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Abstract: The automatic identification of cue points is a central task in applications as diverse as music thumbnailing,
generation of mash ups, and DJ mixing. Our focus lies in electronic dance music and in a specific kind of cue point,
the “switch point,” that makes it possible to automatically construct transitions between tracks, mimicking what
professional DJs do. We present two approaches for the detection of switch points. One embodies a few general rules
we established from interviews with professional DJs, the other models a manually annotated dataset that we curated.
Both approaches are based on feature extraction and novelty analysis. From an evaluation conducted on previously
unknown tracks, we found that about 90 percent of the points generated can be reliably used in the context of a DJ mix.

In recent years, there has been a growing interest in
the automatic generation of DJ mixes, that is, unin-
terrupted music sequences constructed by partially
overlapping music tracks. In a DJ mix, successive
tracks are synchronized (i.e., tempo-adjusted and
beat-matched), possibly overlapped (for a long or
short time), and cross-faded. Intuitively, a “switch
point” corresponds to the point in time when the
next track in the sequence becomes louder than the
current track, which eventually fades out. Since this
point affects the listening experience, DJs choose
it carefully. In this article we investigate the pos-
sibility of identifying switch points automatically.
In particular, we focus on electronic dance music
(EDM) and seamless transitions between tracks, by
far the most common type of transitions in subgen-
res such as house and techno. As such, this research
constitutes an important building block toward the
creation of a fully automatic algorithm for DJ mixes.

Musicologists, music experts, professional DJs,
and the overall attendees of dance clubs generally
agree that EDM was born roughly at the end of the
1970s. Since then, the function of a DJ has been to
provide people with music to which they can dance
uninterruptedly for a long period of time (from one
to several hours). Because songs last no more than
a few minutes, DJs have to find a way to join the
songs together to create a continuous flow of music.
Moreover, they have to select which songs to use
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next, in real time, according to the response of the
dancing audience. These operations conflate into
two main tasks a DJ has to perform simultaneously:
distributing the musical energy appropriately over
a long span of time, and making the transitions
between consecutive songs pleasant and, frequently,
imperceptible. Both tasks require a mastery that
only the experience and a deep knowledge of the
repertoire can provide. Uninterrupted streams of
EDM are also used in contexts where a DJ may not
be always available (gyms, fashion stores, private
parties, etc.); automated approaches become useful,
thus increasing the motivation to investigate them.
In fact, the last few years have seen a remarkable
concern for developing software that not only
generates playlists, but also adds transitions between
individual tracks (Bittner et al. 2017; Kim et al. 2017;
Vande Veire and De Bie 2018; Schwarz, Schindler,
and Spadavecchia 2018).

To better frame the problem, let us consider the
scenario of a live performance, where “Track A” is
currently played, and “Track B” is selected to be
played next. As illustrated in Figure 1, the transition
from A to B can be identified by means of three
timestamps:

1. t1, the point in time when B becomes audible
but A is still dominant—this point marks the
beginning of the transition, also known as the
cross-fade section;

2. t2, the point in time when B becomes louder
than A—the “switch point” (“switch-in”
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Figure 1. Schematic
representation of a simple
transition from Track A to
Track B. Dashed lines
represent volume.

and “switch-out” in relation to track B or A,
respectively);

3. t3, the point in time when A becomes
inaudible—the end of the transition section.

Depending on the mixing style, t1 or t3 might
coincide with t2, leading to the sudden introduction
of track B or the sudden removal of track A. In the
literature, both t1 and t2 are frequently referred to
as “cue points.” This study focuses only on switch
points, and in particular, on their relative position
within track B (“switch-in”), arguably the most
critical position to create an effective mix.

Our approach to the automatic identification
of switch points is inspired by, but not meant to
replace, the thought process of professional DJs. To
this end, we conducted semistructured interviews
with DJs specializing in different genres and styles,
and we collected a set of criteria used by DJs to
identify viable switch points in a track. To exploit
the knowledge gathered in the interviews, we first
turned these criteria into high-level rules written
in natural language (i.e., English). Then we built
an algorithmic implementation of the rules in a
formal language (i.e., a programming language),
effectively translating the concepts we want to
reproduce and automate for the computer. This step
is particularly difficult because of the semantic gap

between the high-level nature of the rules written
in English and the low-level operations performed
by a computer. For example, the beat (or pulse)
is easy to conceptualize but notoriously difficult
to formally explain as a succession of low-level
computer operations.

Two approaches can be used to bridge the gap
between these two worlds and convert the rules
into an algorithm: One is based on machine learning
and relies on data to take decisions that are not
explicitly coded, whereas the other exploits expert
knowledge to handcraft what directions the program
should follow. These approaches are not mutually
exclusive; in fact, it is common to combine them at
different stages of a workflow (e.g., expert-defined
features can be used as input data to a machine-
learning algorithm). At one end of the spectrum,
a fully data-driven approach could be realized as
a single deep-learning algorithm working on raw
audio. In this case, expert knowledge might still
be used to specify the architecture of the network,
but most of the algorithm would emerge from
automatic optimization of data. At the other end of
the spectrum, a fully handcrafted approach could be
an algorithm where none of its stages (e.g., feature
retrieval, feature selection, or classification) are
optimized on data, and results depend only upon
concepts established a priori. The former technique
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requires a significant amount of training data and
is typically not explainable, whereas the latter is
more easily explainable but possibly not as effective.
In fact, as noted by Geoffroy Peeters (2021, page 3)
when discussing handcrafted features, although
“those were indeed shallow and explainable at
the start, they tended to be deep, data-driven and
unexplainable over time, already before the reign of
deep learning.”

To build our workflow, we looked for a com-
bination of these two extremes and developed
two different approaches: one approach based on
statistics, called STAT, and one based on expert
knowledge, called EXPERT. The former relies on
a statistical method—linear discriminant analysis
(LDA)—used in music structure analysis (MSA) and
illustrated in the work of McFee and Ellis (2014a),
whereas the latter capitalizes on expert knowledge.
In both approaches, the estimation of the features
is hybrid, as the state of the art suggests, with data-
driven techniques used to retrieve features for tasks
such as beat estimation and drum transcription, and
knowledge-driven procedures used for the extraction
of features related to timbre and pitch. Therefore, in
both workflows, low-level features retrieved from
the raw audio with external libraries use data-driven
decision making only to some extent. Instead, high-
level decisions built on top of low-level features are
either statistical or knowledge-driven. Unlike cur-
rent trends in music information retrieval, neither
of the two approaches relies significantly on deep-
learning techniques (besides the complex low-level
features extracted). This is due to our wish both to
keep the workflows reasonably explainable and to
limit the size of the available datasets limited.

The rest of this article is organized as follows:
First we present a survey of related works, then we
describe the rules, the creation of the dataset, and
the methodology to identify switch points. Finally,
after providing and discussing the results, we draw
our conclusions and outline future work.

Related Work

In the last 20 years, several approaches have been
proposed to automate different stages of the DJ’s

workflow. With regard to choosing a location for
transition, two of these approaches seem to be more
effective: One expresses the compatibility between
two tracks, or portions of tracks (Lin et al. 2009;
Davies et al. 2014; Gebhardt, Davies, and Seeber
2016; Hirai, Doi, and Morishima 2016; Bittner et al.
2017); the other captures how well-suited a specific
position is for a transition, independently of the
next track in the DJ mix (Cliff 2000; Davies et al.
2014; Lin et al. 2015; Kim et al. 2017; Bittner et al.
2017; Schwarz, Schindler, and Spadavecchia 2018;
Vande Veire and De Bie 2018). In this work, we are
only concerned with the latter, which we call “intra-
track mixability”; the former, which we call “inter-
track mixability,” will be incorporated in the future.

The goal of intratrack mixability is to detect
switch points in a music track. Those positions, as
explained in the following section, have a strong
relation to the track’s structural boundaries (i.e., the
position between two musical segments) and always
coincide with some of them. This seems to imply
that finding switch points means first performing
an MSA (a well-defined task in music information
retrieval), because MSA, as well as switch-point
detection, is typically solved by looking for novelty,
homogeneity, or repetition in a music track. This
is not necessarily the case, however: Although all
the switch points are structural boundaries, not
every structural boundary is a switch point. Indeed,
MSA is a complex and large endeavor that does not
stop when the macrostructure (i.e., the division in
sections) of a piece of music has been established,
although this may be a sufficient goal when search-
ing for switch points. A thorough structure analysis
also deals with other dimensions of music (i.e., the
mesostructure and microstructure—for example,
periods, phrases, half phrases, etc.). Therefore, MSA
as a whole is not a primary objective of our research,
but some aspects thereof are nonetheless useful.
For an analysis and an evaluation of different MSA
algorithms, we would point the reader to the work
by Nieto and Bello (2016).

One of the earliest discussions on identification
of switch points is found in a technical report by
Dave Cliff (2000), “Hang the DJ,” which deals with
the automatic creation of DJ mixes. The idea there is
to transition between tracks during segments with
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no clear pulse (also known as “breakdowns”), then
to identify such segments as the portions of a track
in which a beat detection algorithm fails to detect
the beat. The report does not provide any evaluation
of the results.

To the best of our knowledge, the first work about
the segmentation of EDM tracks was proposed
by Rocha, Bogaards, and Honingh (2013). There,
segmentation is applied as a preprocessing step to
assess tracks’ similarity, a feature that plays an
important role in intertrack mixability. In that
research, the structural boundaries are identified by
using the novelty detection algorithm, developed
by Jonathan Foote (2000), on a beat-synchronous
representation of a track’s timbre. The approach
is motivated by the observation that a change in
timbre (i.e., the introduction or removal of one or
more instruments) is a significant compositional
element in EDM and thus displays high novelty at
a segment’s boundaries. The boundaries detected
are then quantized to the closest downbeat. When
evaluated on an in-house EDM dataset, this approach
yielded good results, although a comparison to other
algorithms was not performed.

Segmentation of EDM tracks was also performed
by Yadati et al. (2014). In that work, the authors
target the detection of “drops” (i.e., points of “emo-
tional release” that follow a part where the song’s
energy increases, called “build up”) by analyz-
ing a list of candidate positions drawn from the
macrostructure analysis of the track. The segmen-
tation is performed with a technique proposed by
Serra et al. (2014), which is known for being able
to identify more than 92 percent of drop positions
in the list of candidates. The average distance of
2.5 sec between the ground truth and the generated
position is too large for finding switch points that
can be used in the context of a DJ mix, however.

The identification of switch points is a task
relevant also for the automatic generation of mash-
ups and medleys. For instance, in AutoMashUpper
(Davies et al. 2014), the transitions between tracks
are constrained to take place at the boundary
between phrases detected with Foote’s algorithm.

In a more recent study (Bittner et al. 2017), switch
points are collected by combining three different
methods: First crowdsourcing is used to identify

drop locations, then the structure of the track is
determined by a repetition-based algorithm (McFee
and Ellis 2014b), and finally downbeat locations are
retrieved from Echo Nest Analyzer, a music intel-
ligence platform (Jehan 2005). Multiple heuristics
are used to prune candidates and select the best
switch point for any tuple of tracks, and most of the
resulting transitions are rated as satisfactory, with
only about 8 percent of the transitions considered
“bad.” Unfortunately, this approach is no longer
viable, as Echo Nest’s API is now privately owned.

Another approach proposes to combine Foote’s
novelty-based algorithm for structure analysis with
deep neural networks, but an evaluation of the
results is missing (Kim et al. 2017; Foote 2000).

Besides our current study, two other studies
(Vande Veire and De Bie 2018; Schwarz, Schindler,
and Spadavecchia 2018) proposed rule-based ap-
proaches for the identification of switch points.
In their work, Vande Veire and De Bie aim for the
automatic generation of drum-and-bass DJ mixes.
They then go on to explain how to improve the
quality of the boundaries returned by Foote’s al-
gorithm through rules that encode knowledge of
the specific music genre under consideration. This
method was positively evaluated, but it was not
extended to other musical genres. The context of
Schwarz and coworkers’ project is “point-of-sale
(PoS) automatic mixing in shops.” This method
aims to improve the structure analysis obtained
with the module “IRCAM Summary” by means of
heuristics from experts in music branding and the
knowledge obtained from a database of 30 tracks
manually annotated (Kaiser 2012; Kaiser and Peeters
2013). They only implement a small subset of the
expert criteria, however, and the evaluation only
proves the usefulness of the method as a starting
point for a human annotator.

Table 1 summarizes the literature discussed in
this section.

Rule-Based Approach

Our approach to switch point detection is meant to
establish a set of general rules that can subsume the
relative uniformity of our repertoire. For the specific
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Table 1. Summary of Related Work

Work Features
Boundary
detection

Cliff (2000) Beats —
Rocha, Bogaards, and Honingh (2013) Mel-frequency cepstral coefficients (MFCC) CK
Yadati et al. (2014) Pitch class profiles (PCP) SF
Davies et al. (2014) Semitone spectrogram CK
Bittner et al. (2017) Constant-Q transform (CQT), MFCC LS
Kim et al. (2017) CQT CK
Vande Veire and De Bie (2018) MFCC, signal energy CK
Schwarz, Schindler, and Spadavecchia (2018) MFCC, spectral centroid, spread, skewness,

spectral flatness, PCP, and acoustic features
CK and SF, NSMF

EXPERT, STAT Automatic drum transcription (ADT), harmonic-
percussive signals energy, CQT, and PCP

CK

Boundary detection techniques: CK (checkerboard kernel, Foote 2000); SF (structural features, Serra et al. 2014); CK and SF (Kaiser
and Peeters 2013); LS (Laplacian segmentation, McFee and Ellis 2014b); NSMF (nonnegative similarity matrix factorization, Kaiser
2012).

goal described in this article, this translates into
detecting structural boundaries in music tracks,
because we found that positions where some events
of structural importance occur are prime candidates
to be switch points. Such a task is simplified, to a
certain extent, by the modular nature of the music
genre we target, as modularity usually provides
structural predictability to musical form. Indeed,
EDM is modular because it is highly regular both
metrically and formally—regular features, as well as
several types of ambiguities of EDM tracks are an-
alyzed by Mark Butler (2003). Although exceptions
exist, they should not affect a general characteri-
zation, as they are vastly outweighed by regularity:
EDM is almost exclusively in 4

4 and is composed of
a periodic repetition of phrases (sometimes called
“loops”) combined into larger periods that consti-
tute EDM’s structural building blocks. Furthermore,
it is expected that all periods are constituted of two,
or a multiple of two, repetitions of a phrase, which
is itself composed of two, or a multiple of two, bars.
In other words, in most EDM tracks every phrase
of four bars can potentially constitute a period and,
therefore, may be followed by a new music section.

Formally, we identify three macrosections: the
“intro” (the initial section), the “core” (the central
section), and the “outro” (the last section). The
intro and the outro may be absent. Often, all these

sections can be further segmented into portions such
as “breakdowns” (where energy drops), and build-
ups, sometimes followed by a drop. Knowledge of
the process that leads a DJ to choose where to make
a transition is condensed into the following rules.

Rule 1: Beat Gridding

A switch point is always located on a strong beat.
This first rule stems from the fact that in EDM

all the structural boundaries are always aligned with
the beat grid. In fact, they are aligned with a strong
beat (beats 1 and 3 of a 4

4 bar).

Rule 2: Period Alignment

A switch point always occurs on the downbeat at
the start of a period.

Due to EDM’s structural modularity, switch
points always occur on the downbeat of the first bar
of a period (i.e., a phrase of four bars).

Rule 3: Novelty

A switch point marks a position of high novelty in
rhythmic density, loudness, instrumental compo-
nents, or harmony.
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This rule states that structural events are points
in time where new events occur on the music sur-
face, and this novelty is interpreted as a boundary
between two consecutive music periods. Common
parameters in EDM that convey a sense of novelty
are changes in rhythmic density, loudness, instru-
mental components (i.e., the instruments currently
playing), and harmony.

Rule 4: Salience

Switch points are located in the initial portion of a
track that precedes the first point of salience.

The novelty rule led to the identification of many
candidates. But, from the interviews we conducted,
it emerged that DJs tend to look for switch points
only in the intro, because doing so makes it possible
to highlight the following core section in its entirety
and not transition into it after it has already started.
Therefore, this final rule limits the search space,
that is, switch points are only considered in the
portion of a track from the beginning to the first
point of “salience.” This point in time represents the
opening of a section that is prominent or particularly
noticeable. For example, the perception of a salient
section can be aroused by the presence of a full
texture or an intense rhythmic section.

We remind the reader that all these rules are
meant for the algorithmic detection of potential
switch points, not as a model for the techniques used
by human DJs. In live settings, it is in fact possible
and likely that DJs take actions to musically interact
with the audience, for instance, by transitioning to
the next track four or more bars before the switch
point of choice, thus creating a sense of anticipation.

Dataset Creation

Both to steer algorithmic choices and to evaluate
different solutions, we curated a dataset of switch
points that constitutes our ground truth (Zehren,
Alunno, and Bientinesi 2019). Although other
datasets were available, none were ultimately suit-
able for our purpose. For instance, the 1001tracklist

dataset (Kim et al. 2020) is of limited use, since
it is automatically generated from real DJ mixes
and provides only one switch point per track (un-
less the same track appears in multiple mixes). On
the other hand, the UnmixDB does not reflect real
expertise, because the switch points are algorithmi-
cally generated (Schwarz and Fourer 2021). Unlike
1001tracklist and UnmixDB, our dataset was manu-
ally annotated by human experts and contains more
than one annotation per track.

The selection of switch points is a subjective
process and depends both on the taste and style
of the DJ and the peculiarities of the track itself.
To create a homogeneous set of annotations, our
group of annotators—five experts with a level of
qualification ranging from a professional composer
to a semiprofessional DJ—were given the set of rules
listed in the Rule-Based Approach section as a guide-
line. The rules were discussed, and the annotators
agreed to them. Furthermore, to mitigate the impact
of subjectivity, each track was annotated by three
(out of the five) experts and their annotations were
merged. Due to a large number of possible switch
points per track, we also asked the annotators to
constrain the annotations from the start of the track
up to what they believed to be the beginning of the
core section. Such a recommendation shortened
the annotation process while keeping those switch
points that most valuable and commonly used in
the track.

Our dataset consists of 150 tracks of EDM,
selected from a period of 30 years (1987–2016), a
variety of musical subgenres, and tempi ranging from
99 to 148 bpm. About 60 percent of the tracks come
from the digitization of vinyl records. All the tracks
were converted to a standard compressed format
using FFmpeg (128kpbs, 44.1kHz); the average
duration is 7:20 per track, for a combined duration
of 18 hours and 20 minutes. As shown in Figure 2,
each track contained between one and nine switch
points (mean of 4.3). Most of the points are identified
by multiple annotators at the same time: all three
annotators agreed on 185 of the switch points, two
annotators agreed on each of 183 points, with only
one annotator identifying each of the remaining 277
points.
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Figure 2. Distribution of
the number of switch
points per track.

Algorithmic Implementation

The two approaches STAT and EXPERT, which
we developed to algorithmically express the rules
outlined above, are presented in Figure 3. For the
most part, they share the same workflow, consisting
of five stages: feature extraction, novelty detection,
period-offset detection, identification of the DJ’s
search space, and classification. A step-by-step
description for each stage follows.

Feature Extraction

Feature extraction is the first step in the identi-
fication of switch points. Since the raw signal of
a track cannot be directly interpreted in musical
terms, a feature-based representation is constructed
instead as represented in Figure 4. To build this
representation we decided to focus on two aspects:
the granularity of the features computed and which
features to use.

First, the granularity of the features is dictated
by Rule 1, which states that relevant changes
are expected to be synchronous with the beat, in
particular with the grid of strong beats. To this
end, all features are computed over nonoverlapping
strong-beat windows, estimated following Böck,
Krebs, and Widmer (2016), so that every value
computed effectively represents the characteristics

of one half bar. Such a synchronicity of strong
beats is common practice, as it helps to smooth
out irrelevant finer-grained events in the tracks.
In reality, the features are initially computed at a
finer granularity (e.g., 100 Hz, depending on the
specific feature), then the values are aggregated
to achieve strong-beat synchronicity. This is done
by by computing either the sum or the root mean
square (RMS) of all values located between each
consecutive strong beat, as we will see for each
specific feature. We also considered using a coarser
downbeat synchronicity (one value per bar), but we
found that the downbeats could not be estimated as
reliably as the strong beats. Indeed, it is known that
in music in general and in EDM in particular it may
be problematic to tell apart the downbeat from the
third beat of a bar (cf. Butler 2003).

Second, to select which features to use, we
considered the analysis of Nieto and Bello (2016)
that shows how, in music structure analysis, the
initial choice of features impacts the accuracy of
the algorithm as a whole. Furthermore, in terms
of accuracy, it is known that no single feature
consistently outperforms the others. These analyses
seem to apply also for the identification of switch
points, for which many different features are used
throughout the literature (as shown in Table 1). Since
our Rule 3 states that a switch point must be located
at a position of high novelty in rhythmic density,
energy, instrumental component, or harmony, we
identified features of interest for those categories.
Both STAT and EXPERT draw on subsets of these
features.

To extract rhythmic features, we used software
by Vogl and coworkers (Vogl et al. 2017; Vogl,
Widmer, and Knees 2018) to estimate two of the
three main components of the drum set, i.e., the
bass drum and the hi-hat cymbal. We did not extract
the snare drum, as it is sparser and usually less
reliably detected (Zehren, Alunno, and Bientinesi
2021, p. 6). We paid special attention to these
components because of their function in stressing
period boundaries in EDM. For example, the start
of the typical 4

4 EDM steady rhythm with the bass
drum on each beat, also known as “four to the floor,”
is a critically important event for the selection of

Zehren, Alunno, and Bientinesi 73

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/46/3/67/2164818/com

j_a_00652.pdf by guest on 28 N
ovem

ber 2023



Figure 3. Workflow of the
STAT and EXPERT
approaches.
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Figure 4. Values of the
features (dashed lines and
heat maps) and
corresponding novelties
(solid curves), for STAT
and EXPERT (left and right
columns, respectively), for
the track “Where Love

Lives (Classic Mix)” by
Alison Limerick. From the
novelty curves, the offset
is identified on the fourth
strong beat (dotted vertical
lines), which marks the
beginning of a four-bar
period (solid vertical

lines). One can appreciate
how the ground truth
annotations (bold vertical
lines) fall onto those
boundaries of the period
that exhibit high novelty.

candidates for switch points. We aggregated each of
the two features extracted (bass drum and hi-hat)
to the grid of strong beats by counting the number

of onsets occurring within two consecutive strong
beats; effectively this is a measure of the density of
events for those instruments. In STAT, both these
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features are used whereas in EXPERT only the bass
drum is employed.

With regard to the energy of a signal, we used the
amplitude of the audio samples. Then, as suggested
by the standard signal processing definition of
energy, we computed the RMS magnitude of the
sample for each strong-beat window. Notice that this
feature is different from loudness (e.g., as computed
with the European Broadcast Union’s standard
EBU R 128), that is, the subjectively perceived
sound pressure. For our purposes, loudness is not
as useful, as weighting the frequencies according
to human perception greatly reduces the influence
of the bass frequencies, which are of great interest
to DJs. To compute the energy, in STAT we first
split the signal into its harmonic and percussive
components with the algorithm by Driedger and
colleagues (included in the Librosa software, cf.
Driedger et al. 2014; McFee et al. 2015). In EXPERT,
on the other hand, we only looked at the raw
signal energy without harmonic–percussive source
separation.

Finally, in STAT, we also considered changes
in the instrumental components and harmony.
For this reason, we employed both the constant-Q
transform (CQT) and pitch class profiles (PCP), as
they are known to deliver good results in analysis
of musical structure (Nieto and Bello 2016), and
they offer quite different representations of the
signal. On the one hand, CQT computes a high-
resolution spectrogram that is well-suited to timbre
identification. On the other hand, PCP does not
permit the visualization of timbre, but it does allow
us to identify harmony from the intensity of the
twelve pitch classes of Western music notation.
From the example shown in Figure 4, we see that
CQT and PCP novelties have different sensitivities
to musical events. The features were extracted with
Librosa; each component was aggregated via RMS
to the strong-beat synchronicity. The popular mel-
frequency cepstral coefficients (MFCCs) could also
have been used; they are difficult to interpret in
the context of a DJ mix, however, and according to
the experimental results of Nieto and Bello (2016)
for the related task of MSA, they perform slightly
worse than CQT when used as an input for the
checkerboard kernel.

Novelty Detection

To comply with Rule 3, we aimed at identifying nov-
elty points in the track. For that, we first normalized
each feature x with the formula

zi = xi − min(x)
max(x) − min(x)

,

where the feature has values x = (x1, . . . , xn ) and
zi is the normalized data at the i-th strong beat.
Then we used the most common approach to find-
ing novelty points in a signal, making use of the
signal’s self-similarity matrix (SSM) convolved with
a checkerboard kernel. This method is described
by Foote (2000) and used by Rocha, Bogaards, and
Honingh (2013), Davies et al. (2014), Kim et al.
(2017), and Vande Veire and De Bie (2018). We relied
on the strong-beat synchronized representations of
each feature (as discussed in the Feature Extraction
section) to build the associated SSM with the stan-
dardized Euclidean distance. Finally, a checkerboard
kernel was created with a size set to compute nov-
elty between segments of four bars (hence, a kernel
of eight bars) corresponding to the typical smallest
length of a period, as required by Rule 2. For most
features, we used a convolution with valid padding
to avoid any trivial novelty values at the start of a
track. But, for the energy features only, we found
that zero padding gave good results in the intro
section of a track.

This stage yields a “novelty curve” for each of
the features, that is, an array containing the novelty
value corresponding to each strong beat of the track
(as shown in Figure 4).

Offset Detection

To comply with Rule 2, candidates for switch
points are required to lie at the boundaries between
periods. As discussed in the Rule-Based Approach
section, those boundaries occur every four bars, or a
multiple of four bars. For this reason, we restricted
the search space to strong beats that are four bars
apart from one another. Due to anacruses, however,
b1, the first strong beat of a track, is guaranteed
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to be neither the first strong beat of a bar nor,
consequently, the first strong beat of a period. Since
we consider strong beats (two per bar) and four-
bar periods, the boundary of the first (complete)
period of a track will be k ∈ [0, 1, . . . , 7] strong
beats after b1. The exact value of the integer k,
also known as “offset” or “phase offset,” has to be
determined.

The following is our method to identify this offset
k. Let g be a weight function and nov f the function
that computes the novelty for a given feature f.
Thus, nov f (bj ) is the novelty value of feature f
at the bj-th strong beat. Moreover, let N be the
total number of strong beats of the track. For the
sake of simplicity, let us assume N to be divisible
by eight. Mathematically, the problem consists in
identifying the value of k that maximizes the sum of
the weighted novelty for all features at each strong
beat every four bars.

This approach is inspired by the work of
Vande Veire and De Bie (2018), who consider a
similar maximization problem. In their method,
however, g filters out all the strong beats for which
the novelty is below a certain threshold. We chose
instead to set g to the RMS average and to include
the contribution of all the strong beats, even if their
novelty is low:

g(k) :=

⎛
⎜⎝

∑
f

√√√√√ 1
N/8

N/8∑
j

nov f (bk+8 j )2

⎞
⎟⎠ ,

with k ∈ [0, 1, . . . , 7].

Then, offset = argmaxk g(k). An example was shown
in Figure 4.

In contrast to Rocha, Bogaards, and Honingh
(2013), our approach imposes a strict four-bar pe-
riodicity, thus achieving higher precision. In fact,
whereas Rocha et al. quantize all the novelties
within a period to its downbeat, we select only
those positions that coincide with that downbeat.

Identification of DJ Search Space

In both approaches, we reduced the portion of
the track in which we search for switch point

candidates. This aims at simulating the process
used by DJs while they are “learning” the next track
from the start until they find a point of salience
(Rule 4). We refer to this portion of the track as the
“DJ search space.”

In our context, a point of salience is the beginning
of a portion of the track that exhibits high energy.
In particular, it is where specific features (i.e., the
bass drum count and the raw signal RMS energy)
achieve high amplitudes for a sustained period of
time. To this end, we set both a minimum threshold
for the bass drum to two onsets per bar (equivalent
to the sparsest nontrivial drum pattern in EDM) and
a minimum threshold for raw energy to the track’s
median value minus a delta (this latter step following
Vande Veire and De Bie 2018). The first point in the
track that satisfies these two requirements for
the upcoming bar marks the end of the DJ search
space.

Classification

Once the novelty for each feature throughout the
track has been extracted and the DJ search space has
been identified, the EXPERT approach uses a peak-
picking procedure. This is a standard method for
detecting local maxima in a signal (Rocha, Bogaards,
and Honingh 2013; Davies et al. 2014; Kim et al.
2017; Vande Veire and De Bie 2018); in our case, it is
used on novelty to return candidate switch points. In
general, by peak picking we extract points that are:
(1) a local maximum in a small window, (2) above a
minimum threshold, and (3) at a minimum distance
from the previous peak. In our work, conditions 1
and 3 are always fulfilled, since we restrict all the
candidate switch points to the four-bar periodicity.
Therefore, we only have to search for points that
comply with the second condition, exceeding a
threshold. But because fixing a threshold would
inevitably be an arbitrary choice, we instead use
only the position of the global maximum in the DJ
search space for each of the two features considered
(i.e., bass drum and raw energy). Consequently, we
return at most two candidates per track.

On the other hand, STAT takes into account
the novelty of more features than the two used in
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EXPERT. Not all features play an equally important
role in the selection of switch points, however. In
STAT we aim at statistically estimating the weights
of the different features through LDA. This method
takes as input a set of data points and their associated
labels (i.e., “switch point” or “not a switch point”). It
then computes a linear transformation, maximizing
the separation of the labels in the feature space
(i.e., maximizing the distance between the centroids
of the two classes and minimizing the variance
of each class). This is performed with the Scikit-
learn library (Pedregosa et al. 2011). To estimate
this linear transformation, we fit the model to all
the period boundaries (strong beats four bars apart)
in the annotated portion of the training tracks,
using the dataset presented in the Dataset Creation
section. The points are labeled according to the
presence of an annotation in its vicinity provided by
a human annotator (less than 0.3 sec away). From
these weights, a cumulative score for the strong
beats of each period is computed. All the positions
within the DJ search space that have a positive
score are returned as switch point candidates; if no
such position exists, the position with the highest
nonpositive score is returned instead.

Experimental Results and Discussion

In this section, we evaluate the overall quality of
STAT and EXPERT, both in comparison to other
algorithms and with respect to one another, using
both objective and subjective criteria. We go on to
discuss how some of the design choices we made in
STAT and EXPERT are supported by the correlation
between feature novelty and switch points.

Objective Evaluation

Each of the two approaches, STAT and EXPERT,
yields a list of switch point candidates. Every can-
didate needs to be evaluated to determine whether
or not it is actually a switch point. We now describe
the evaluation conducted on the dataset presented
earlier in the Dataset Creation section. In particular,
the dataset was used to compute the precision of

both approaches, that is, the ratio between the num-
ber of candidates that were “close enough” (within a
0.3-sec window) to an annotation and the total num-
ber of candidates. We computed precision for the test
tracks in two different ways: by picturing the tracks
as if they all were part of one single large track
(“sum precision”), and by considering each track
individually and averaging the outcome (“mean
precision”). For the sake of completeness, we point
out that precision was computed only with respect
to the annotated portion of the track and that out
of the 150 tracks that constitute our dataset, seven
were discarded because the beat-detection algorithm
we used (Böck, Krebs, and Widmer 2016) failed.

In Figure 5, we report the performance of
STAT and EXPERT along with that of three other
techniques:

1. “All periods” is a heuristic that selects all
the points on the estimated period boundaries
(described in the Offset Detection section).
For this reason, we use it as a baseline for
comparison.

2. “DNB-autoDJ” is a method introduced specif-
ically to find switch points in drum-and-bass
tracks (Vande Veire and De Bie 2018). For our
experiment, we changed the parameters of
this method to accept tracks in the tempo
range of our dataset (i.e., adapting original the
range 160–190 bpm to the range 99–148 bpm).

3. Mixed in Key is a commercial software ap-
plication for identification of cue points
(https://mixedinkey.com); no algorithmic
description of the system is available.

Our evaluation does not include the algorithms
described by Bittner et al. (2017) nor those by
Schwarz, Schindler, and Spadavecchia (2018), be-
cause their code is not publicly available and the
available information does not provide enough detail
to reproduce the work.

The results are based on a three-split cross-
validation strategy: The training for STAT was
performed on two subsets resulting from the split,
and the testing was done on the third subset. For the
other methods, for which no training was required,
testing was also done on one subset at a time to
keep the results comparable. In all cases, the results
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Figure 5. Objective
comparison of the
algorithms for the
generation of switch
points. Mean and sum
precision for the different
approaches on our dataset

with error bars for
standard deviation (a);
total number of candidates
and number of evaluated
candidates per track, using
a logarithmic scale (b).

for the three subsets were averaged and displayed
together with standard deviation (Figure 5a).

The mean and sum precision for the baseline
were 35 percent and 29 percent, respectively. The
mean precision of DNB-autoDJ was lower than
the baseline; this was due to the small number
of candidates that this method returns within
the annotated portion of the tracks, leading to many
tracks having no candidates at all. The sum precision
of this method was better than the baseline, but was
still lower than any other algorithms. This suggests

that the design of DNB-autoDJ, specific to drum
and bass, does not transfer to the genres present in
our dataset. The precision achieved by Mixed in
Key was 67 percent and 68 percent, whereas that of
both EXPERT and STAT was about 85 percent. This
indicates that our methods performed noticeably
better than the others.

Figure 5b presents the average per track of both
the total number of candidates and the number
of evaluated candidates (i.e., those within the
annotated portion of the track). In contrast to the
other methods, the vast majority of candidates
generated by EXPERT and STAT fall within the
annotated portion. This is due to the fact that the
other methods do not take the DJ search space into
consideration, as do EXPERT and STAT. Moreover,
on average, STAT generates more candidates than
EXPERT, while retaining the same precision, thus
offering more mixing opportunities.

Subjective Evaluation

Given that the choice of switch points is a subjective
task (ultimately a matter of taste and function), and
that no dataset can therefore capture the ground
truth in its entirety, we also conducted a subjective
evaluation to assess the candidates generated by
our two approaches on 30 new tracks. (Of the
initially chosen tracks, two were discarded because
the beat-detection algorithm failed.) This subjective
evaluation was carried out by three annotators out of
the five involved in the curation of the dataset; these
three listened independently to all of the candidates
and judged whether or not they were suitable switch
points. If they were not, the annotators also had to
provide their reasoning.

Figure 6 compares the precision for STAT and
EXPERT, based on the number of candidates labeled
as switch points by at least one annotator. As was the
case for the objective evaluation, STAT and EXPERT
achieved almost identical results, around 90 percent.
The subjective nature of this task can be appreciated
when precision is computed over those candidates
that were labeled as switch points by more than one
annotator. In fact, when requiring two or all three
annotators to agree, the mean precision of STAT
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Figure 6. Subjective
evaluation of the
candidates generated by
STAT and EXPERT.

Figure 7. Violin plots
representing the maximum
novelty across and the
average novelty over all
features. The 25th, 50th,
and 75th percentiles for
each area are represented
with horizontal lines.

dropped from 92 percent to 76 percent to 65 percent,
respectively; the mean precision of EXPERT dropped
from 91 percent to 71 percent to 62 percent.

Finally, we analyzed the reason why precision
did not reach 100 percent. To this end, we looked
at those candidates that no expert considered to
be a valid switch point and, more specifically,
at the reasoning they provided. We found that
the annotators agreed that such candidates were
not switch points because, despite being points
of novelty, they did not immediately precede a
sufficiently noticeable or prominent section. In
other words, the segment directly following the
candidate was not considered interesting enough to
be used after the switch in a DJ mix.

Feature Novelty and Switch Points

We conclude by presenting a study we carried out to
determine if there was a correlation between feature
novelty and the switch points. For each track of our
dataset, we collected all the annotations, as well
as the points four bars apart according to the offset
detection (as discussed in the Offset Detection
section). The annotations constitute the ground
truth, and all the other points come from Rule 2
(period alignment). Then, for each point of this set,
we constructed a vector containing the novelty

value for the seven different features that had been
considered (see the Novelty Detection section).
Finally, we extracted the maximum and average
of each vector. The “violin plots” (a technique to
display a probability density) in Figure 7 present
the distribution of the maximum and the average
novelty: In each plot, the area to the right contains
the annotations (i.e., switch points) and the area to
the left contains all other points.

By looking at the right-hand portion of the plot
of maximum novelty, we observe that the majority
of switch points have at least one feature with a
novelty above 0.7. This condition is not sufficient
to identify the switch points, however, as the left
portion of the left-hand plot shows (see the small
bump at the top). This observation is supported by
the fact that not all features are equally important
in the context of a DJ mix. For instance, a change
in rhythm and energy is typically more significant
than a change in harmony. The fact that high
novelty in certain specific features often led to
switch points confirms the intuition that stands
behind the EXPERT approach, which effectively
estimates only a few false positives and thereby
attains high precision.

When looking at the plot of average novelty,
we see that, if a point has an average above 0.2, it
is almost certainly a switch point. In fact, almost
no points are found above that threshold on the
left-hand area of that plot. There are, however,
switch points with an average lower than 0.2.
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Obviously, this happens either when one or a few
of the features have a high novelty value while the
others have little or no novelty at all, or when many
or all the features have some but limited novelty.
These two observations support the design choices
behind STAT, which is less strict than EXPERT
and estimates fewer false negatives (i.e., it produces
more candidates without reducing precision).

Conclusions

As part of our pursuit of automatic DJ mixing
of EDM, we considered the problem of detecting
switch points of individual music tracks. These
are the points in a track where a DJ would likely
transition from one track to the next. By means
of the insights collected from professional and
semiprofessional DJs, we produced a small set of
rules that a point must satisfy to be considered a
switch point, and we used these rules to annotate a
dataset of 150 EDM tracks. Then we proposed two
different algorithmic approaches for the automatic
identification of switch points: STAT and EXPERT.
The former uses the dataset for estimation, whereas
the latter is inspired by common practice among
DJs. Our evaluation suggests that these two methods
perform similarly to one another and better than all
the other approaches we evaluated.

In the future, we aim to exploit the generation
of switch points for the automation of DJ mixing.
To this end, we will also take into account factors
such as compatibility between tracks (or portions of
tracks) and the identification of the core portion of
a track. The former will influence the mixing style
whereas the latter will improve the estimation of
the DJ search space.
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