
Software for Interactive and
Collaborative Creation in
the Classroom and Beyond:
An Overview of the
Soundcool Software

Stefano Scarani,∗ Adolfo Muñoz,†

Jaime Serquera,§§ Jorge Sastre,∗∗
and Roger B. Dannenberg††

∗Department of Sculpture
†Institute of Design and Manufacturing (IDF)
∗∗Institute of Telecommunications and
Multimedia Applications
∗ † ∗∗Universitat Politècnica de València
Camino de Vera s/n, 46022 Valencia, Spain
§§Conservatorio Superior de Música
“Salvador Seguı́” de Castellón
Carrer del Marqués de la Ensenada 34–36,
12003 Castelló de la Plana, Spain
††School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh,
Pennsylvania 15213, USA
sscarani@musikene.net,
amunyoz@upvnet.upv.es,
jaiserpe@upv.es, jsastrem@upv.es,
rbd@andrew.cmu.edu

Abstract: This article presents a free framework for collaborative creation of interactive and experimental computer
music called Soundcool. It is designed to fill a gap between rigid ready-to-use applications and flexible programming
languages. The system offers easy-to-use elements for generating and processing sound, much like ready-made
applications, but it enables flexible configuration and control, more like programming languages. The system runs
on personal computers with an option for control via smartphones, tablets, and other devices using the Open Sound
Control (OSC) protocol. Originally developed to support a new music curriculum, Soundcool is being used at different
educational institutions in Spain, Portugal, Italy, and Romania through EU-funded Erasmus+ projects. In this article,
we present our system and showcase three different scenarios as examples of how our system meets its objectives as
an easy-to-use, versatile, and creative tool.

Introduction

Soundcool (http://soundcool.org) is a computer
music software system for live performance. It
emphasizes the use of mobile devices as controllers,
collaboration through the use of multiple control
devices, and configurable high-level software com-
ponents for computer music generation and sound
processing. Soundcool was originally designed to
support a music curriculum for primary and sec-
ondary school students who collaboratively create
experimental computer music (Sastre et al. 2013,
Sastre et al. 2015). The Soundcool design has em-
phasized ease of use from the beginning. Soundcool

Computer Music Journal, 43:4, pp. 12–24, Winter 2019
doi:10.1162/COMJ a 00534
c© 2020 Massachusetts Institute of Technology.

has found application in classroom activities, in
student concerts in auditoriums and other public
venues, and for live electronics in a new opera
(http://themotheroffishes.com). Whereas previous
publications have discussed Soundcool for edu-
cation, this article discusses some of the design
features of Soundcool that we believe are of general
value, and we also discuss Soundcool as a tool for
advanced compositions and performances.

We believe there is a gap between off-the-shelf,
ready-to-use applications and programming-oriented
software development platforms. We will discuss
these approaches and then present Soundcool as
a compromise that achieves a balance between
these poles. Key features of Soundcool are: self-
contained, patchable modules for audio generation
and manipulation; control extensibility supporting
a variety of interface devices and languages; and

12 Computer Music Journal

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



extensibility through audio plug-ins. We show the
importance of these features in several Soundcool
applications.

Ready-to-Use Music Applications

Examples of ready-made applications are audio
effects processors, sample-playback systems, and
sequencers (Manzo 2015). Additionally, a great
variety of music apps have been developed in the
past few years for tactile mobile devices (see, for
instance, Stuart Dredge’s overview of music-making
apps for beginners in the Guardian, 17 October
2005). These applications are popular because they
provide fully functional tools for musicians. All of
these applications offer the possibility of modifying
some of their configurations, but they are, by
definition, designed to serve a particular role.

Ready-made applications are convenient when
they offer the right solution, but often the interfaces
and options in music software are highly normative,
with narrow assumptions about how music should
be structured and performed. This defeats one
of the main attractions of computing, which is
the idea of the “universal machine” that can,
through software, accomplish any task and offer
any behavior. To branch “outside of the box,” or
simply to achieve extraordinary generality, one must
resort to programming to develop more customized
solutions.

Programming-Oriented Music Software Platforms

Software development platforms such as Max, Pure
Data (Pd), Csound, Nyquist, Supercollider, and
ChucK offer users free rein to build virtually any
musical devices they can imagine (Dannenberg
2018). Although these systems differ along some
important dimensions (real-time interactivity, tex-
tual versus visual programming, data structures,
abstraction), they have in common the ability to
specify computations by combining lower-level op-
erations. In general, programming-oriented systems
are more technical than ready-made applications, so

Figure 1. Power (i.e., ease
of use) versus generality
(i.e., the ability to
accomplish a wide range of
creative tasks). In these

terms, the ideal system is
both powerful and general
(upper right), but there
seems to be a trade-off.

considerable expertise and experience are necessary
to make the most of these systems.

Power versus Generality

Borrowing some terminology from early AI research
(Newell 1983), we can say that systems are more
general when they solve a greater variety of prob-
lems, and more powerful when they are particularly
adept at solving a particular problem. Ready-made
applications are powerful, because they require little
effort to accomplish tasks; but because they focus
on a specific approach, applications lack generality
to address a wide range of tasks or conditions. At the
risk of over-simplifying, Figure 1 offers an intuitive
perspective on the spectrum of computer music
systems from ready-made applications to general-
purpose programming languages. For any given task,
a user has the choice of using a ready-made solution
(if one exists) or creating a solution using increas-
ingly more general but more effortful programming
languages.

For computer music tasks, specialized computer
music languages are often sufficient, avoiding the
need to build everything from scratch. If users benefit
from specialized languages, how much further can
we reduce generality in pursuit of still greater power?
What are the interesting points of balance between
these two objectives? Soundcool explores the region
approaching maximal power while remaining quite
programmable and configurable. It is not the only

Scarani et al. 13

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



example of this design approach, but it is interesting
because of its availability and years of evolution,
mainly in the context of music education.

Related Work

Many works point to the pedagogical potential of
new technologies and new human interfaces (Lloret
Romero 2007; Sánchez, Salinas, and Sáenz 2007;
Savage 2007; Clough et al. 2008). A number of
technologies are presently emerging from STEAM
initiatives within primary and secondary level mu-
sic education. (STEAM extends STEM—science,
technology, engineering, and mathematics—by in-
corporating arts into the equation.) It is believed that
arts education is fundamental to foster creativity,
and in turn, creativity is key to innovation in every
industrial area. Another trend in educational initia-
tives is collaborative environments (Baumann et al.
2011). Regarding music technologies within STEAM
education, EarSketch is a noteworthy development.
EarSketch is software along with a curriculum that
motivates learning and applying computer science
concepts through music remixing. As their authors
describe,

. . . students learn to code in JavaScript or
Python, tackling learning objectives in the
Computer Science Principles curricular frame-
work as they simultaneously learn core concepts
in music technology. They create music through
code by uploading their own audio content or
remixing loops in popular genres created by
music industry veterans (Freeman et al. 2015,
p. 1).

Thus, EarSketch is more oriented toward music
production and algorithmic control, while Sound-
cool is oriented more toward collaborative music
performance.

Another example of a STEAM-oriented learning
system is BlockyTalky (Shapiro et al. 2017, p. 53).
This system describes a toolkit for “distributed and
physical computer music systems-building and per-
formance.” BlockyTalky encourages young students
to create communicating systems using a block-
based language to control software synthesizers.

The authors comment on the hazard that students
gravitate toward writing sequential programs to
reproduce linear, note-based, noninteractive work,
missing out on creative opportunities offered by
technology. In general, BlockyTalky instruction
seems to emphasize music to motivate program-
ming. BlockyTalky has more focus on designing
control strategies whereas Soundcool focuses on
sound design and performance.

Soundcool might be compared to AudioMulch
(www.audiomulch.com), which also features high-
level processing modules and a graphical, patch-
oriented interface. Both systems emphasize audio
configuration by patching while control is accom-
plished through built-in graphical interfaces for each
module. Flexibility is provided through external
control via MIDI (AudioMulch) or Open Sound
Control (Soundcool). Soundcool is generally sim-
pler, however. For example, Soundcool modules
have predefined interfaces to mobile devices that
are easily enabled and immediately usable, whereas
control parameters in AudioMulch must be set up
individually by hand. AudioMulch has a separate
detailed control panel for each module, whereas
Soundcool’s modules are represented directly by
their interfaces.

Cycling 74’s BEAP (cycling74.com/tutorials/a
-few-minutes-with-beap-tutorial-series) is a collec-
tion of preconstructed Max patches complete with
interfaces, which makes BEAP at least comparable
to Soundcool. BEAP is modeled after modular analog
synthesizers, so users must understand the idea of
control voltages and must route control as well as
audio signals. Users must also master at least the
basics of the Max interface and cope with Patching
and Presentation modes and other details, and BEAP
is not designed for collaborative projects. Hans
Tutschku’s 264 Tools (github.com/mus264/264
-tools) is another collection of synthesis modules for
Max similar to BEAP, and Automatonism is a com-
parable system for Pd (www.automatonism.com).

One could also look to products like Reak-
tor (www.native-Linstrument.com/en/products
/Komplete/synths/reaktor-6), Guitar Rig (https://
www.native-instruments.com/en/products
/komplete/guitar/guitar-rig-5-pro), and Mainstage
(www.apple.com/mainstage) for patchable modules

14 Computer Music Journal

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



with preconstructed graphical interfaces. In fact,
effects chains in digital audio workstations are an-
other example of patchable modules, and they offer
a great deal of flexibility. One drawback, at least
from an educator’s perspective, is that commercial
products tend to be loaded with features to attract
customers and address a variety of requirements;
they tend therefore to be too complex for youngsters
and beginners.

In addition, few existing products or research sys-
tems are explicitly designed to support collaborative
performance. One interesting software system is
MobMuPlat (www.mobmuplat.com), with which
one can combine graphical interface design and Pd
patches for execution on iOS or Android systems.
This system offers ample interesting functional-
ity, especially for electronic ensembles, but it is
intended for experienced Pd users.

Finally, we should mention libraries as another
approach to move up the power-versus-generality
curve. Libraries extend a programming language
with reusable modules, making many tasks easier
to accomplish. For example, BEAP is essentially a
library within Max, giving users powerful, high-level
modules while retaining more general capabilities
for when they are needed. Libraries certainly add
power to the underlying language, but, ultimately,
the use of libraries requires users to write lower-level
“glue” code and use development environments that
are more complex, and this can be especially difficult
for young students and casual users.

The Soundcool Approach

With all these possibilities and decades of computer
music system development, why would we consider
yet another system? Soundcool was motivated by
the desire to create a platform for a new approach
to music education for children. In particular,
Soundcool prioritizes the possibilities of digital
media as opposed to traditional instruction and
emphasizes creativity and collaboration as opposed
to theory and instrumental performance. We will
describe Soundcool’s role in education in greater
detail herein.

Soundcool offers a set of modules that run on a
central host computer. Figure 2 illustrates a simple
Soundcool program or patch running on a laptop
and a controller running on a smartphone. Each
module can be considered as a musical instrument,
such as a synthesizer, a sampler, a sound effect,
etc. Soundcool modules can be interconnected in
different ways allowing users to create their own
computer music systems. Additionally, modules
can be controlled with the mouse on the host com-
puter or remotely using mobile devices and Open
Sound Control (OSC). Typically, students operate
mobile devices in collaborative performances, with
each student in charge of at most one of the sound
modules on the host computer. The OSC compo-
nent makes Soundcool an open system capable of
receiving control messages from other pieces of
programming software, as we describe in the next
sections.

Although created for primary and secondary
school teachers and their students, Soundcool has
proven useful for a variety of other applications.
We believe that Soundcool’s success is due to a
combination of factors, and a better understanding
of these could benefit the design of other computer
music systems. One contributing factor to generality
is support for audio plugins, allowing users to choose
among hundreds of sophisticated audio processors
(compare this to a fixed set of audio unit generators,
even in a computer music programming language).
Another factor is access to control parameters over
OSC, which allows users to extend Soundcool using
almost any programming language and operating
system. A third factor is a visual programming
paradigm in which modules are represented by
ready-made graphical user interfaces, minimizing
the effort to create, understand and manipulate
sound processing systems.

Soundcool is not unique to offering high-level
modules, audio plugins, or OSC interfaces. However,
we claim that it is the combination of these factors
that leads to an interesting tradeoff in power and
generality useful to a wide spectrum of users,
from music teachers to professionals. We support
this claim by describing several applications of
Soundcool.

Scarani et al. 15

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



Figure 2. A simple
Soundcool patch running
on a laptop with a
touch-screen interface
running on a smartphone.

In the next section, we describe Soundcool in
more detail. Then we describe three Soundcool
applications: music education, algorithmic control
of sound synthesis, and telematic performance. We
follow with insights we have gathered and make
suggestions for the design of future computer music
systems.

Soundcool Overview

One important design constraint was to make
Soundcool inexpensive to incorporate into class-
rooms. Besides being free and open-source (available
at soundcool.org/en/downloads), it works on any
Mac OS or Windows computer with its own speak-
ers or headphones and microphone. Typically,
classrooms have at least a single computer, and
students have their own smartphones or low-cost
tablets, which serve as distributed multitouch
control surfaces. We use generic Android or iOS
devices so that no specialized equipment is nec-
essary. Soundcool can also be used directly with
the mouse, without any mobile devices. Another
option is gestural control with a Kinect (Yoo, Beak,
and Lee 2011). The system can be downloaded from

soundcool.org, which has a collection of links to free
resources such as Audacity and other free applica-
tions, VST instruments and effects, sounds, etc. The
Soundcool mobile app to control modules over Wi-Fi
is also available for free. Anyone can use Soundcool
with his or her own computer independently of any
classroom.

Modules

Soundcool includes an extensive set of modules, a
selection of which are shown in Figure 3. At the time
of writing, audio modules encompass: Record (from
any input device or from another module); Player
(plays at an indicated speed with optional looping
and reversing, Figure 3a); Feedback Delay (Figure
3b); Pan; Transposer; Pitch Shift; Audio Routing;
Mixer with 8 inputs; Spectroscope and Oscilloscope
modules (Figure 3c shows the latter) visualize audio
signals in the frequency and time domains; Sample
Player loads and plays up to ten audio samples in
one module; Direct Input captures microphone or
line-level input; Filter provides ten different filter
modes (Figure 3d); Signal Generator creates different
kinds of waves based on frequency, amplitude, or

16 Computer Music Journal

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



Figure 3. Examples of
Soundcool modules, which
run on a laptop or desktop
computer: Player (a),
Feedback Delay (b),
Oscilloscope (c), Filter (d),

Signal Generator (e), and
Keyboard (f). Each module
has a corresponding touch
screen interface in the
Soundcool app. A running
app can be linked to a

Soundcool module by
entering a port number
into the module interface
and the app.

ring modulation (Figure 3e); Sequencer automates
control of the signal generator module; Envelope;
and VST Host incorporates VST instruments and
effects. For VST instruments, we provide a virtual
Keyboard module (Figure 3f) to receive notes and
controls from the Soundcool mobile app; however, a
physical MIDI keyboard connected to the computer
running Soundcool can also be used.

In general terms, modules have audio inputs
and outputs, and outputs fan out to any number of
inputs. To make a connection, the user clicks on an
output, then presses an input button. Connections
are indicated by color and text; for example, if
Sample Player 1 (which has a red background) is
connected to a Delay module, the input button of the

Delay is colored red with the letters “S1” indicating
the connection comes from Sample Player 1. The
connected modules are also highlighted when the
user hovers over an output button.

The choice of buttons as opposed to visual “wires”
is mainly an implementation issue, but the absence
of wires saves valuable screen real estate for module
interfaces and their controls.

Implementation

Soundcool is implemented as a Max application,
using the native objects send and receive (and
their signal versions send∼ and receive∼) for

Scarani et al. 17

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



Figure 4. OSC module
control for smartphone or
tablet.

patching. By implementing a patching system for
Soundcool modules, we avoid exposing novice users
to the full Max editing environment, and users can
run Soundcool free of licensing fees. We are also
developing a browser-based version of Soundcool
using WebAudio.

Normally, a Soundcool system also includes
networked mobile devices. Open Sound Control is
used for communication between the host computer
and any number of mobile devices (see Figure 4).
The mobile devices must be configured manually
with the IP address of the host computer where
the modules are being run. Additionally, each
Soundcool module is configured with a different
receiving port number that must match the sending
port of the controlling mobile device. This allows
many devices to be used, each controlling a different
module. Configuring each device with an IP address
and port number is annoying at least, and we
hope to use Zeroconf (Guttman 2001) to simplify
connections in the future.

For the first Soundcool prototype we used Tou-
chOSC (http://hexler.net/docs/touchosc), but we
now offer a Soundcool-specific app written in Unity
(unity.com) for Android and iOS. One of the features
of our app is special handling of the keyboard to
allow glissandi using sliding motions and to send
extra note-off and all-notes-off messages when the
last finger is removed from the keyboard, which
helps to avoid “stuck notes” caused by lost OSC
messages.

We now turn to example applications of Sound-
cool, ranging from classroom music education to
network performance. We hope to illustrate the
versatility and power of the Soundcool approach.

Soundcool in the Classroom

The original goal of Soundcool was to provide
a hands-on creative environment for classroom
music education. Soundcool is in use at differ-
ent educational institutions in Spain, Portugal,
Italy, and Romania through EU-funded Erasmus+
projects. Students learn fundamentals of com-
puter music through collaborative and intuitive
creation. Using Soundcool, students discuss cre-
ative ideas, experiment with sound production
and manipulation in small groups, and per-
form entire pieces in larger group concerts (see
www.youtube.com/c/SoundcoolProject).

Soundcool is designed for usability by young
students and teachers who are not engineers or sci-
entists. Soundcool modules are rather complete and
self-contained units that provide an intuitive process
(such as a mixer, sample player, etc.) with graph-
ical controls, appropriate status display and level
meters, OSC interface, and input/output patching
controls. Wrapping so much functionality into each
module allows for a minimal learning curve while
still providing great creative potential, especially in
education. The completeness of each module saves

18 Computer Music Journal

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



users from building their own interfaces from low-
level primitives, as seen in common programming
languages.

In a typical primary school application, Soundcool
provides a means of expression through a creative
project in which students develop skills of listen-
ing and reflection (Sastre et al. 2013). Soundcool
complements other modes of instruction through
the body, voice, instruments, etc. Students begin
with technical instruction on making sound and
gradually learn the connection between control pa-
rameters and resulting sounds. Students are guided
to create short pieces of a few minutes; for example,
creating music to accompany a story. At first, stu-
dents vocalize the sounds they imagine. Next, they
may search the Internet for source sounds or explore
VST plugin sounds. After configuring Soundcool
modules, students rehearse and modify their pieces.
The teacher can suggest sounds, rhythms, call-
and-response interactions, etc., to further develop
the composition. Then, performances are recorded,
leading to further reflection. Discussion enables
the joint construction of knowledge. Students tend
to focus on emotion and feeling at first, but with
practice develop understandings of sounds and their
relationships.

An example is a story written by students at the
elementary school CEIP Carmelo Ripoll in Valencia,
Spain. In this work a girl tells a horror story, her live
video image is blended with a scary image, and the
rest of the students perform live music and ambient
sounds, all using Soundcool (video processing is a
2018 addition to Soundcool modules, but beyond
the scope of this article). The student production
can be seen online (https://youtu.be/F3z9qoCnLiw
[in Spanish]). To create this work, the teacher made
the Soundcool configuration. Then the students
selected all the sounds, rehearsed, and performed
the sounds with smartphone and tablet controllers
while one student narrated.

Soundcool and Algorithmic Control via OSC

One of the advantages of more general programming
environments is the ability to implement sophis-
ticated mappings between controllers and sound

processes, as well as autonomous algorithmic con-
trol of parameters. Because Soundcool is intended for
nonprogrammers, algorithmic mapping and control
is not a built-in option. The Open Sound Control in-
terfaces to Soundcool modules provide an interface
for external programmatic control, however. This
allows Soundcool to be viewed as a sophisticated
modular synthesizer and allows the advanced user
to focus on control aspects using any programming
language.

As an example, the program in Figure 5, written
in Serpent (Dannenberg 2002), works with several
Soundcool modules to generate an interesting
sound texture. The Soundcool modules consist
of a variable-speed sample player with five short
noise sounds connected to a feedback delay module.
The program is a simple loop that runs about ten
times per second. The program uses the function
send afloat() to send an OSC message containing
one floating point number to a given address (the
function definition is simple “glue” code and not
included in this code excerpt). At each iteration, the
program chooses, at random, one of eight actions
to perform: the first five actions trigger one of five
samples from the sample player, action 6 changes the
delay time, action 7 changes the delay feedback level,
and action 8 changes the player speed (transposing
the apparent pitch of the samples). The time
interval between events will approximate a negative
exponential distribution, which is perceptually
and musically interesting. By changing the SPEED
parameter, the density of events increases from a
sparse texture with great variety—due to changes
in pitch and feedback delay—to a dense texture
that could be compared to granular synthesis.
Interested readers can hear the results online
(www.cs.cmu.edu/∼music/examples/soundcool-
control.html). A similar approach could be taken
using Python, Java, C, or even Pd or Max as
the control program language. One could also
receive OSC messages from controllers—for example
allowing real-time, human control of the SPEED
parameter from a touch interface while allowing
the algorithm to generate detailed controls for
Soundcool.

The reader might argue that resorting to an ex-
ternal program illustrates a weakness in Soundcool

Scarani et al. 19

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



SPEED = 1 // if SPEED > 1, things happen more frequently

sounds = ["/4/push1", "/4/push2", "/4/push3", "/4/push4", "/4/push5"]

def sometimes(p) // return true with probability p * SPEED

return random() > (1 - p * SPEED)

def run()

while true

for i = 0 to 5 // trigger sounds occasionally

if sometimes(0.01)

send afloat(sounds[i], 1.0)

time sleep(0.01)

send afloat(sounds[i], 0.0)

time sleep(0.01)

if sometimes(0.1) // maybe change delay time

send afloat("/1/fader2", random() * 1000)

if sometimes(0.1) // maybe change delay feedback

send afloat("/1/fader1", random() * 1)

if sometimes(0.05) // maybe change playback speed

send afloat("/4/fader1", random())

time sleep(0.1)

Figure 5. A program to
perform algorithmically
using Soundcool. The
program randomly triggers
sounds and changes delay
parameters to create a
collage of noise sounds.

as a general-purpose computer music system. If
automation and algorithmic control are essential for
computer music, then perhaps they should be inte-
gral to any computer music system. On the other
hand, for users (as opposed to language designers),
the ability to control Soundcool with an already
familiar language might be a feature.

Soundcool in Telematic Performances

Soundcool has been used for telematics performance
(http://globalnetorchestra.blogs.upv.es). Because
Soundcool control is normally through mobile de-
vices, the control information is inherently a stream
of OSC messages. For a telematic performance, we
duplicated the local OSC message stream, trans-
mitted it to a remote performance site, and fed the
messages to a remote duplicate of the local Sound-
cool configuration. As a result, the remote site had a
“mirror” of the local Soundcool performance, albeit
with some network delay and timing jitter. We dealt

with that in advance by designing sound textures
that did not have precise timing requirements.

The configuration is illustrated in Figure 6. The
OSC Duplication program is both an OSC client and
server, receiving from controllers and forwarding
to the local Soundcool. The controllers are set up
with different port numbers to connect them to
OSC Duplication rather than directly to the local
Soundcool program. The OSC Duplication program
uses a TCP connection to transmit to the OSC
Forwarding program at the remote site. The TCP
protocol is used here because the UDP protocol
with its “best effort” delivery is prone to losing
messages, whereas TCP will automatically detect
and retransmit dropped messages (at the cost of
holding up delivery of subsequent messages until
retransmission is successful). The OSC Forwarding
program is also an OSC client. It sends arriving
messages locally over UDP as expected by the remote
Soundcool Mirror process. The OSC duplication and
forwarding programs, written in Serpent, total only
90 lines of code and are available from the authors.

20 Computer Music Journal

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



Figure 6. Telematic
performance with
Soundcool: OSC messages
are duplicated and relayed
to the remote site, creating
a “mirror” performance.

Our point here is not that Soundcool is the
best tool for telematic performance. Indeed, many
approaches and systems have been created, often
exploring particular ideas about the role of time,
distance, synchronization, and communication in
musical interaction (Mills 2019). Instead, our point
is that such a simple tool can be extended relatively
easily to serve a purpose that was not anticipated
by the original designers. Moreover, the design
of Soundcool allowed us to completely separate
composition and performance aspects (in Soundcool)
from the network transmission aspects, which
greatly simplified the project. During the Covid-19
pandemic, we have used Soundcool to connect
isolated but collaborating performers in as many as
eight cities (https://youtu.be/rXQ73PWxzSk).

Evaluation

Computer music systems, like other complex
languages and systems, have no simple basis for
evaluation. However, we can attempt to answer a
few questions through surveys and field tests. We
will address the following questions:

1. Does Soundcool have potential for adoption
in the classroom?

2. Is Soundcool powerful and simple enough for
use by young students?

3. Is Soundcool general enough to be interesting
to professionals?

We offer a user study, adoption by schools, and
use by professional performers as evidence that
Soundcool meets a range of needs.

To answer the first question, Soundcool and
music technology was introduced to a group of 66
teachers in a workshop setting (Murillo, Riaño-
Galán, and Berbel-Gómez 2018). After working with
Soundcool, a number of positive outcomes were
reported:

1. Teachers are highly prone to use computers
in education (86%) even though only 58%
reported prior computing experience.

2. Teachers feel more positive about Infor-
mation and Communication Technology
(73%).

3. Teachers believe Soundcool will increase the
generation of ideas by students (91%).

This study shows that teachers can learn and
embrace Soundcool for music education.

To answer the second question, “Is Sound-
cool powerful and simple enough for children?”
we have extensive experience with Soundcool in
schools. Although outcomes are hard to measure
objectively, and controlled comparative studies are
even more difficult, we can subjectively see suc-
cessful student engagement, creativity, listening,
performance, and mastery of digital media. In the
majority of cases, this experience was completely
lacking before the introduction of Soundcool to
the curriculum. Soundcool has been used in 25
educational centers, and student creations include
operas, plays, silent film scores, and audio/visual
storytelling. Many productions can be seen online
(www.youtube.com/c/SoundcoolProject). Some of
these projects are available with instruction manu-
als in both English and Spanish and video examples
for teachers (http://soundcool.org/en/projects).

Finally, a growing list of works and performances
suggests that Soundcool has much to offer, even

Scarani et al. 21

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



to professionals. The opera La Mare dels Peixos
[The Mother of Fishes], for six soloists, children’s
chorus, orchestra, and live Soundcool electron-
ics has been performed in Spain, Mexico, and
the United States (http://themotheroffishes.com).
A video excerpt of the opera is available
at https://www.mitpressjournals.org/doi/suppl
/10.1162/COMJ a 00534.

For each performance, children or young adults
learn Soundcool, develop sounds and music, and per-
form live in a professional setting (http://bit.ly/tmof
-audacity). Soundcool has also been used in a growing
list of other contemporary music performances. A
playlist can be found online (http://bit.ly/soundcool
-youtube). In general, the attraction of Soundcool is
simplicity and support for multiple effects and sam-
ple playback, all of which can be quickly configured,
adjusted, and controlled. For example, Chapitres
for wind symphony, narrator and Soundcool, uses
Soundcool to capture live sound fragments from a
voice and vibraphone and process them with two
separate granular synthesis effects (Tom Erbe’s Bub-
bler, www.soundhack.com, and INA-GRM tools,
inagrm.com). Eighteen modules including three VST
host modules provide a wide range of processing
possibilities and parameters (youtu.be/f Wt3fKi82E).

Summary

We have presented Soundcool, a system for in-
novative music education based on collaborative
creation using mobile devices. Soundcool is designed
to fill the gap between off-the-shelf, ready-to-use
applications and programming-oriented software de-
velopment platforms. Soundcool presents a minimal
learning curve while still providing high creative
potential, especially in education. We have described
the design and rationale of Soundcool including the
Soundcool app used for multitouch control and
collaborative performance.

We have showcased three different scenarios of
use as examples of how Soundcool is powerful but
still sufficiently general for interesting and even un-
expected applications. The first scenario describes
music education in classroom settings. The second
scenario concerns the algorithmic control of Sound-

cool from other pieces of software via the OSC
interface implemented in every Soundcool module.
The third scenario describes the use of Soundcool in
a telematic performance.

We use surveys and experience to support our
claims that (1) Soundcool offers an interesting
basis for expanding music teaching in primary
and secondary education, (2) Soundcool is simple
and powerful enough for use by children, and
(3) Soundcool is also sufficiently advanced and
general enough for professional composers and
musicians. In the future, we hope to accelerate the
adoption of Soundcool by offering a browser-based
implementation and a cloud-based system for music
creation and sharing.

Conclusions

We believe that Soundcool is interesting in at
least two ways: As an approach to music education,
Soundcool leverages modern technology to motivate
collaborative music creation and an openness toward
nontraditional sound and music. As a system design,
Soundcool runs counter to efforts to create “all-in-
one” systems that offer signal processing, control,
interfaces, programmability, and more. Soundcool
makes the case that certain features can combine to
form a powerful and flexible system for computer
music. From experience, we can identify three
essential features, and we encourage designers to
consider the following as important enablers of
creative practice.

First, high-level modules for “standard” process-
ing, such as mixers, sample players, and filters are
so widely used that there is no sense in having users
build their own. Modules include simple, real-time
graphical interfaces so that modules are imme-
diately useable. Although systems that are more
sophisticated tend to separate the audio intercon-
nection interface from the control interface, there is
value in putting all of a module’s information and
interactions within a single visual representation.

Second, audio plugins vastly expand the avail-
ability of interesting and sophisticated audio signal
processors and generators. The VST host module
in Soundcool allows users to incorporate complete

22 Computer Music Journal

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021

https://www.mitpressjournals.org/doi/suppl/10.1162/COMJ_a_00534
https://www.mitpressjournals.org/doi/suppl/10.1162/COMJ_a_00534


synthesizers, high-quality reverberation effects,
and a wide variety of signal processors, without
complicating the basic framework.

Finally, separating signal processing and control
opens many control possibilities, including multiple
touch surfaces, new control devices, telematic
control, and algorithmic control using virtually any
programming language. Close coupling between
control and audio and even sample-accurate control
in computer music languages is a good thing, but a
more distributed and modular approach to control
brings both simplicity and flexibility, hence more
power and generality. Assuming audio modules
with substantial functionality, it is important that
module parameters be ready-to-use, avoiding the
need to manually connect each parameter to some
control source. For example, Soundcool users merely
enter a port number for OSC messages, and modules
become fully connected to the touch controls of the
Soundcool app.

Although Soundcool was created for primary and
secondary education, it has found a variety of uses
owing to its combination of power and generality.
We hope that others will try Soundcool. We also
hope that some of the lessons we have learned will
help systems designers to create systems that are
both more flexible and usable in the future.

Acknowledgments

This work has been supported by the Generalitat
Valenciana (Spain) (grants GJIDI/2018/A/169 and
AICO/2015/120) and the Daniel and Nina Carasso
Foundation (grant 16-AC-2016). We would also like
to thank Carnegie Mellon University, the Heinz
Endowments, the Greater Pittsburgh Arts Council,
and our students for their support of Soundcool,
The Mother of Fishes opera, and participation in the
telematic performance described here.

References

Baumann, A., et al. 2011. “Enhancing STEM Classes
Using Weave: A Collaborative Web-Based Visualization
Environment.” In Proceedings of the Integrated STEM
Education Conference, Paper 2A.

Clough, G., et al. 2008. “Informal Learning with PDAs and
Smartphones.” Journal of Computer Assisted Learning
24(5):359–371.

Dannenberg, R. B. 2002. “A Language for Interactive
Audio Applications.” In Proceedings of the In-
ternational Computer Music Conference, pp. 509–
515.

Dannenberg, R. B. 2018. “Languages for Computer Music.”
Frontiers in Digital Humanities. Available online
at doi.org/10.3389/fdigh.2018.00026. Accessed June
2020.

Freeman, J., et al. 2015. “EarSketch: A STEAM Approach
to Broadening Participation in Computer Science Prin-
ciples.” In Proceedings of the International Conference
on Research in Equity and Sustained Participation in
Engineering, Computing, and Technology. Available
online at doi.org/10.1109/RESPECT.2015.7296511.
Accessed June 2020.

Guttman, E. 2001. “Autoconfiguration for IP Network-
ing: Enabling Local Communication.” IEEE Internet
Computing 5(3):81–86.

Lloret Romero, Nuria. 2007. “Study of Human-Technology
Interaction in e-Learning Platforms Design.” Interna-
tional Journal of Technology, Knowledge, and Society:
Annual Review 2(6):21–28.

Manzo, V. J. 2015. Foundations of Music Technology. 1st
ed. Oxford: Oxford University Press.

Mills, Roger. 2019. Tele-Improvisation: Intercultural
Interaction in the Online Global Music Jam Session.
Berlin: Springer.

Murillo, A., M.-E. Riaño-Galán, and N. Berbel-Gómez.
2018. “Perception of the Use of ‘Soundcool’ as a
Proposal for Intervention in the Creation of Sound and
in the Development of Teaching Competences: An
Exploratory Study on Pre-Service Teacher Education”
[In Spanish, with English abstract]. Psychology, Society,
and Education 10(1):127–146.

Newell, A. 1983. “Intellectual Issues in the History
of Artificial Intelligence.” In F. Machlup and U.
Mansfield, eds. Study of Information: Interdisicplinary
Messages. Hoboken, New Jersey: Wiley, pp. 187–
227.

Sánchez, J., A. Salinas, and M. Sáenz. 2007. “Mobile
Game-Based Methodology for Science Learning.” In
A. Jacko, ed. Human–Computer Interaction: HCI
Applications and Services. Berlin: Springer, pp. 322–
331.

Sastre, J., et al. 2013. “New Technologies for Music Edu-
cation.” In Proceedings of the International Conference
on E-Learning and E-Technologies in Education, pp.
149–154.

Scarani et al. 23

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021



Sastre, J., et al. 2015. “Soundcool: New Technologies for
Music Education.” In Proceedings of the International
Conference of Education, Research and Innovation, pp.
5974–5982.

Savage, J. 2007. “Reconstructing Music Education through
ICT.” Research in Education 78(1):65–77.

Shapiro, R., et al. 2017. “Tangible Distributed Computer
Music for Youth.” Computer Music Journal 41(2):52–68.

Yoo, M.-J., J.-W. Beak, and I.-K. Lee. 2011. “Creating
Musical Expression Using Kinect.” In Proceedings of
the International Conference on New Interfaces for
Musical Expression, pp. 324–325.

24 Computer Music Journal

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/comj_a_00534 by guest on 19 June 2021


