
scale (5L, 2s) in the chromatic scale (either 5L, 7s,
or 7L, 5s). It may seem puzzling to think of the
chromatic scale as an MOS scale with two step
sizes, because it is typically considered a regular
12-TET grid from which the notes of the diatonic
scale are taken, and against which the asymmetries
and irregularities of the diatonic scale are measured.
The MOS perspective, however, emphasizes that
12-TET is only one case of the chromatic scale,
yielded by a generator of 700 cents iterated eleven
times. In this case, the “small” and “large” steps are
the same size; however, when the generator reduces
to less than 700 cents, the MOS signature becomes
7L, 5s, and when it increases to more than 700 cents,
the MOS signature becomes 5L, 7s. Depending on
which of these versions of the chromatic scale is
used, it can even be viewed as embedded in either a
17-tone or a 19-tone MOS scale (Carey and Clampitt
1989).

In this way, any MOS scale and its embedding
MOS scale (i.e., the larger scale that embeds the
smaller one) can be thought of as generalizations
of diatonic and chromatic scales, respectively.
Furthermore, valid tuning ranges, coherence, and
embeddings are intertwined properties (Milne et al.
2011), which demonstrate that MOS scales are
deeply structured, not just in themselves, but also in
relation to each other. They form a deeply structured
and interconnected scale universe.

Spatial Mapping of 2-D Tunings in Hex

Given the advantages of 2-D tunings and MOS scales,
an interface that could facilitate their exploration

Figure 3. A conventional
MIDI sequencer user
interface, as used in
Cakewalk’s SONAR.

would likely have considerable artistic and research
potential. As we will discuss in the next subsection,
the traditional piano keyboard is not particularly
suitable for this task. Instead, we have found that a
2-D lattice affords much more intuitive visualization
and manipulation of both generator tuning and MOS
structure.

The Traditional Piano Roll

Conventional MIDI sequencer user interfaces, like
the one shown in Figure 3, feature a piano roll in
which horizontal position indicates notes’ start
and end times, and vertical position indicates
pitch. Horizontal, light-colored note lanes indicate
diatonic notes, and horizontal, dark-colored note
lanes indicate non-diatonic (chromatic) notes. This
layout is sufficient for 12-TET, but not for non-
degenerate 2-D tunings or n-TETs where n �= 12. The
piano roll faces three problems when attempting
to represent such tunings: (1) it has an insufficient
number of keys to distinguish between notes that
are enharmonically equivalent in 12-TET, (2) its
pitch heights are not proportional to the sizes of
non-12-TET intervals, and (3) it is impossible to map
non-standard MOS scales to a piano roll in such a
way that their spatial representation preserves any
semblance of their structure. We will discuss each
of these points in detail now.

In tonal music, it is common for enharmonically
equivalent notes to appear in close succession; for
example, a familiar chord progression such as C
major–E major–A minor–A-flat seventh–G seventh–
C major contains the enharmonically equivalent
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notes G-sharp (the third of E major) and A-flat (the
root of A-flat seventh). In any non-degenerate 2-D
tuning—such as the historically important quarter-
comma meantone tuning, which has a period of
1200 and generator of 696.6 cents (Barbour 1951)—
enharmonically equivalent notes like G-sharp and
A-flat have different tunings. Because the piano
only has one black note between G and A, however,
it cannot unambiguously differentiate between G-
sharp and A-flat. Even as early as the 15th century,
gamuts of 14 and 17 tones were presented in treatises
(Dahlhaus 1990) and encountered the same problem
with the traditional keyboard layout.

Even if one were happy to work with a gamut of
twelve meantone pitch classes, the piano roll would
generally represent their pitch heights inaccurately.
On a physical piano keyboard, the horizontal
position of each key is actually not proportional
to its pitch. For example, the physical distance
between the center lines of the keys for A and
B-flat is substantially less than that between B
and C, even though both intervals are exactly one
semitone. In most sequencers, this problem is
ameliorated by modifying the displayed width of
the keys to ensure all semitones are truly of equal
distance; the resulting layout is still only accurate
in 12-TET, however. For example, in non-12-TET
meantone tunings, each step (e.g., C–D) consists of
two differently sized semitones (e.g., the augmented
unison C–C-sharp, and the minor second C-sharp–D
or, alternatively, the minor second C–D-flat, and the
augmented unison D-flat–D). The different sizes of
these semitones are not represented on the piano
roll.

The piano roll is even more problematic when
representing non-standard MOS scales, such as 3L,
7s, a scale that is useful because, with a generator
of 380 cents, it contains ten major and minor triads
close to just intonation. 3L, 7s contains ten notes
per octave, but the piano roll has twelve notes—five
black and seven white—per octave. One could map
ten notes to a subset of these twelve, but there is no
logical way to decide which two of the twelve keys
should go unused, or how it is possible to reasonably
represent a scale with three large and seven small
steps on five black and seven white notes. Indeed,
there is no way to map a non-standard MOS scale to a

piano roll such that its spatial representation reflects
even a modicum of its structural characteristics.

The Button Lattice

Because of these problems, the piano roll is not
a suitable interface for Hex. Instead, Hex’s 2-D
tunings lend themselves well to being displayed
and manipulated by a representation of a button
lattice: an array of buttons laid out in a regular
lattice. A lattice is just the mathematical term
for a set of points with a repeating structure in
r -dimensional space (this geometrical definition of
lattice should not be confused with the unrelated
algebraic definition, in which it represents a type
of partially ordered set). Because Hex focuses
specifically on 2-D tunings, we restrict our analysis
to 2-D button lattice layouts, whereby each tone
and corresponding button can be identified by two
integer coordinates ( j, k). Furthermore, we restrict
Hex to mappings that demonstrate an isomorphism
between the tuning and the layout, for reasons we
will describe subsequently.

Any isomorphic (linear and invertible) mapping
from an r -dimensional tuning to an r -dimensional
button lattice yields an isomorphic note layout
in which each interval, chord, or scale has the
same spatial shape (i.e., fingering) over different
transpositions (Keislar 1987), and, when categorized
according to reasonable criteria, a broad continuum
of tunings (Milne, Sethares, and Plamondon 2007,
2008). In order to construct an isomorphic mapping,
the basis of the tuning—for our purpose, the period
and generator—must be mapped to a spatial basis
of the button lattice. Doing so ensures that every
pitch is uniquely mapped to a button, and that every
button plays a unique pitch; in other words, there is
a one-to-one mapping between pitches and buttons.

One of the most historically successful isomor-
phic layouts—at least in the case of the twelve-fold
chromatic scale—is the Wicki-Hayden hexagonal
button accordion layout, shown in Figure 4a. The
two black arrows indicate the spatial mappings of
the period (an octave) and generator (a perfect fifth).
Other possible isomorphic layouts, such as those
shown in Figures 4b and 4c, map the period and
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Figure 4. Three different
layouts for the diatonic
scale. Figure 4a is the
Wicki mapping, and
(b) and (c) are novel
mappings. The spatial

basis vectors, to which the
tuning basis (here the
octave and perfect fifth)
are mapped, are indicated
by black arrows. Each
diagram also shows the

pitch axis (dashed white
line) and the generator
span axis (dashed black
line), both discussed in
correspondingly titled
sections.

generator to different spatial bases of the button
lattice, and thus provide different spatial layouts for
a given MOS scale.

Also shown in Figure 4 are two important axes
that naturally emerge from any isomorphic layout:
the pitch axis and the generator span axis. The
former orders buttons by pitch height, and the latter
by number of generator iterations, as described in
more detail in subsequent sections. Under normal
circumstances, these two axes are not perpendicular
(see Figure 4), but by applying a controlled rotation
and shear—a transformation in which points are
shifted parallel to an axis by a distance proportional
to their perpendicular distance from that axis—
to the lattice, Hex ensures that the pitch axis is
always vertical and the generator span axis is always
horizontal (see Figure 5, which shows a transformed
version of the Wicki layout in Figure 4a). In the
following sections, we describe in detail these two
axes and the implications of their orientation.

The Pitch Axis and Isotones

We have already demonstrated that, in an
isomorphic 2-D mapping, the period and generator
are mapped to the spatial basis of a layout. Con-

sequently, a pitch axis emerges whereby the pitch
difference between any two notes is proportional to
their spatial distance on this axis (Milne, Sethares,
and Plamondon 2008). For example, two buttons a
whole tone apart on the pitch axis are twice the dis-
tance as two buttons a semitone apart on the pitch
axis, assuming a 12-TET tuning. This phenomenon
has far-reaching consequences for the design of Hex.

An easy way to understand how the pitch axis
works is to rotate Figure 4a, 4b, or 4c so that the
pitch axis—the dashed white line—is vertical, then
to place a horizontal ruler passing through the center
of some reference button. If the ruler is slid verti-
cally upwards, but kept horizontal, the centers of
the buttons will always be encountered in ascending
pitch order, irrespective of the numbers of periods
and generators that produce them. Another notable
example is provided by the Bosanquet layout (see
Helmholtz 1954 [1877] for an illustration), which has
a perfectly horizontal pitch axis—vertically aligned
keys have the same pitch—when tuned to 12-TET.

In cases where the period and generator are
linearly independent (i.e., they have no common di-
visors), there will never be two buttons with exactly
the same pitch, strictly speaking. However, by con-
sidering infinitely distant regions of the plane, but-
tons can be found as close as desired in pitch to any
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Figure 5. The diatonic
scale arranged in an APS
(Wicki) layout that has
been rotated and sheared
to give a vertical pitch axis
and a horizontal generator

span axis. In
(a), the tuning is
Pythagorean (the generator
is 702.0 cents); in (b), the
tuning is quarter-comma
meantone (the generator is

696.6 cents). The height of
the center of each button
corresponds to its pitch, so
horizontal lines drawn
from them can be used as
note lanes. Looking at the

light colored note lanes,
observe how the
Pythagorean tuning has
wider major seconds and
narrower minor seconds
than the meantone tuning.

other; so, for practical purposes, we can talk about
two buttons having equal pitch. In cases where the
period and generator are not linearly independent—
in other words, they are a spanning set—then buttons
can be found with exactly the same pitch, assuming
the plane is sufficiently large. Thus, we can define
an isotone: an axis that passes through the center of
each button with equal or infinitely near-equal pitch.
The pitch axis and the isotones are perpendicular, by
definition.

The angle of the isotones and the perpendicular
angle of the pitch axis depend on the layout used
and the tunings of the period and generator, but it
is straightforward to calculate these angles. Let the
sizes of the period and generator, in a logarithmic
frequency unit such as semitones or cents, be
denoted α and β, respectively. If we imagine any
regular 2-D lattice as laid over a reference Cartesian
coordinate system, we can specify its spatial layout
simply by giving the x and y coordinates of vectors
representing the period and generator, respectively.
Symbolically, we can express this with the two
equations ψ = (ψx, ψ y) and ω = (ωx, ωy), with the
former vector being the spatial coordinates of the
period, and the latter vector the coordinates of the
generator. From here, it is a matter of elementary
geometry to show that the angle of the isotone θ , for
any 2-D tuning and any layout, is given by

θ = arctan((ωy − ψyβ/α)/(ωx − ψxβ/α))

(from Milne, Sethares, and Plamondon 2008). Given
this relationship, it follows directly that for any

2-D tuning and layout, varying the generator’s
size—while keeping the period constant—causes all
isotones to rotate smoothly about the button acting
as the origin for both period and generator. This fact
is central to the design of Hex, as we will discuss
later.

Figure 4 shows the pitch axes (with a dashed
white line) for three different layouts, all with the
same tuning: a period of 1200 cents and a generator
of 700 cents, which corresponds to 12-TET.

Generator Span Axis

Another axis that emerges from any isomorphic
2-D button lattice layout is the generator span axis,
which orders the entire plane of buttons by the
number of generator iterations between their notes,
irrespective of the period in which they occur. In
fact, this axis is simply perpendicular to that of
the period, which, by definition, is specified in
the layout. This idea can be illustrated by rotating
Figure 4a, 4b, or 4c so that the generator span
axis—the black dotted line—is horizontal (it already
is in Figure 4a), and placing a vertical ruler passing
through the centers of some reference buttons
separated by octaves. If the ruler is kept vertical and
is slid horizontally to the right, then the centers
of buttons will be encountered in ascending order
of the number of generator iterations needed to
produce their pitches, irrespective of the number
of periods between them. As before, the Bosanquet
layout provides an alternative example because
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Figure 6. Two different
layouts of the 4L, 7s MOS
scale (numbered by scale
degree, starting at 0) with
a generator of 320 cents (it
is, therefore, an 11-tone
subset of 15-TET). In

(a), an APS layout is used;
in (b), the Wicki layout is
used. The pattern of notes
in the APS layout is more
compact, and the scale
step pattern is easier to
read, when compared to

the Wicki layout. Note
that the dark buttons are
part of the fifteen-tone
embedding scale, not of
the 4L, 7s MOS scale itself.

its generator span axis is perfectly vertical (in
contrast to the horizontal orientation of the Wicki
layout).

The importance of generator distance (i.e., dis-
tance measured on the generator span axis) is
exemplified by the fact that, in familiar tunings
with a perfect fifth generator, intervals with low
generator distance, like the octave and the perfect
fifth, are typically considered to be closely related.
Furthermore, in Western music theory the circle of
fifths is a common representation of pitch, chord,
and key distance (Krumhansl 1990). Although the
extent to which the correlation of generator distance
and pitch and chord relatedness generalizes to unfa-
miliar tunings is unclear, it is true that MOS scales
transposed one generator apart have maximally sim-
ilar pitch class content due to the aforementioned
property of transpositional simplicity—in other
words, they would always have only one different
pitch class. This means that closely related modula-
tions are achieved simply by shifting the scale the
smallest possible distance along the generator span
axis. Additionally, the spatial pattern produced by
the differing left–right offsets of the scale degrees
provides a useful cue for navigating through the
pitch space of a possibly unfamiliar MOS scale.

Adjacent Predominant Steps (APS) Layouts

When used for the diatonic scale (5L, 2s), the Wicki
layout exhibits a desirable property that qualifies
it as what we call an adjacent predominant steps
(APS) layout. In order to explain this property, we
will first describe the fingering of a diatonic major
scale in the Wicki layout.

As shown in Figure 4a, for each octave in the
major scale, there are two rows of white notes: one
with three notes, and one with four. The major scale
is played by starting at the left of the three-note
row and proceeding rightwards by major seconds
to the end of the row. The next note—a minor
second above—is reached by what might be called
a “carriage return” to the first note in the next row
above. After that, movement proceeds along this
new row until its end is reached and another carriage
return makes the final minor second step up to the
octave. Crucially, the most numerous scale step
(a major second) corresponds to movement along
a row, and the least numerous scale step (a minor
second) corresponds to a carriage return. The same
phenomenon occurs with the pentatonic scale: The
most numerous scale steps (major seconds) still run
along rows, whereas the least numerous scale steps
(minor thirds) correspond to carriage returns. This
pattern of motion is visually easy to comprehend
and spatially concise. In the Wicki layout, however,
it does not occur when using most other MOS
scales— specifically, those that require at least three
generator iterations to generate seconds, because
this requirement means that two adjacent buttons
cannot form the interval of a second.

Fortunately, for any given MOS signature, it is
straightforward to construct an APS layout, which
generalizes the Wicki layout’s pattern of stepwise
motion when used with the diatonic major scale, and
extends it to all MOS scales. In any APS layout, the
most numerous (i.e., “predominant”) scale steps—
whether they be large or small—always correspond
to movement along rows, and the least numerous
scale steps always correspond to “carriage returns.”
Figure 6 compares the APS layout and the Wicki
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layout of the 4L, 7s MOS scale (note that the Wicki
layout is an APS layout for 5L, 2s, but not for the 4L,
7s MOS scale).

There is only one APS layout for each MOS
scale, but there are several MOS scales for each APS
layout. Indeed, the 120 different MOS scales with 19
or fewer notes use only 13 different APS layouts. In
Hex, the APS layout may be automatically found and
applied to any scale simply by clicking “APS layout”
in the Setup dialog. On the Dynamic Tonality online
resource (www.dynamictonality.com), we have also
provided an additional application, Relayer, that
implements APS layouts for the C-Thru AXiS-
49, the Thummer, and even a standard computer
QWERTY keyboard.

The Visualization and Manipulation
of MOS Scales in Hex

In Hex’s Setup dialog—accessible via a button at
the bottom left of the window (see Figure 1)—the
user can enter a pair of integers in order to specify
an MOS signature (the default is 5L, 2s). To ensure
the validity of the specified signature, Hex checks
whether the two integers are co-prime, and, if not,
it reduces them. Visually, the specified scale is
represented in the button lattice by columns of
light-colored notes, and the additional notes of
its embedding scale are represented by columns
of dark-colored notes. The number of dark-note
columns in the lattice always corresponds to the
number of large steps in the specified scale. This
relationship holds because each large step must be
split—by a single black note—to create the embed-
ding scale, as outlined previously in the diatonic/
chromatic embedding example. Hex arranges the
dark note columns evenly on the left and right
of the specified MOS scale; if the number of dark
note columns is odd, it places the extra one on the
left.

The user can vary the size of the generator in
real time by moving or automating a large slider
directly to the left of the button lattice (see Figure 1).
Whenever this happens, an appropriate rotation and
shear is automatically performed on the button

lattice to keep the pitch axis vertical and the
generator span axis horizontal. This is one of Hex’s
most important features, as it allows the user to
simultaneously visualize several important aspects
of the tuning in real time.

Keeping the pitch axis vertical ensures that pitch
height is always proportional to vertical height,
which, in turn, keeps all isotones horizontal, since
the pitch axis and isotones are perpendicular by
definition, as noted previously. This means that
Hex’s note lanes are always proportional to the
pitch heights of the notes they represent. Keeping
the generator span axis horizontal allows the user
to visualize generator distance along the horizontal
dimension of the button lattice. Because the button
lattice is displayed in its own pane, this does not
conflict with how the horizontal dimension of the
lattice roll is used to represent time. Furthermore,
because by definition the period axis is always
perpendicular to the generator span axis, notes one
or more periods apart are always vertically aligned
in the button lattice. Although periods are only
separated by two rows in the familiar diatonic (5L,
2s) scale (see Figure 5), they may be separated by
more in other MOS scales, in which case this extra
visual cue would likely become particularly helpful
(e.g., Figure 6a).

The button lattice and lattice roll are illustrated
in Figure 5, which shows two tunings of a light
note diatonic scale embedded in a black note
chromatic scale. Note how each button center’s
height corresponds to its pitch, and its horizontal
position in the button lattice corresponds to its
location in the generator chain. To draw a note,
the user simply clicks inside one of the note lanes
in the lattice roll and drags rightwards. The left
and right boundaries of the note indicates its start
and end times, which may optionally be quantized
during input via a toggle switch in the Setup dialog.
Notes can be selected and deleted by clicking on
them and pressing the Delete or Backspace key.
When a sequence is complete, it may be saved as a
Hex project (.hxp) file—a new ASCII file format—or
exported as a MIDI file, making it easy for users
to open, save, and share projects, as well as to use
their sequences with any commercial digital audio
workstation.
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Conclusion

Hex is a MIDI sequencer with a graphical user
interface that provides full control over the 2-D
tunings that are central to Dynamic Tonality (as
well as much historical music and contemporary
microtonal music) while still allowing users to ex-
ercise their existing intuitions and experience with
twelve-tone equal temperament and conventional
piano roll sequencers. In addition to being the first
sequencer specifically designed for microtonal MOS
scales and isomorphic note layouts, it introduces
three novel extensions. It organizes notes such that
their spatial height is always proportional to their
pitch height, and octave intervals are always verti-
cally aligned in the button lattice. It features a novel
class of note layouts, adjacent predominant steps
layouts, that provide consistent, neat, and compact
spatial representations of MOS scales. Lastly, it
uses note coloration to visualize scale embeddings,
essentially generalizing the notions of “diatonic”
and “chromatic” across all MOS scales.

Ultimately, we hope that Hex will enable more
musicians to think of tuning as a creative tool,
rather than an unforgiving and fixed limitation.
This is consistent with the overall goals of Dynamic
Tonality, and we believe that Hex is an important
and necessary addition to the Dynamic Tonality
family of software.
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