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Fig. 2. Transfer of Lucifer yellow in F-RAF cells before (a. A) and after incubation in the presence of ACO (57 nM) for 4 h (c, d); a and c. phase-contrast
micrographs; b and d, fluorescence micrographs of the same area 2 min after injection of Lucifer yellow. â€¢¿�,microinjected cell.

blocked (Fig. 3). The same results were obtained after 2 weeks
of cocultivating transformed 208F cells and REF. Clonal
growth of transformed cells, as measured by average size and
number of colonies after 2 weeks of cultivation, was reduced by
maximally 10% in the presence of 57 ^M ACO.

Cocultivation experiments of oncogene-transformed cells and
normal cells were performed in the presence of 57 n\i ACO.
Medium containing the inhibitor was renewed every 2 days to
avoid a decrease in concentration of biologically active ACO.
As shown in Table 3 the presence of the ACO did not signifi
cantly alter the inhibitory effect of normal cells (REF or 208F
cells) on the clonal growth of onocogene-transformed 208F
cells. These results appear to be at variance with the hypothesis
that gap-junctional transfer of metabolites is required for the
inhibitory effect of normal cells on transformed cells. Inhibition
of gap-junctional communication by 18Â«-glycyrrhetinic acid
was detected in cultured human fibroblasts by an assay of
metabolic cooperation assay using the transfer of argininosuc-
cinate between cells as a measure of junctional communication
(31). Since Lucifer yellow (M, 457) has a molecular weight
similar to that of argininosuccinate (M, 425) we wanted to
determine whether the gap junctional transfer of ions is also
inhibited by ACO. Thus electrical coupling between cells was
measured in the presence and absence of ACO.

Table 4 shows that in the presence of 57 pM ACO, a concen
tration that totally inhibits Lucifer yellow transfer between
cultured rat fibroblasts, ionic coupling could still be detected in
all cells assayed. The extent of ionic coupling was diminished
in the presence of ACO, however (not shown in Table 4), and
the input resistance of the cell increased within seconds after
contact of the inhibitor with the cells.

Effect of Conditioned Medium on Focal Growth of Oncogene-
transformed 208F Cells. Could the growth inhibition of trans
formed rat cells by normal rat fibroblasts be due to other types
of intercellular communication not mediated by gap junctions?
In Table 5 we compared the effects of culture media conditioned
by REF or 208F cells on the proliferation of oncogene-trans
formed cells.

Cultivation of transformed cells in REF-conditioned medium
resulted in a slight increase of cloning efficiencies. The addi
tional appearance of mainly small clones is responsible for the
observed slight decrease of average colony size of transformed
cells. In contrast, 208F conditioned medium caused strong
growth inhibition (Table 5). Conditioned medium was harvested
after cultivation of normal cells in serum free medium for 48 h
in order to arrest proliferation of the cells and to minimize
consumption of medium components during this time. Culti
vation of transformed cells in conditioned medium was carried
out after addition of fresh serum, in analogy to control cultures
growing in standard medium. Conditioned medium harvested
after 48 h from normal cells growing in serum containing
standard medium showed an inhibitory effect that was at least
as high as observed with serum-free conditioned medium. The
results suggest that the observed inhibitory effects of cocultured
208F cells on oncogene-transformed cells are at least in part
mediated by 208F-conditioned medium. Clonal growth of trans
formed 208F cells was not inhibited in medium supplemented
with purified plasma membranes of REF or 208F cells (100 ^g
of protein/ml of medium; data not shown).

DISCUSSION

The data presented in this paper confirm that the prolifera
tion of oncogene-transformed rat 208F fibroblasts can be inhib-
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Fig. 3. Transfer of Lucifer yellow between F-RAF and 208F cells before (a, b) and after incubation in the presence of ACO (57 JIM)for 4 h (c, d); a and c, phase-
contrast micrographs; b and it. fluorescence micrographs of the same area 2 min after injection of Lucifer yellow. >, microinjected cell.

Table 3 Inhibitory effect ofcocultured REF and 208F cells on the growth of
oncogene-transformed 208F cells in the presence of ACO (57 Â¡UM)

% of growth inhibition(R)aCocultures

with
Oncogene-transformed REF cells

208F cells No ACÃ“+ACOF-RAS

F-RAF
F-FMS
F-FGR
FSC-2397287

81
9244

87
67

69100inCocultures

with
208F cells

No ACÃ“+ACO100

100
100
10010088

100
100
100100

' R, colony size (cf. Table 2).

transformed and normal cells does not correlate with the extent
of growth inhibition caused by cocultured normal cells. Thus
we conclude that the inhibitory effects of normal cells on
transformed cells (5-10) may not be mediated in all cell systems
only by gap-junctional communication.

The mechanisms by which oncoproteins in transformed cells
are able to cause a suppressive effect on junctional communi
cation to normal cells are not known. Since gene products of
all onocogenes tested appear to be part of the signal-transducing

ited by confluent normal cells. Cocultured immortal 208F cells
cause an even stronger inhibition of clonal growth than REF
cells. Compared to homologous communication we have ob
served a decrease of heterologous gap-junctional communica
tion between transformed 208F cells and REF or 208F cells as
measured by Lucifer yellow transfer. The gap-junctional com
munication between c-Ha-ras- or v-ra/-transformed 208F cells
and cocultured 208F cells was found to be very similar com
pared to homologous communication among the transformed
cells. This is in contrast to previous results that there is a
complete block of communication between v-Ha-ras (8)-, acti
vated c-Ha-ras (14)- or v-src (S)-transformed mouse 3T3 cells
and cocultured nontransformed 3T3 cells. For none of the
transformed rat fibroblasts studied in this paper a total loss of
heterologous communication to cocultured normal cells was
found. The extent of decreased heterologous communication
seems to depend on the transforming oncogene of the trans
formed partner. Heterologous communication in this system of
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Table 4 Ionic coupling in homologous and heterologous cultures
ACO (57 UM)was added 4-5.5 h before measurements.

Cell lines No ACO +ACO

208F/208F
F-RAF/F-RAF
F-FGR/F-FGR
208F/F-RAF
208 F/F-FGR

12/12
6/6

13/13
It

6/6

5/5Â°
5/5
6/6
6/6
5/6

1Number of ionically coupled cells/number of measurements.
' Not determined because of 100% dye coupling.

Table 5 Influence of REF- and 208F-conditioned medium on the growth of
oncogene-transformed 208F cells

Oncogene-
transformed

cellsF-RAS

F-RAF
F-FMS
F-FGR
FSC-2%

of growthinhibition (A)Â°causedbyREF-conditioned

208F-conditioned
mediummedium19(0)

21(0)
10(0)
8(0)
0(0)100(100)

66 (83)
67 (88)
79 (78)
38 (52)

' R. colony size (colony number) (cf. Table 2).
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pathway associated with phospholipid turnover (32-35), trans
formation-induced elevated levels of 1,2-diacylglycerol or ino-
sitol-l,4,5-triphosphate or both might mediate the decrease of
gap-junctional communication reported here (36, 37). Further
more it has been described for normal human epidermal kera-
tinocytes that epidermal growth factor and transforming growth
factor ÃŸinhibit gap-junctional communication (38). Transfor
mation-induced alterations of growth factor production or se
cretion could be responsible for the decreased communication
(39). These interpretations require that heterologous commu
nication should be more sensitive to these signals than homol
ogous communication.

Alternatively the decrease of heterologous communication
between transformed and normal cells could be caused by
transformation-associated cell surface alterations that prevent
cell-cell recognition between normal and transformed cells (40).
Such changes include variations of the extracellular matrix (41 ),
cytoskeleton (42), surface proteoglycans (43), or membrane
fluidity (44). These changes could preferentially affect heterol
ogous communication. Our observation that heterologous com
munication between normal and transformed rat fibroblasts
appears to be dependent on the type of transforming oncogene
supports the latter possibility.

In our experiments complete inhibition of metabolic coop
eration between normal and transformed rat fibroblasts by the
glycyrrhetinic acid derivative ACO did not extend similarly to
electrical coupling between these cells. Thus we cannot rule out
that even the strongly inhibited metabolic cooperation or ion
transfer between cells might still be sufficient to mediate the
growth inhibition inflicted upon transformed fibroblasts by
surrounding normal cells. It is unlikely, however, that regula
tory compounds with molecular weights around 400 or larger
pass through gap junctions in this process, since transfer of
Lucifer yellow is blocked completely by ACO. ACO may de
crease the opening time of gap junction channels to such a large
extent that transfer of Lucifer yellow is no longer detectable
although electrical coupling can still be demonstrated.

In addition to gap-junctional communication other forms of
interaction among cells may contribute to the observed growth
inhibition, for example humoral factors and cell-cell interac
tions. We have observed that conditioned medium of 208F cells
causes decreased clonal growth of transformed 208F cells. Thus
stable, secreted growth inhibitor(s) may be involved. In contrast
conditioned medium of REF shows no effect. For human fibro
blasts (45), mouse embryo fibroblasts (46), and 3T3 fibroblasts
(47) secreted growth inhibitors have been described. Since trans
formed 208F cells are inhibited by glutaraldehyde-fixed 208F
and REF cells to the same extent (about 80%, data not shown)
we suppose that growth inhibition by 208F-conditioned me
dium may enhance an inhibitory effect caused by components
of fibroblast membranes. It has been reported (48) that the
growth of human diploid fibroblasts is inhibited by a membrane-
bound glycoprotein isolated from contact-inhibited cells. Fur
thermore membrane-anchored precursors of transforming
growth factor a are able to react with epidermal growth factor
receptors on adjacent cells thereby transmitting a growth-reg
ulatory signal (49). This could also be the case with negative
growth factors. Until now purified REF and 208F membranes
did not inhibit growth of transformed 208F cells. We suppose
that the potentially effective membrane component has not
remained intact during the preparation procedure and the co-

cultivation assay.
The cell system presented here appears to be very powerful

for dissecting the mechanism(s) by which adjacent normal cells
can suppress proliferation of transformed cells.
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