Differential sex-dependent susceptibility to diastolic dysfunction and arrhythmia in cardiomyocytes from obese diabetic HFpEF model

Short title: Sex-differences in diabetic obese HFpEF model

Juliana Mira Hernandez,1,3,* Erin Y. Shen,1,* Christopher Y. Ko,1 Zaynab Hourani,2 Emily R. Spencer,1 Daria Smoliarchuk,1 Julie Bossuyt,1 Henk Granzier,2 Donald M. Bers,1 Bence Hegyi1

1Department of Pharmacology, University of California, Davis, CA, USA
2Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
3Research Group Biogenesis, Faculty of Agricultural Sciences, Veterinary Medicine, University of Antioquia, Medellin-Colombia

*equal contribution

Category: Original Article

Total word count: 8993

Correspondence:
Hegyi Bence, MD, PhD
Department of Pharmacology
University of California, Davis
451 Health Sciences Drive
Davis, CA 95616, USA
Phone: 530-752-9962
E-mail: bhegyi@ucdavis.edu

AND

Donald M. Bers, PhD
Department of Pharmacology
University of California, Davis
451 Health Sciences Drive
Davis, CA 95616, USA
Phone: 530-752-6517
Email: dmbers@ucdavis.edu

© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Abstract

Aim: Sex-differences in heart failure with preserved ejection fraction (HFpEF) are important, but key mechanisms involved are incompletely understood. While animal models can inform about sex-dependent cellular and molecular changes, many previous preclinical HFpEF models have failed to recapitulate sex-dependent characteristics of human HFpEF. We tested for sex-differences in HFpEF using a two-hit mouse model (leptin receptor-deficient db/db mice plus aldosterone infusion for 4 weeks; db/db+Aldo).

Methods and Results: We performed echocardiography, electrophysiology, intracellular Ca\(^{2+}\) imaging, and protein analysis. Female HFpEF mice exhibited more severe diastolic dysfunction in line with increased titin N2B isoform expression and PEVK element phosphorylation, and reduced troponin-I phosphorylation. Female HFpEF mice had lower BNP levels than males despite similar comorbidity burden (obesity, diabetes) and cardiac hypertrophy in both sexes. Male HFpEF mice were more susceptible to cardiac alternans. Male HFpEF cardiomyocytes (versus female) exhibited higher diastolic [Ca\(^{2+}\)], slower Ca\(^{2+}\) transient decay, reduced L-type Ca\(^{2+}\) current, more pronounced enhancement of the late Na\(^{+}\) current, and increased short-term variability of action potential duration (APD). However, male and female HFpEF myocytes showed similar downregulation of inward rectifier and transient outward K\(^{+}\) currents, APD prolongation, and frequency of delayed afterdepolarizations. Inhibition of Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII) reversed all pathological APD changes in HFpEF in both sexes, and empagliflozin pretreatment mimicked these effects of CaMKII inhibition. Vericiguat had only slight benefits, and these effects were larger in HFpEF females.

Conclusion: We conclude that the db/db+ Aldo preclinical HFpEF murine model recapitulates key sex-specific mechanisms in HFpEF and provides mechanistic insights into impaired excitation-contraction coupling and sex-dependent differential arrhythmia susceptibility in HFpEF with potential therapeutic implications. In male HFpEF myocytes, altered Ca\(^{2+}\) handling and electrophysiology aligned with diastolic dysfunction and arrhythmias, while worse diastolic dysfunction in females may depend more on altered myofilaments properties.

Key words: HFpEF, Sex-differences, Arrhythmia, Diastolic dysfunction, CaMKII

Translational perspective:

Sex-differences in susceptibility to diastolic dysfunction and arrhythmias have been observed in HFpEF patients but mechanisms are incompletely understood. Here we show that obese diabetic HFpEF mice recapitulate these key sex-dependent differences and exhibit differential ionic and myofilament remodelling between sexes. Our results could (1) improve the mechanistic understanding of cardiomyocyte excitation-contraction coupling contributing to HFpEF between sexes, (2) indicate key sex-different cardiomyocyte proarrhythmic mechanisms, and (3) suggest a key role for CaMKII inhibition and empagliflozin in attenuating cellular proarrhythmia in HFpEF.

1. Introduction

Sex-differences in cardiovascular diseases are increasingly recognized, yet females are underrepresented in clinical trials, and mechanisms remain incompletely understood. Premenopausal women have lower risk of coronary artery disease (CAD) and reduced susceptibility to ischemic heart injury. The female heart is also relatively protected against heart failure (HFrEF), and this protection wanes post-menopause. In contrast to CAD and HFrEF, heart failure with preserved ejection fraction (HFpEF) is more prevalent in both pre-menopausal and post-menopausal women. This might be due to the common extracardiac comorbidities that markedly increase the risk of developing HFpEF in women. Hypertension increases HF risk by 3-fold in women compared with 2-fold in men, and diabetes mellitus (DM) increases HF risk by 5-fold in women compared with 2.4-fold in men. The disease prognosis and diastolic dysfunction in HFpEF have also been reported worse in females. In contrast to higher susceptibility of female patients for contractile dysfunction, cardiac arrhythmia and sudden cardiac death (SCD) might be more frequent in male patients with HFpEF. SCD incidence was 2.1-fold higher in male versus female patients with HFpEF in the Treatment of Preserved
Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial. However, exact arrhythmia risk and mechanisms in HfPfE remain unclear. Animal models can provide important mechanistic insights into sex-dependent disease mechanisms, however, female animals are underutilized in preclinical cardiovascular research. Several mouse models that exhibit aspects of HfPfE have been previously used; however, many models fall short of recapitulating the complex, multiorgan HfPfE phenotype seen in human patients. Recently, two-(or multi)-hit models have emerged, combining metabolic and hemodynamic stresses and showed multiple characteristics of human HfPfE. Among these models, a mouse model using high-fat diet (HFD) and No-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthases, quickly became popular allowing translational investigations in HfPfE. However, female sex is protective against developing HfPfE in the HFD+L-NAME treated mice, which contrasts with clinical observations in human HfPfE. Because HfPfE represents a diverse group of patients, multiple models with different underlying pathophysiology may be required to better understand HfPfE. Recently, we established another two-hit model of HfPfE that synergistically combines the leptin receptor-deficient db/db mice with 4-wk continuous aldosterone (Aldo) infusion (db/db+Aldo), which mimics a more diabetic subgroup in HfPfE. Importantly, diastolic dysfunction is more prominent in female patients with diabetes and HfPfE and in female db/db mice, and mineralocorticoid receptor inhibition may provide more benefit in female patients with HfPfE. Thus, we hypothesized that the db/db+Aldo mice may better recapitulate sex-differences in human HfPfE, with worse diastolic dysfunction in females. Additionally, we aimed to characterize sex-dependent changes in intracellular Ca2+ handling and electrophysiology in HfPfE cardiomyocytes, because sex-specific proarrhythmia mechanisms in HfPfE are largely unknown. We also focused on select myofilament proteins, titin and troponin-I. We then tested for sex-specific cardiomyocyte electrophysiological responses to sodium-glucose cotransporter-2 (SGLT2) inhibitor empagliflozin (an established drug in HfPfE), soluble guanylate cyclase (sGC) stimulator vericiguat (a drug with ample preclinical data but that failed in HfPfE clinical trials), and inhibition of Ca2+/calmodulin-dependent kinase II (CaMKII, a key signalling molecule regulating cardiomycyte excitation-contraction coupling and multiple ion channels) using autacamide-2-related inhibitory peptide (AIP) to advance clinical translation.

2. Methods
All animal handling and laboratory procedures were in accordance with the approved protocols of the Institutional Animal Care and Use Committee at University of California, Davis (US National Institutes of Health, 8th edition, 2011). An expanded Methods section is available in the Supplementary material online.

2.1 Animal Procedures
Adult (10-wk-old) Leprdb/db (strain #000697) and corresponding wild-type (WT) mice on C57BL/6J background were obtained from The Jackson Laboratory. Mice were kept at standard temperature, humidity, and lighting. Food (Teklad, 2018) and drinking water were provided ad libitum. Osmotic minipumps (Alzet, 2004) were implanted subcutaneously in 12-wk-old mice that delivered a continuous infusion of either d-aldosterone (0.3 μg/h) or vehicle (saline with 5% ethanol) for 4 weeks (study protocol is shown in Figure 1A). We used block randomization with a block size of 4 animals (for each genotype, treatment, and sex), with 24 control (WT+Vehicle) and 24 two-hit (db/db+Aldo) mice included (allowing for detailed isolated myocyte studies); and for the one-hit controls, we used 8 WT+Aldo and 8 db/db+Vehicle mice. For proper allocation concealment, animals were recruited blinded based on sequential ear tag numbers randomly assigned by the animal housing staff. Each treatment group included equal numbers of male and female animals. Animals were injected with heparin (400 UI/kg) and were subjected to general anaesthesia by 2-5% isoflurane inhalation in 100% oxygen throughout the terminal surgical procedure. All animals were euthanized by surgical excision of the heart while in deep anaesthesia. Enzymatic isolation of cardiomyocytes was performed as previously described.
2.2 Blood Glucose and BNP Measurements
Blood glucose levels were measured in blood samples collected from the middle tail vein using OneTouch UltraMini blood glucose monitoring system and test strips (LifeScan). B-type natriuretic peptide (BNP) levels were measured in blood plasma by ELISA (RayBiotech, EIAM-BNP-1).

2.3 Echocardiography
Transthoracic echocardiography was performed in anesthetized (isoflurane, 0.5-3%) animals. M-mode and Doppler images were acquired using a Vevo 2100 echocardiography system (FUJIFILM VisualSonics) equipped with a 40 MHz transducer.

2.4 Protein analysis
Gel electrophoresis and immunoblotting were performed to determine changes in titin isoform expression and phosphorylation, troponin-I phosphorylation, and periostin expression.

2.5 Myocyte Ca\(^{2+}\) Imaging and Electrophysiology
Intracellular Ca\(^{2+}\) signals were measured using confocal microscopy in freshly isolated ventricular cardiomyocytes loaded with Fluo-4 AM at 21-22°C. Action potentials (APs) and ionic currents were recorded in isolated ventricular cardiomyocytes via patch-clamp technique at 37°C.

2.6 Statistics
Data are presented as Mean±SEM. Normality of the data and the equality of group variance were assessed by Shapiro-Wilk and Brown-Forsythe tests, respectively. Statistical significance of differences was determined using two-way ANOVA followed by appropriate post-hoc tests in pairwise comparisons. Hierarchical statistical analyses (nested tests) to account for intersubject variability and non-independent sampling (as multiple cells may come from one animal) were performed in cellular experiments. GraphPad Prism 10 was used for data analysis. \(P<0.05\) was considered statistically significant.

3. Results
3.1 Sex-differences in multiorgan function for HFpEF induced by diabetes and excess aldosterone
First, we compared morphometric and metabolic parameters (Figure 1) between male and female mice in the \(db/db+\)Aldo two-hit model of HFpEF versus vehicle-treated WT controls (WT+vehicle), and in the one-hit disease models (\(db/db\) or aldosterone infusion alone, Figure S1). All \(db/db+\)Aldo mice showed marked obesity, hyperglycaemia, cardiac hypertrophy, pulmonary congestion, and elevated plasma BNP levels (Figure 1B and 1C), all similar to our prior work on this HFpEF model.\(^{23}\) Body weights of female \(db/db+\)Aldo mice were similar to the obese males, and the female \(db/db+\)Aldo mice had a tendency for higher blood glucose levels, especially later during aldosterone infusion (Figure 1B). Cardiac hypertrophy and pulmonary oedema were not different in female and male \(db/db+\)Aldo mice. Note that the heart and body weights were smaller in control female mice than in males, making the HFpEF-induced relative increases larger in females. Importantly, female \(db/db+\)Aldo mice had significantly lower plasma BNP levels (Figure 1C), indicating a diminished BNP upregulation in HFpEF females (\(P=0.007\) for interaction between sex and HFpEF in two-way ANOVA test). In vehicle-treated \(db/db\) mice (\(db/db+\)Vehicle) or aldosterone-treated WT mice (WT+Aldo), no significant increase in cardiac hypertrophy, pulmonary oedema, or BNP levels were found, and no sex-difference therein was observed (Figure S1) indicating that HFpEF develops via the synergistic action between \(db/db\) and aldosterone treatment.

3.2 Marked diastolic dysfunction, especially in female HFpEF
Echocardiographic evaluation showed preserved ejection fraction (EF) in all treatment groups (Figure 2 and S2). Concentric cardiac hypertrophy was evident from LV wall thickening and increase in LV remodelling index (LVRI, a ratio between LV mass and LV internal diameter) in both male and female \(db/db+\)Aldo mice (Figure 2B). However, the diastolic dysfunction (Figure 2C), characterized by marked increases in E/A and E/e’ echo Doppler indexes, was more pronounced in female \(db/db+\)Aldo mice than in males (E/e’, \(P=3.8\times10^{-6}\) for interaction between sex and HFpEF). Left atrial enlargement (Figure 2C) was also more pronounced in female \(db/db+\)Aldo mice (\(P=0.008\) for interaction between sex and HFpEF).
In the one-hit versions of this heart disease model (db/db+Vehicle and WT+Aldo), no significant sex-difference in any echocardiographic parameters was found (Figure S2). These functional characteristics demonstrate that the female sex is associated with worse diastolic dysfunction in the db/db+Aldo HFpEF mouse model, similar to human HFpEF.

3.3 Diastolic Ca²⁺ handling impairment, especially in male HFpEF

Impaired Ca²⁺ handling contributes to contractile dysfunction and arrhythmias in HFpEF, however, little is known about Ca²⁺ handling impairments in HFpEF. Thus, we performed Ca²⁺ imaging in isolated ventricular myocytes loaded with the fluorescent intracellular Ca²⁺ indicator, Fluo-4 AM (Figure 3A). The amplitude of the intracellular [Ca²⁺] transient (CaT) at 1 Hz pacing was unchanged in both male and female db/db+Aldo cardiomyocytes (Figure 3B) consistent with the preserved systolic function on echocardiography (Figure 2B). However, the diastolic [Ca²⁺] in paced cells, quantified as the ratio of minimum F between consecutive beats and the resting F₀, was increased only in male but not female db/db+Aldo, in line with prolonged CaT decay τ in male db/db+Aldo (Figure 3C). At 2 Hz pacing, HFpEF myocytes showed similar frequency-dependent acceleration of CaT decay as healthy controls; however, male db/db+Aldo myocytes still showed prolonged CaT decay τ with a more pronounced increase in diastolic [Ca²⁺] (Figure S3A). The sarcoplasmic reticulum (SR) Ca²⁺ load (Figure 3C) and the Ca²⁺ spark rate (Figure S3B) were unchanged in both male and female db/db+Aldo myocytes. These data indicate that impaired Ca²⁺ handling (slower SR Ca²⁺ reuptake but unchanged SR Ca²⁺ leak) may contribute to diastolic dysfunction, but particularly in HFpEF males.

3.4 Myofilament alterations are enhanced in female HFpEF

Molecular determinants of diastolic dysfunction have been further tested for select myofilament alterations in HFpEF. Isoform expression analysis of the giant elastic protein titin revealed a slight increase of the shorter and stiffer N2B isoform relative to total titin in female but not in male db/db+Aldo ventricles (Figure 4A). Posttranslational modifications, including phosphorylation of titin in the PEVK (named after its enrichment in proline, glutamic acid, valine, and lysine) spring element, can affect myocyte stiffness. Phosphorylation of the key PEVK serine 170 site (pS170, corresponding to S12022 in full-length human titin, target for protein kinase C and CaMKII) was significantly increased in female but not in male db/db+Aldo ventricles (Figure 4B). Troponin-I phosphorylation at serine 22/23 (pTnI) was significantly increased in db/db+Aldo males, indicating desensitization of myofilament Ca²⁺ responsiveness. However, there was a trend for reduced TnI phosphorylation in db/db+Aldo females, which could increase myofilament Ca²⁺ sensitivity (Figure 4C), resulting in elevated force as [Ca²⁺] declines during diastole. Periostin, an activated fibroblast marker and key regulator, showed a trend toward higher expression in female db/db+Aldo ventricles (Figure S4). These data indicate that changes in contractile filaments and tissue structure may be the dominant mechanisms for the greater relaxation deficit in HFpEF females.

3.5 Arrhythmogenic action potentials in male HFpEF

Contractile dysfunction and Ca²⁺ handling impairments are associated with alterations in cardiac APs that increase the risk of cardiac arrhythmias. Thus, we measured APs in isolated ventricular myocytes (Figure 5A). The AP durations at 20, 50, 75, and 90% repolarization (APD₂₀, APD₅₀, APD₇₅, and APD₉₀) were calculated to analyse repolarization dynamics. The early AP repolarization (APD₂₀ and APD₅₀) was slightly prolonged only in male db/db+Aldo; however, APD₇₅ and APD₉₀ were both markedly prolonged in db/db+Aldo myocytes, similarly both in males and females (Figure 5B and S5). The resting membrane potential and maximal upstroke velocity showed trends for a slight reduction in db/db+Aldo (Figure S5). The short-term variability of APD₉₀ (STV) was significantly increased in db/db+Aldo (Figure 5C) with a larger increase in males (P = 0.025 for interaction between sex and HFpEF, Figure 5D). Moreover, db/db+Aldo myocytes also showed APD₉₀ alternans at rapid pacing frequencies (Figure 5E). Interestingly, male db/db+Aldo myocytes exhibited larger amplitude of APD₉₀ alternans at matching APD₉₀ (and diastolic intervals) than females (Figure 5E and 5F), consistent with a dominant Ca²⁺-driven mechanism for alternans formation.
In line with the increased susceptibility for APD₀₀ alternans, we also observed contractile alternans in echocardiograms in awakening db/db+Aldo animals in vivo (at heart rates of ~600 beats/min) but not in any control animals (Figure S6). The magnitude of alternating changes in LV systolic and diastolic diameters in subsequent beats was significantly larger in male than in female db/db+Aldo animals (Figure S6). In ventricular myocytes, delayed afterdepolarizations (DADs) were also enhanced in db/db+Aldo following cessation of tachypacing; however, this increase was similar in males and females (Figure S7). These data are in line with the increased arrhythmia risk in HFP EF males. The prominent sex-dependent differences in cellular arrhythmia mechanisms in HFP EF were the increase in alternans susceptibility and larger STV in males, both favouring re-entry mechanisms in the heart.

3.6 Sex-differences in ionic current remodelling in HFP EF

We then performed voltage-clamp experiments to measure ionic currents that mediate APD alterations in HFP EF. The membrane capacitance was significantly increased in both male and female HFP EF myocytes (Figure 6A), indicating similar cardiomyocyte hypertrophy in both sexes and paralleling the observed overall cardiac hypertrophy (Figure 1C). Because the AP repolarization was impaired and remodelling in K⁺ channels has been implicated in HFP EF, we first measured repolarizing K⁺ currents. The inward rectifier K⁺ current (I钾) density (Figure 6A) was significantly reduced in db/db+Aldo, similarly in males and females, with reductions at both ~140 mV (inward I钾) and ~40 mV (outward I钾) which would enhance DAD amplitude. The net voltage-gated K⁺ current (I钾) was also markedly downregulated in both male and female db/db+Aldo myocytes (Figure 6B). To gain further insights, I钾 components were separated by biexponential fitting to the current decay under a long (4.5 s) depolarizing voltage pulse (Figure 6C). The transient outward K⁺ current (I钾) was downregulated in db/db+Aldo myocyte in both sexes. The slowly inactivating K⁺ current (I钾) was significantly reduced only in male db/db+Aldo myocytes. The sustained K⁺ current (I钾) measured at the end of the voltage pulse did not change in db/db+Aldo myocytes.

We then measured the major depolarizing currents during the AP, the L-type Ca²⁺ current (I钙) and late Na⁺ current (I钠). Interestingly, I钙 was downregulated in male db/db+Aldo myocytes and unchanged in females (Figure 6D). In contrast to I钙, tetrodotoxin-sensitive I钠 was markedly upregulated in db/db+Aldo (Figure 6E). This I钠 upregulation, however, was more pronounced in male db/db+Aldo (P=0.026 for interaction between sex and HFP EF). These data show differential sex-specific remodelling in ionic currents in HFP EF, which underlies APD changes and contributes to sex-dependent arrhythmia susceptibility more collectively in HFP EF males.

3.7 Empagliflozin and CaMKII-inhibition suppress arrhythmic APD changes in HFP EF

Sex-differences in therapeutic responses are incompletely understood and may be important in HFP EF. Cell pretreatment with the SGLT2 inhibitor empagliflozin fully reversed all arrhythmogenic APD changes (i.e., APD₀₀ prolongation, increased STV, APD-alternans and DADs) both in male and female db/db+Aldo myocytes (Figures 7 and S8). AIP, a selective CaMKII inhibitor, mimicked these effects and was similarly effective in reversing APD changes in both HFP EF males and females (Figures 7). Vericiguat, a stimulator of sGC that enhances protein kinase G (PKG) signalling, significantly attenuated APD₀₀ prolongation, reduced STV, and reduced DAD frequency in female db/db+Aldo myocytes (Figures 7 and S8). However, the effect size of vericiguat was smaller than that of empagliflozin and AIP in female db/db+Aldo myocytes (Figure 7). In contrast to females, in male db/db+Aldo myocytes, vericiguat failed to alter STV, APD-alternans and DADs, and only slightly attenuated APD₀₀ prolongation (Figures 7 and S8). Notably, none of these drugs influenced APD₀₀, STV, APD-alternans or DAD frequency in vehicle-treated WT controls (Figure S9). These data show that empagliflozin and AIP had marked effects on cardiomyocyte electrophysiology in HFP EF, and they provided similar benefits both in males and females, whereas vericiguat provided minor benefits on cardiomyocyte electrophysiology only in females.
4. Discussion

Here we report that the db/db+Aldo HFpEF murine model recapitulates key sex-differences seen in human HFpEF, including more severe diastolic dysfunction (Figure 2) and myofilament alterations (Figure 4) in females and higher arrhythmic susceptibility in males in the form of cardiac alternans (Figure 5 and S6), a beat-to-beat periodic alternation in electrical activity and contractile strength that is associated with high risk of ventricular fibrillation and SCD. These sex-differences occurred under similar comorbidity burden (obesity, diabetes), cardiac hypertrophy, atrial enlargement, and pulmonary congestion in HFpEF males and females (Figures 1 and 2). HFpEF cardiomyocytes showed marked APD prolongation, enhanced DADs, and increases STV and alternans at physiological pacing rates (Figure 5). APD alternans and STV had larger magnitudes in HFpEF males vs. females, despite similar APD prolongation (which by itself can increase alternans susceptibility and STV) in both sexes. This suggests impaired ECC and Ca2+-dependent feedback signals that could further augment APD alternans and STV. Indeed, male HFpEF cardiomyocytes exhibited higher diastolic [Ca2+]i, slower CaT decay, reduced I_Ca,L, and larger I_Na,L enhancement (Figures 3 and 6). However, downregulation of I_K1 and I_o were similar in HFpEF males and females (Figure 6). Myocyte pretreatment with the specific CaMKII inhibitor, AIP, fully reversed all arrhythmogenic APD changes in both sexes in HFpEF, indicating a pivotal role for CaMKII in HFpEF proarrhythmia (Figure 7). Importantly, these effects were mimicked by empagliflozin in both sexes in HFpEF, suggesting that empagliflozin could attenuate pathological CaMKII signalling (Figure 7). Vericiguat had only slight benefits, and these effects were larger in HFpEF females, in line with lower BNP levels that could attenuate sGC activation and PKG signalling in HFpEF females (Figure 7).

Since obesity and diabetes are among the frequent comorbidities in HFpEF, and mineralocorticoid receptor antagonism showed benefits, especially in obese female patients with HFpEF, we first proposed the db/db+Aldo model, in which the db/db phenotype mediated metabolic stress is combined with chronic aldosterone excess to synergistically promote HFpEF. In fact, diabetes and high aldosterone levels are associated with worse outcomes in patients with HFpEF. Aldosterone levels are increased in parallel with abnormalities of LV structure and geometry in patients with HFpEF, particularly in females. The leptin-receptor deficient C57BL/6J db/db mice exhibit not only severe hyperinsulinemia and type 2 diabetes but also hyperleptinemia. Indeed, the leptin-aldosterone-neprilysin axis has been implicated in HFpEF, and female sex is associated with higher levels of aldosterone, leptin, and neprilysin, and a decrease in the counterbalancing effects of natriuretic peptides. In line with these observations in humans, we found that female db/db+Aldo mice exhibited lower BNP levels (Figure 1) and more severe diastolic dysfunction (Figure 2). Important to note is that female homozygous db/db mice are infertile, exhibit markedly reduced oestrogen levels by 8 weeks of age and extensive ovarian follicular involution by 16 weeks of age. Thus, even though we used young adult (16-wk-old) db/db+Aldo mice, the hormonal status of these female mice could be a proxy of postmenopausal stage, which agrees with clinical observations that HFpEF is more predominant and characterized by more severe diastolic dysfunction in postmenopausal women.

Diastolic dysfunction is a core characteristic of HFpEF, although it is also frequently present in HFpEF, and several mechanisms have been implicated specific to cardiomyocytes (e.g., impairments of myofilaments, Ca2+ handling, energetics) and non-cardiomyocytes (e.g., inflammation, fibrosis, microvascular dysfunction). We found key myofilament alterations in female db/db+Aldo ventricles, including increased expression of N2B titin isoform, and increased phosphorylation of titin’s PEVK spring element at S170 site, which is target for both PKC and CaMKII, and both increase titin’s stiffness (contrasting PKA phosphorylation of titin, which reduces titin’s stiffness). Sex-differences in inflammation and fibrosis are well-established in HFpEF. More fibrosis has been shown in diabetic HFpEF hearts, and greater cardiac remodelling in female patients with diabetes and HFpEF and in female db/db mice. In line with this we found a trend for increased periostin expression in female db/db+Aldo hearts. Troponin-I S22/23 phosphorylation was reduced in db/db+Aldo female vs. male hearts, which increases myofilament Ca2+ sensitivity and could contribute to diastolic dysfunction.
Impairments in cardiac mitochondrial function also contribute to differential diastolic dysfunction between sexes.20 We have also previously reported a marked increase in vascular myogenic tone in \(db/db\)+Aldo mice, that could contribute to hypertension, highlighting a critical vascular derangement in HFpEF.23 Nonetheless, the exact contribution of other cell types in the heart to diastolic dysfunction requires further investigation.45

Diastolic Ca2+ handling impairments may also be involved in diastolic dysfunction in HFpEF.48 Reduced Ca2+ removal rate and reduced expression of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) were observed only in diabetic Zucker fatty and spontaneously hypertensive (ZSF1) rats but not in Dahl salt-sensitive (DSS) rats, suggesting that this could be specific to diabetic HFpEF patients.49 In line with this, we have previously reported that diastolic [Ca2+] was increased and that CaT decay was prolonged in the diabetic \(db/db\)+Aldo mice.23 However, interestingly, we showed here that these CaT changes were only observed in male but not in female \(db/db\)+Aldo mice (Figure 3), while females had worse diastolic dysfunction (Figure 2) and myofilament alterations (Figure 4). These data suggest that Ca2+ handling impairments in male \(db/db\)+Aldo mice, and myofilament and extracellular matrix remodelling in female \(db/db\)+Aldo mice may importantly mediate the diastolic dysfunction.

Arrhythmias (both atrial and ventricular) frequently occur in patients with HFpEF, although until recently, HFpEF has not been considered an arrhythmogenic disease. Non-sustained ventricular tachycardia is common, present in 30-45\% patients with HFpEF, whereas atrial fibrillation occurs in roughly two-thirds of patients with HFpEF.12,30,51 Ventricular arrhythmias are more common in male patients with HFpEF,10 and their prevalence is even higher in the presence of diabetes.11 The heart-rate-corrected QT interval (QTc) in HFpEF is generally prolonged12 and associated with more severe diastolic dysfunction.52 Male DSS rats exhibited longer QT intervals and increased SCD due to ventricular arrhythmias compared to females.35 In ventricular cardiomyocytes, APD prolongation has previously been shown both in DSS rats37 and in HFD+L-NAME-treated mice,19 similar to our findings here in \(db/db\)+Aldo mice (Figure 5). In addition to QT prolongation, microvolt T-wave alternans was also a significant predictor of arrhythmic events in patients with chronic myocardial infarction and a preserved EF.54 Here we reported marked mechanical (Figure S6) and electrical (Figure 5) alternans in \(db/db\)+Aldo with greater alternans amplitudes seen in male HFpEF mice. Furthermore, DADs represent important arrhythmia triggers, and DADs were enhanced in \(db/db\)+Aldo mice (Figure S7) in line with previous data in DSS rats.37

Prolonged QT and APD indicate an impaired repolarization process of the myocardium. In HFpEF, an enhanced response of QT interval lengthening to the class III antiarrhythmic ibutilide was reported even in patients with a normal QT interval vs. age- and sex-matched control individuals without HF.35 This suggests blunted repolarization reserve mechanisms in HFpEF. Downregulation of voltage-gated K+ currents, including \(I_{Ko}\), \(I_{K,slow}\), and \(I_{K1}\) (by ~50\%, ~60\%, and ~55\%, respectively) has previously been reported in male DSS rats.37 Here, in \(db/db\)+Aldo mice, we found ~45-50\% reduction in \(I_{Ko}\) and ~30-35\% reduction in \(I_{K1}\), both without significant sex-difference (Figure 6). This extent of \(I_{Ko}\) downregulation in \(db/db\)+Aldo mice is similar to that reported previously in HFrEF cardiomyocytes, whereas \(I_{K1}\) downregulation was more pronounced in HFrEF (~50\% reduction in \(I_{K1}\)) than in HFpEF.56 \(I_{K,slow}\) was significantly reduced only in male \(db/db\)+Aldo myocytes. Changes in depolarizing currents can also affect APD and arrhythmias. \(I_{cal}\) was upregulated (by ~25\%) in parallel with increased CaT amplitude and SR Ca2+ load in male DSS rats,37,57 which may represent a compensatory response to mechanical afterload.58,59 In contrast to this, \(I_{cal}\) was reduced (by ~20\%) in male \(db/db\)+Aldo mice, and \(I_{cal}\) was unchanged in females (Figure 6). However, \(I_{nal}\) was markedly upregulated in \(db/db\)+Aldo mice (Figure 6), and larger \(I_{nal}\) enhancement was found in males (by ~115\%) compared to females (by ~85\%). Pathological \(I_{nal}\) upregulation has also been shown in human cardiomyocytes from patients with aortic stenosis and a HFpEF-like phenotype,60 and in the HFD+L-NAME HFpEF mice.19

Although we found minor Ca2+ handling impairments in \(db/db\)+Aldo (Figure 3), which was significant only in males, CaMKII inhibition had marked effects on APD and DADs in both sexes (Figure 7). This suggests that CaMKII is activated in HFpEF, but its activation may be promoted by posttranslational modifications (e.g., oxidation and O-GlcNAcylation) rather than simply canonical Ca2+/calmodulin...
binding. CaMKII activation has previously been shown in diabetic hyperglycaemia (via O-GlcNAcylation), where its electrophysiological effects were prevented in knock-in mice in which the key CaMKII O-GlcNAcylation site was ablated (S280A). CaMKII appears also to mediate adverse cardiac effects of aldosterone (via oxidation). Chronic CaMKII overactivation affects arrhythmogenicity and contributes to cardiac hypertrophic remodelling, fibrosis, and inflammation, and modulates the stiffness of the myocardium via phosphorylating titin. Thus, CaMKII signalling may play a key role, not only in HFrEF and diabetes, but also in HfPEF. Further studies are required to elucidate the exact role and regulation of CaMKII in HfPEF.

Empagliflozin also reversed all arrhythmogenic APD changes in both sexes (Figure 7 and S8). In line with these preclinical benefits, empagliflozin improved cardiovascular outcomes in HfPEF similarly in men and women. It was previously shown that empagliflozin fully reversed the pathological I_{Na,L} upregulation in both human and murine HfPEF cardiomyocytes. This effect of empagliflozin on I_{Na,L} was again similar to the CaMKII inhibitor AIP suggesting that empagliflozin may act via limiting CaMKII signaling. Empagliflozin reduced CaMKII autophosphorylation, and phosphorylation of RyR2 at serine 2814 (a CaMKII target site), and attenuated Ca sparks and waves in db/db and TAC mice and failing human cardiomyocytes. Interestingly, these empagliflozin effects required longer cell preincubations (30-min to 4-hr), and shorter empagliflozin treatment did not affect CaMKII activity and Ca\(^{2+}\) handling in HfPEF myocytes, nor inhibit I_{Na,L} in HfPEF myocytes. These data suggest that the target of empagliflozin in cardiomyocytes could be upstream of CaMKII. Empagliflozin’s clinical target, SGLT2, is not expressed in cardiomyocytes, but its beneficial effects in isolated myocytes have been attributed to reduction in ROS production, inhibition of Na\(^+\)/H\(^+\) exchanger and I_{Na,L}, however, details remain controversial. Nonetheless, Na\(^+\) and Ca\(^{2+}\) handling impairments are tightly connected forming a vicious cycle through an I_{Na,L}-ROS-CaMKII-leak RyR2 mediated feedback in HF, and empagliflozin may target one component of this vicious cycle, which calls for additional mechanistic investigations.

Vericiguat had minimal effects on HfPEF myocyte proarrhythmia, and these effects were only observed in female db/db+Aldo cardiomyocytes (Figure 7). Lower BNP levels in HfPEF females clinically and in our mouse model (Figure 1) could limit NO production and reduce activation of the sGC-cGMP-PKG signalling. Thus, vericiguat, a direct sGC stimulator, may be able to further activate PKG in females. The vericiguat-induced shortening of APD in female db/db+Aldo myocytes might be explained by a PKG-dependent phosphorylation of the L-type Ca\(^{2+}\) channel that reduces I_{Ca,L} amplitude. The ineffectiveness of vericiguat in db/db+Aldo males might be due to a “ceiling” effect, meaning that PKG might already be maximally activated, or alternatively, it is desensitized to cGMP. Nonetheless, vericiguat treatment in patients with HfPEF failed to improve quality of life in both sexes. However, neprilysin inhibition also stimulates sGC-cGMP-PKG signalling via augmentation of the natriuretic peptides, and sacubitril/valsartan, an angiotensin receptor/neprilysin inhibitor, reduced HF hospitalization only in female patients with HfPEF, which would be in line with an impaired BNP-NO-sGC-cGMP-PKG pathway in women.

In conclusion, here we provided evidence that the db/db+Aldo preclinical HfPEF murine model has large potential for clinical translation as it recapitulates fundamental sex-specific features in HfPEF, i.e., worse diastolic dysfunction in females but higher arrhythmia susceptibility in males. We also showed key sex-differences in myofilament proteins, Ca\(^{2+}\) handling, ionic currents, and proarrhythmic AP remodelling in HfPEF. We also tested for sex-specific antiarrhythmic responses to clinically used drugs (empagliflozin, vericiguat) and selective CaMKII inhibition. Future studies are required to further our mechanistic understanding of HfPEF cardiomyocyte signalling mechanisms, which are inherently complex, and here we only discussed the potential roles of CaMKII and PKG-dependent pathways in HfPEF cardiomyocyte proarrhythmia.

Limitations
Here we focused on sex-differences in cardiomyocyte excitation-contraction coupling mechanisms and electrophysiology in an obese diabetic HfPEF mouse model. Further investigations are required to identify the exact mechanisms of diastolic dysfunction, including more detailed myofilament studies, and...
assessing microtubule detyrosination, tissue level changes (fibrosis and extracellular matrix remodelling),
and the role of non-cardiomyocytes in HFP EF, which may reveal additional sex-differences in preclinical
HFP EF animals and human HFP EF. Future in vivo arrhythmia tests may inform about exact arrhythmia
risk, and in vivo chronic drug treatments may reveal potential reverse remodelling that attenuates
arrhythmogenicity and diastolic dysfunction in HFP EF.

Funding
This work was supported by grants from the National Institutes of Health P01-HL141084 (D.M.B.), R01-
HL142282 (D.M.B. and J.B.), and R35-HL144998 (H.G.); the American Heart Association
23CDA1051603 (B.H.); the Stanford Diabetes Research Center P30DK116074 (B.H. and D.M.B.), and
the Minciencias – Fulbright Colombia Scholarship (J.M.H.).

Data availability
The data underlying this article will be shared on reasonable request to the corresponding authors.

Acknowledgements
We thank Carolyn Sui, Anastasia Krajnovic, and Megan Ngim for their help in animal care, tissue
collection, and laboratory tasks.

Conflict of interest
None declared.

References
1. Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular
2. Lam CSP, Arnott C, Beale AL, Chandramouli C, Hilfiker-Kleiner D, Kaye DM, Ky B, Santema BT,
4. Jin X, Chandramouli C, Alococo B, Gong E, Lam CSP, Yan LL. Women’s Participation in
5. Beale AL, Meyer P, Marwick TH, Lam CSP, Kaye DM. Sex Differences in Cardiovascular
 Pathophysiology: Why Women Are Overrepresented in Heart Failure With Preserved Ejection
 Oeun B, Satō T, Komukai S, Tamaki S, Yano M, Hayashi T, Nakagawa A, Nakagawa Y,
 Yasumura Y, Yamada T, Sakata Y, Investigators PU-H. Sex Differences in Heart Failure With
 Leeuwis A, Hermkens D, Tocchetti CG, van der Velden J, Zacchigna S, Thum T. Reciprocal
 organ interactions during heart failure: a position paper from the ESC Working Group on
8. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to
 study. *Am J Cardiol* 1974;34:29-34.
 Anand IS, van Veldhuisen DJ, Zile MR, Lefkowitz MP, Solomon SD, Packer M, Petrie MC,
 Jhund PS, McMurray JJV. Investigator-reported ventricular arrhythmias and mortality in heart
 failure with mildly reduced or preserved ejection fraction. *Eur Heart J* 2023;44:668-677.
 SJ, Hegde SM, Desai AS, Lewis EF, Rouleau J, Pitt B, Pfeffer MA, Solomon SD. Sudden Death
in Heart Failure With Preserved Ejection Fraction: A Competing Risks Analysis From the TOPCAT Trial. JACC Heart Fail 2018;6:653-661.

Figure Legends

Figure 1. Sex differences in morphometric parameters in HFpEF mice.
A. Heart failure with preserved ejection fraction (HFpEF) study protocol and assessment of extracardiac morbidities, heart function, and cardiomyocyte excitation-contraction coupling and electrophysiology.
B. Sex-dependent changes in body weight and blood glucose levels over time in db/db mice with chronic aldosterone infusion (db/db+Aldo) vs. vehicle-treated wild-type control (WT+Vehicle). Two-way repeated measures ANOVA with Geisser–Greenhouse correction. C. Sex-dependent cardiac hypertrophy, pulmonary edema, and increased B-type natriuretic peptide (BNP) plasma levels in db/db+Aldo vs. WT+Vehicle (HW/TL, heart weight to tibial length ratio; WLW/DLW, wet lung weight to dry lung weight ratio). Two-way ANOVA followed by Šidák's multiple comparisons test. N=12 animals/experimental group except for BNP measurements where N=4.

Figure 2. More severe diastolic dysfunction in female HFpEF mice.
A. Left ventricular (LV) M-mode, flow and tissue Doppler echocardiographic images in male and female db/db mice with chronic aldosterone infusion (db/db+Aldo) vs. vehicle-treated wild-type control (WT+Vehicle), 4-weeks after minipump implantation. B. Preserved ejection fraction (EF), cardiac hypertrophy and increased LV remodelling index (LVRi, a ratio between LV mass and LV internal diameter) in both sexes in db/db+Aldo mice (LVPWd, LV end-diastolic posterior wall thickness; LVM, LV mass; LVIDd, LV internal diameter in diastole). C. More severe LV diastolic dysfunction and left atrial area (LAA) enlargement in female db/db+Aldo mice. (E/A, ratio between mitral E wave and A wave; E/e’, ratio between mitral E wave and e’ wave). Two-way ANOVA followed by Šidák’s multiple comparisons test. N=12 animals in each group except for LAA where N=8.

Figure 3. Sex-differences in intracellular Ca²⁺ handling in HFpEF cardiomyocytes.
A. Intracellular Ca²⁺ signals in db/db mice with chronic aldosterone infusion (db/db+Aldo) vs. vehicle-treated wild-type control (WT+Vehicle) cardiomyocytes paced at 1 Hz and during rapid caffeine application. B. Intracellular Ca²⁺ transient (CaT) parameters. Diastolic [Ca²⁺] is the ratio of minimum F between beats at 1 Hz pacing and the resting F₀. C. CaT decay tau and sarcoplasmic reticulum (SR) Ca²⁺ content (assessed by rapid local application of 10 mmol/L caffeine). N(cells)/N(animals) = 19/8 for WT+Vehicle male, 19/7 for WT+Vehicle female, 17/8 for db/db+Aldo male, and 19/7 for db/db+Aldo female. Hierarchical (nested) ANOVA followed by Šidák’s multiple comparisons test.

Figure 4. Sex-differences in myofilament alterations in HFpEF ventricles.
A. Titin isoform analysis in male (M) and female (F) db/db+Aldo HFpEF (HF) vs. vehicle-treated wild-type control (Ctrl) ventricular samples. Relative expression of the more compliant N2BA and the stiffer N2B titin isoform to total titin (TT) and myosin heavy chain (MHC) was assessed using gel electrophoresis. ANOVA followed by Šidák’s multiple comparisons test. B. Western blot data showing increased phosphorylation of serine 170 of titin’s PEVK domain normalized to titin Z1Z2 element (to assess total intact titin level) in db/db+Aldo females. Kruskal-Wallis ANOVA followed by Dunn’s multiple comparisons test. C. Troponin-I phosphorylation (pTnI) normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). ANOVA followed by Šidák’s multiple comparisons test. Three technical replicates (blots) were performed for each protein sample. N=4 animals in each group.

Figure 5. Sex-differences in arrhythmogenic action potentials in HFpEF cardiomyocytes.
A. Representative ventricular action potentials (APs) in male and female db/db mice with chronic aldosterone infusion (db/db+Aldo) vs. vehicle-treated wild-type control (WT+Vehicle) cardiomyocytes paced at 1 Hz (above). Tachypacing (10 Hz) induced AP duration (APD) alternans (S, short; L, long) in db/db+Aldo (inset, below). B. APD at 90% repolarization (APD₉₀). C. Fifty consecutive APD₉₀ values at 1 Hz pacing. D. Increased short-term variability (STV) of APD₉₀ in db/db+Aldo. N(cells)/N(animals) = 20/7 for WT+Vehicle male, 25/8 for WT+Vehicle female, 24/8 for db/db+Aldo male, and 29/8 for db/db+Aldo female (for both APD₉₀ and STV). E. Frequency-dependence of APD₉₀. F. Amplitude of APD₉₀ alternans at 10 Hz tachypacing. N(cells)/N(animals) = 13/7 for WT+Vehicle male, 16/8 for
WT+Vehicle female, 11/7 for db/db+Aldo male, and 18/8 for db/db+Aldo female. Hierarchical (nested) ANOVA followed by Šídák’s multiple comparisons test.

Figure 6. Sex-dependent remodelling in K⁺ currents, L-type Ca²⁺ current, and late Na⁺ current in HFpEF cardiomyocytes.
A, Representative inward rectifier K⁺ current (I\(_{K1}\)) traces at -140 mV in male and female db/db mice with chronic aldosterone infusion (db/db+Aldo) vs. vehicle-treated wild-type control (WT+Vehicle) cardiomyocytes. Increased cell capacitance and reduced I\(_{K1}\) densities at -140 mV and -40 mV in db/db+Aldo in both sexes. n(cells)/N(animals) = 97/8 for WT+Vehicle male, 112/8 for WT+Vehicle female, 110/8 for db/db+Aldo male, and 109/8 for db/db+Aldo female. B, Representative voltage-gated K⁺ current (I\(_{Ks}\)) traces. The net I\(_{Ks}\) current was reduced in both sexes in HFpEF. C, Transient outward K⁺ current (I\(_{to}\)), slowly inactivating K⁺ current (I\(_{K,slow}\)), and sustained K⁺ current (I\(_{sus}\)) were separated by biexponential fitting to I\(_{Ks}\) traces. n(cells)/N(animals) = 15/5 for WT+Vehicle male, 20/6 for WT+Vehicle female, 17/6 for db/db+Aldo male, and 18/6 for db/db+Aldo female. D, Representative L-type Ca²⁺ current (I\(_{Ca,L}\)) traces. I\(_{Ca,L}\) was reduced only in male db/db+Aldo cardiomyocytes. n(cells)/N(animals) = 25/7 for WT+Vehicle male, 21/8 for WT+Vehicle female, 19/8 for db/db+Aldo male, and 21/8 for db/db+Aldo female. E, Representative late Na⁺ current (I\(_{Na,L}\)) traces. I\(_{Na,L}\) was markedly upregulated in db/db+Aldo, and the increase was larger in male than in female cardiomyocytes. n(cells)/N(animals) = 8/4 for WT+Vehicle male, 10/5 for WT+Vehicle female, 10/6 for db/db+Aldo male, and 10/6 for db/db+Aldo female. Hierarchical (nested) ANOVA followed by Šídák’s multiple comparisons test.

Figure 7. Sex-dependent electrophysiological responses to therapeutic interventions in HFpEF cardiomyocytes.
A, Representative ventricular action potentials (APs) at 1 Hz pacing in male and female db/db mice with chronic aldosterone infusion (db/db+Aldo) in control and following cell pretreatments with empagliflozin, autocamtide-2-related inhibitory peptide (AIP), and vericiguat. B, Attenuation of prolonged APD at 90% repolarization (APD\(_{90}\)) by empagliflozin, AIP, and vericiguat. C, Fifty consecutive APD\(_{90}\) values at 1 Hz pacing. D, Increased short-term variability (STV) of APD\(_{90}\) in db/db+Aldo was reversed by empagliflozin and AIP in both sexes. Vericiguat reduced STV only in female db/db+Aldo cardiomyocytes. n(cells)/N(animals) = 24/8 for control male, 29/8 for control female, 16/6 for empagliflozin-treated male, 15/6 for empagliflozin-treated female, 14/4 for AIP-treated male, 11/4 for AIP-treated female, 12/4 for vericiguat-treated male, and 10/4 for vericiguat treated female. E, Representative APD\(_{90}\) alternans during 10 Hz pacing (S, short; L, long). F, APD\(_{90}\) alternans was markedly reduced by empagliflozin and AIP in both sexes. Vericiguat reduced APD\(_{90}\) alternans only in female db/db+Aldo cardiomyocytes. n(cells)/N(animals) = 11/7 for control male, 18/8 for control female, 12/5 for empagliflozin-treated male, 20/6 for empagliflozin-treated female, 6/4 for AIP-treated male, 8/4 for AIP-treated female, 9/4 for vericiguat-treated male, and 9/4 for vericiguat treated female. Hierarchical (nested) ANOVA followed by Dunnett’s multiple comparisons test.
12-wk-old

- Equal number of males and females

Aldosterone or Vehicle

Echo

Glucose

Post-op weeks

Figure 1

WT + Vehicle

db/db + Aldo

Body weight (g)

P = 7.9 x 10^-17

Male

Female

Post-op weeks

Glucose (mmol/L)

Male

Female

P = 6.2 x 10^-4

P = 8.0 x 10^-7

0.00

0.05

0.10

0.15

HW / TL (g/cm)

WT + Vehicle

db/db + Aldo

Male

Female

P = 7.8 x 10^-4

P = 8.9 x 10^-5

P = 9.7 x 10^-7

P = 3.5 x 10^-4

Lung weight (wet/dry)

P = 0.006

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

Male

Female

175x98 mm (DPI)
Figure 2
175x182 mm (DPI)
Figure 3

175x141 mm (DPI)
Figure 4

175x130 mm (DPI)
Figure 5
175x168 mm (DPI)
Figure 6
175x226 mm (DPI)
Figure 7
175x162 mm (DPI)
Graphical Abstract

Healthy Heart → HFpEF
- Concentric hypertrophy
- Atrial enlargement
- Pulmonary congestion
- ↑BNP

Ca²⁺ handling impairments
- Slower [Ca²⁺], decline
- ↑Diastolic [Ca²⁺]_i
- ↓I_{Ca,L}, ↓I_{K,slow}
- ↑↑I_{Na,L}
- ↑↑Alternans

Male
- Diastolic dysfunction
 - Reversed by Empagliflozin & CaMKII inhibition

Female
- Myofilament alterations
 - ↑Titin N2B isoform
 - ↑Titin PEVK phosphorylation
 - ↓Troponin-I phosphorylation
 - ↑Fibrosis, ECM remodelling
 - ↑I_{Na,L}

Diastolic dysfunction

EP – Ca handling