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Table 3
Direct and indirect surface labeling of B16 melanoma variant lines

by galactose ox/dase. A/a83H., method in tissue culture

CellsaridtreatmentF1ControlGaO''N,

GaOF10ControlGaON,

GaoIncorporationTotal20,00036,50087,70020,80044,700111,700of

3H (cpm/mgdryGalactose

and/orGalNAc
on sur

face glycopro-teins''16,50023,900cell

residue)"Sialyl

galactoseand/or
GalNAcon

surfacegly-coproteinsr51

,20067,000

" Average of duplicate analyses of 2 batches of delipidated cell

residue that were solubilized and subjected to radioactivity deter
mination.

'' Direct galactose oxidase: GaO - control.
'' Indirect galactose oxidase method: N, GaO - GaO.
'' GaO, galactose oxidase treatment; N, GaO, NANase followed

by galactose oxidase treatment.

treatment with NaB3H, only. Gel electrophoresis of these
control samples revealed the presence of 4 protein bands
(M.W. 52,000, 47,000, 45,000, and 41,000).

Ganglioside and Neutral GSL Profile of Cultured and in
Vivo Melanoma Variant Lines. Qualitative data on the
patterns of neutral GSL and gangliosides of melanoma
variant cell lines are shown in Fig. 4. A relatively simple
neutral GSL pattern is seen in cultured and in wVo-grown
melanoma cells. These correspond in Chromatographie
migration to mono- and diglycosylceramide. The neutral
GSL of s.c. tumors of F1 melanoma cells were characterized
by gas chromatography to contain glucosylceramide and
CD (glucoseigalactose, 1.00:0.96). As seen in culture and in
s.c. tumors, F10 cells contain more CD than do F1 cells,
which contain only traces (see Fig. 4A, Channels 1 and 5
versus Channels 2 and 6). On the other hand, i.p. grown
tumors of F1 and F10 cells did not exhibit any difference in
neutral GSL (Fig. 4A, Channels 3 and 4).

Cultured melanoma variant cell lines exhibited a simple
ganglioside pattern consisting solely of GÂ«,and traces of
GI)la, whereas in wVo-grown tumors of F1 and F10 cells
contain GM,, G^,, GM1, and GD,a. There was very little
qualitative difference between the variant lines (F1 versus
F10) whether grown in culture or in vivo. However, a small
decrease in quantities of GM,was seen in tissue culture, s.c.
and i.p. grown tumors, which is consistent with the de
crease in total lipid-bound sialic acid (Table 1). A prelimi
nary characterization of the gangliosides of s.c.-grown F1
tumors was attempted. Gas Chromatographie analysis of
the carbohydrate moieties of the principal gangliosides of
F1 cells in vivo revealed a carbohydrate stoichiometry
generally similar to the values expected from their corre
sponding Chromatographie mobilities [Band 1 (GM3):glu-
cose:galactose:NAN, 1.00:0.84:0.98; Band 2 (GM2):glucose:
galactose:GalNAc:NAN, 1.00:0.82:0.88:0.95; Band 3 (GM1):
glucose:galactose:GalNAc:NAN, 1.00:1.85:0.92:0.90; Band 4
(GDla):glucose:galactose:GalNAc:NAN, 1.00:1.72:0.82:1.78].

Cell Surface Exposure of Gangliosides (GM:;) and CD.

The cell surface exposure of ganglioside (GM:|) found in
cultured cells was studied with the glucosamine:NANase
method and indirect galactose oxidase labeling followed by
lipid extraction and thin-layer chromatography as shown in
Table 4. With these procedures the GM:,molecule showed
45 to 56% greater exposure to NANase in F10 than in F1
cells. Glucosamine-derived radioactivity was found only in
the GM:1zone in the thin-layer plates.

The exposure of CD was studied with the use of direct
galactose oxidase labeling followed by thin-layer chroma
tography of the neutral GSL extracts. With these proce
dures a 5- to 6-fold greater exposure of CD to the enzyme
galactose oxidase was seen in F10 cells than in F1 cells
(Table 4).

DISCUSSION

Increases in total sialic content in vivo have been ob
served for human tumors of lung (9), colon, stomach,
breast (3), pancreas, liver, skin, and lymph nodes (36)
compared with normal tissue. Similar increases have been
observed in the plasma membranes of rat hepatomas (4,
12). In contrast there are several reports that animal cells in
culture show a decrease of total sialic acid after viral
transformation (26, 27, 63), although the accessibility of
sialic acid to NANase is increased compared to control cells
(7). These studies thus suggest an association between the
amount of sialic acid exposed on the cell surface and the
malignant state. In this study we sought to determine
whether or not a correlation would also be observed be
tween the cell surface exposure of sialic acid and its ability
to implant in lung after i.v. administration. Our findings
indicate that total, protein-bound, and lipid-bound sialic
acids of high-lung-implanting melanoma cells (F10) are
decreased in both solid tumors and cultured cells when
compared to low-lung-implanting F1 cells. However, the
amount of enzyme-accessible cell surface sialic acid was
increased in both the sialylglycoprotein and ganglioside
fractions in F10 cells, as determined by the galactose

Table 4
Exposure of GM:, and CD on the surface of metastatic variant

melanoma lines
cpm/mg cell residue"

Component studied and method F1 F10 F10:F1

Ganglioside (GÂ«,)exposure
GluNH,rNANase''

Indirect galactose oxidasetreatment*"

CD exposure
Direct galactose oxidase la

beling''

4,585
5,500

7,145
8,000

6,500 36,000

1.56
1.45

5.53

" Results represent the actual radioactivity present in the GSL
zone of a thin-layer chromatography plate of a single experiment.
A repeat experiment produced similar results.

* Radioactivity in the GM:,zone of thin-layer chromatography
plate from glucosamine-labeled cells: control minus NANase
treated = NANase-releasable counts.

r Radioactivity in the lipid extract of the galactose oxidase-
labeled cells after initial NANase treatment minus radioactivity in
the extract of untreated galactose oxidase-labeled cells.

'' Radioactivity in lipid extracts of galactose oxidase-labeled

cells minus radioactivity in the extracts of control cells that were
tritiated without prior enzyme treatment.
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oxidase and glucosamine:NANase methods. A similar de
crease in total sialic acid content accompanied by an
increased cell surface exposure of sialic acid has also been
observed in cells obtained from spontaneous lung mÃ©tas
tases derived from F1 s.c. tumors, as compared to the
original F1 cells (G. Yogeeswaran and B. S. Stein, unpub
lished observation). Thus there does appear to be a corre
lation between cell surface sialic acid and the ability to
implant and grow in lung tissue in the B16 melanoma
system.

In the studies reported here, we have examined the GSL
of metastatic variant melanoma cells grown both in vivo
and in vitro. The results of these studies demonstrate a
small decrease in quantity of GM:1in F10 cells grown in vivo
and in vitro compared to similarly grown F1 cells which is
accompanied by an accumulation of the GM1 precursor,
CD.

Differences were observed in the ganglioside profiles of
the cell lines depending on whether the cells were grown in
vitro or in vivo. The changes seen include a total absence
of GM...and GM, in cultured cells, whereas these molecules
were found in in wVo-grown tumors (both i.p. and s.c.). The
reason for such changes is not known; it may be due to
increased biosynthesis of these molecules in vivo or to the
uptake of these gangliosides from serum by tumor cells or
due to the presence of contaminating host-derived cells.
Presently, we are testing these 3 possibilities. Differences
in gangliosides and neutral GSL profile have also beenfound in in vivo- and in w'fro-grown mouse adrenocortical

tumor cells (39) and hamster sarcoma cells (46).
GSL analysis following direct galactose oxidase labeling

aids in measuring the cell surface exposure of neutral GSL.
The higher-lung-implanting F10 cells showed a 5- to 6-fold
higher CD exposure which is partly reflected by a rise in
quantity of CD relative to F1 cells. In several other tumors
(42, 43), an increase in quantity of a tumor antigen charac
terized as CD has been reported.

An increase in sialic acid in glycopeptides in the mem
brane glycoproteins of transformed cells in tissue culture
(53, 56) and human leukemic cells (54) is well documented.
Bosmann ef al. (6) have shown that F10 cells have a 2-fold
higher NANase-accessible sialic acid content relative to F1
cells, but the nature of the sialic acid-bearing moieties was
not investigated. The present investigation, in which radio
active glucosamine as precursor for sialic acid was used,
enabled a detailed analysis of NANase-accessible sialic
acid-containing molecules in these cells. This approach, in
confirmation of the findings of Bosmann ef al. (7), has
shown a 1.8-fold increase in NANase-accessible sialic acid
on F10 cells as compared to F1 cells. The accessibility of
NANase to glycoprotein sialic acid on F10 cells was only
moderately higher than that for F1 cells (7%). Analysis of
the gangliosides of NANase-treated cells showed a signifi
cantly higher NANase-accessible GN1.,(56%), although the
content of GN|:,decreased 35% in F10 cells compared to F1
cells. This suggests that gangliosides contributed to the
NANase-releasable sialic acid to a greater degree than
glycoproteins in F10 cells compared to F1 cells. Increased
cell surface exposure of GN|:)has been seen in other trans
formed fibroblasts compared to their normal counterparts
(31).

Qualitative analysis of the glycoproteins before and after
NANase treatment by gel electrophoresis detected 7 surface
sialylglycoproteins in both variant melanoma lines. This
method could detect 4 other NANase-accessible surface
glycoproteins that could not be detected by the galactose
oxidase method. In contrast to the galactose oxidase gels
(see below), no difference in the glycoprotein with a molec
ular weight of 66,000 was detected between the variant
lines on the gels prepared from glucosamine:NANase-
treated cells, but this may be due to a high background of
hexosamine-bound radioactivity in the glycoprotein band.

The indirect galactose oxidase technique combined with
fluorography of gels permits the visualization of surface-
exposed glycoproteins with good resolution. Without NAN
ase treatment the melanoma variant lines were poorly
labeled, suggesting that the glycoprotein chains of B16
melanoma variants are highly sialylated. The high-lung-
implanting F10 cells contain a surface sialylglycoprotein
with a molecular weight of 66,000 that is absent in F1
cells in tissue culture-maintained cells. The surface glyco
proteins of F1 and F10 cells were studied with the use of
short-term-cultured in vivo tumor cells to see whether the
difference in glycoprotein (M.W. 66,000) seen between
these variant lines in culture is seen in vivo. Such studies
showed a quantitative increase of at least 4 major surface
sialylglycoproteins (including the glycoprotein with a mo
lecular weight of 66,000) in F10 cells (s.c. tumors) relative
to F1 cells.

B16 melanoma variant lines both in vivo and in vitro show
4 nonspecifically labeling proteins. Nonspecifically labeled
proteins were detected in other lymphoid (23) and human
leukemic lymphocytes (2). The nature of the reducible
group(s) responsible for this nonspecific labeling reaction
is not known, but it could be due to the reduction of Schiffs
base formed between pyridoxal phosphate and an amino
group of the neighboring enzyme protein. Enzymes of this
nature, such as ornithine decarboxylase, are known to be
activated in proliferating (malignant) cells (38).

The differences in the galactose oxidase-labeling glyco
protein profile between F1 and F10 cells indicate that there
are architectural or oligosaccharide sequence differences
between these variant lines. This conclusion is strengthened
by the fact that there was no detectable difference between
these cell lines in glycoproteins detected by metabolic
labeling with fucose or glucosamine or chemical staining.
Studies done by Warren ef al. (57) suggest that there is no
difference between F1 and F10 cells in the size of glycopep
tides isolated from pronase digests. One may ask the
question of whether the differences in the cell surface-
exposed sialylglycoproteins may account for the observed
increase of lung implantation (17-19) in F10 cells as seen
by Fidler.

In this investigation the well-documented high-lung-im
planting F10 cells (15-17) show increased NANase and
galactose oxidase-accessible neutral GSL, gangliosides,
and glycoproteins when compared with low-lung-implant
ing F1 cells. Also, the studies described here present
evidence that highly tumorigenic and metastatic mouse
melanoma cells are enriched with highly sialylated glyco
proteins. These results are consistent with the findings of
Sinha and Goldenberg (48) and Weiss ef al. (60), who
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showed that NANase treatment of tumor cells decreases
lung implantation following i.v. administration of treated
cells. An indirect experiment by Hagmer (28), in contrast
with the previously mentioned findings (48, 60), suggests
that decreasing the exposure of cell surface sialic acid and
thereby decreasing the negative charge on the cell may
enhance experimental pulmonary mÃ©tastases.Therefore
the cell surface sialyl components may enhance or retard
pulmonary mÃ©tastasesin different systems. The reasons for
these differences must be further explored.

Therefore, the study gives additional support to the pre
viously proposed role of sialic acid in lung implantation (48,
60) and tumorigenicity (59). Further it is possible that the
increased surface sialic acid-containing components seen
in higher-lung-implanting melanoma F10 cells may de
crease tumor cell immunogenicity (59) and hence decrease
susceptibility to killing by macrophages (16) as well as
intervene in the phenomenon of clumping with sensitized
lymphocytes (16, 19).
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Fig. 1. Fluorography pattern of sodium dodecyl sulfate:polyacrylamide gel electrophoresis of 3H-labeled tissue culture-maintained and short-term-
cultured cells derived from s.c. tumors of B16 melanoma variant lines after galactose oxidase treatment. A, tissue culture-maintained cells: Channel 1. F1
cells treated with galactose oxidase only; Channel 2, F1 cells after NANase and galactose oxidase treatment; Channel 3. F10 cells with galactose oxidase
only; Channel 4, F10 cells after NANase and galactose oxidase treatment. B, short-term-cultured s.c. tumor cells: Channel 1, F1 cells with galactose oxidase
only; Channel 2, F1 cells after NANase and galactose oxidase treatment; Channel 3, F10 cells with galactose oxidase only; Channel 4, F10 cells after NANase
and galactose oxidase treatment. Apparent molecular weights of major bands are shown in thousands. Apparent molecular weights indicated inside the box
are nonspecifically labeled (see "Discussion"). L, lipid band; arrow, components relatively increased in F10 cells; BSA, bovine serum albumin; OVA,

ovalbumin.
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Fig. 2. Fluorography pattern of sodium dodecyl sulfate polyacrylamide
gel electrophoresis of ['HJfucose-labeled cultured B16 melanoma variant
lines. Channel 1, F1 cells; Channel 2, F10 cells. BSA, bovine serum albumin;
OVA. ovalbumin; /_. lipid band.

Fig. 3. Fluorography pattern of sodium dodecyl sulfateipolyacrylamide
gel electrophoresis of [JH]glucosamme-labeled cultured melanoma variant
lines with and without NANasetreatment. Channel 1, F1 cell control ;Channel
2. F1 cell after NANase treatment; Channel 3, F10 cell control; Channel 4,
F10 cell after NANase treatment; double-headed arrow, bands that change in
intensity after NANase treatment; BSA. bovine serum albumin; OVA. ovalbu
min.
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Fig. 4. A, Thin-layer chromatogram of the neutral GSL of F10 and F1

melanoma variant lines in culture and in vivo. Neutral GSL of (Channel 1)
cultured F10 cells, (Channel 2) cultured F1 cells, (Channel 3) i.p.-grown
F10 tumor cells, (Channel 4) i.p.-grown F1 tumor cells, (Channel 5) s.c.-
grown F10 tumor cells, (Channel 6) s.c.-grown F1 tumor cells. B. thin-
layer chromatogram of the gangliosides of F10 and F1 melanoma
variant lines in culture and in vivo. Gangliosides of (Channel 1) cultured
F10 cells, (Channel 2) cultured F1 cells, (Channel 3) s.c.-grown
F10 cells, (Channel 4) s.c.-grown F1 cells, (Channel 5) i.p.-grown
F10 cells, (Channel 6) i.p.-grown F1 cells. The system of nomenclature
is that of Svennerholm (34). Bands shown by dofs. non-resorcinol-posi-
tive yellow spots that are not gangliosides.
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