Influence of p53 in the transition of myotrophin-induced cardiac hypertrophy to heart failure

Biswajit Das1, David Young1, Amit Vasanji2, Sudhiranjan Gupta1†, Sagartirtha Sarkar1‡, and Subha Sen1*†

1Department of Molecular Cardiology-NB50, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; and 2Biomedical Imaging and Analysis Core, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

Received 14 October 2009; revised 27 January 2010; accepted 23 February 2010; online publish-ahead-of-print 3 March 2010.

Time for primary review: 39 days.

Aims
Cardiac-specific overexpression of myotrophin (myo) protein in transgenic (myo-Tg) mice results in hypertrophy at 4 weeks that progresses to heart failure (HF) by 36 weeks. Gene profiling showed that p53 expression increases as hypertrophy worsens to HF, suggesting that p53 may influence myo-induced HF. We aimed to define how the p53 signalling cascade affects the spectrum of cardiac hypertrophy (CH)/HF.

Methods and results
Immunoblot analysis showed that in myo-Tg mice (Mus musculus), upregulation of p53 occurs only when hypertrophy transitions to HF (16 weeks onward). To elucidate the role of p53, a double-Tg mouse line (p53−/−/myo−/+ + /p53−/−/myo−/+ + /myo−/+ +) was developed by crossing myo-Tg mice with p53-null mice. A significant reduction in cardiac mass with improved cardiac function was observed in p53−/−/myo−/+ + mice, suggesting that absence of p53 prevents hypertrophy from turning into HF. Analysis via real-time reverse-transcription PCR revealed changes in transcripts of the p53 pathway in p53−/−/myo−/+ + mice. Ingenuity Pathway AnalysisTM indicated that cross-talk among several key nodal molecules (e.g. cyclin-dependent kinase inhibitor 1A, caspase-3, nuclear factor kappa-light-chain enhancer of activated B cells etc.) may play a regulatory role in the transition of CH to HF.

Conclusion
Our data provide evidence, for the first time, that the coherence of p53 with myo plays an active role during the transition of CH to HF in a model of HF induced by myo overexpression. Transition from CH to HF can be prevented in the absence of p53 in myo-induced hypertrophy. Therefore, deletion/inhibition of p53 could be a therapeutic strategy to prevent CH from transitioning to HF.

Keywords
Myotrophin • p53 • Cardiac hypertrophy • Heart failure

1. Introduction
Heart failure (HF) is a major cause of morbidity and mortality worldwide.1 Prolonged cardiac hypertrophy (CH), an adaptive response the heart makes to maintain cardiac function, often precedes and sometimes finally leads to HF.2 The mechanisms that trigger the transition of CH to HF are not fully known. Elevated levels of p53 expression have been reported to be associated with human HF in certain cases.3,4 Leri et al.5 demonstrated an association of p53 upregulation with HF. The involvement of p53 in cancer, related to tumour suppression, DNA damage, oncogenic signalling, etc. is well documented.6 Only a few reports detail the involvement of p53 in CH and HF including elevated p53 expression in dilated cardiomyopathy.3 The association of increased p53 expression has been reported not only in the setting of human HF but also in other cases, such as congestive HF induced by chemotherapeutic drugs,7 pacing-induced ischaemia and myocardial infarction in rats,8 and CH in response to pressure overload.4,9 Most importantly, Sano et al.2 suggested that the accumulation of p53 is essential for the transition from CH to HF.

Although increased levels of p53 expression have been reported, not much is known regarding p53’s mechanism of action during CH and HF. Myotrophin (myo), a 12-kDa ankyrin-repeat protein, is established as one of the factors responsible for the initiation of CH that transits to HF.10−12 Overexpression of myo in the hearts of transgenic
2.4 Confocal imaging to detect activation of p53 by myo and quantitation of cell surface area

Isolated rat neonatal ventricular myocytes were stimulated with myo and 5-fluorouracil (5-FU, a potent activator of p53) for 24 h; cell fixation and permeabilization and confocal imaging was performed as described previously (see Supplementary material online, Methods). Stimulation of cardiomyocytes with 100 nm Angiotensin II (Sar1)20 was performed as positive control for the measurement of cell surface area using Image-Pro Plus 6.1 software (see Supplementary material online, Methods).

2.5 Generation of double-Tg lines and determination of their genotyping

We developed our p53+/−/myo+/+ double-Tg line by breeding myo+/+ and p53−/+ mice (see Supplementary material online, Methods). We also performed breeding of FVB-wild-type (WT) and BL-6 WT mice to generate crossbred FVB/BL-6 WT mice for our study because the parental background of the myo-Tg and p53−/+ mice are FVB and BL-6, respectively.

2.6 Measurement of heart weight:body weight ratio

The heart weight:body weight (HW:BW) ratio (mg/g) was determined according to the protocol of Sarkar et al.11 Three individual mice in each group were studied.

2.7 Histology

Paraffin-embedded mice heart sections were stained for haematoxylin/ eosin and Masson’s trichrome using standard techniques (see Supplementary material online, Methods).

2.8 Determination of cardiac function by echocardiography

Two-dimensional echocardiography was performed at the Department of Cardiovascular Medicine, Cleveland Clinic, following the protocol of Peng et al.21

2.9 RNA isolation and reverse transcription PCR for gene expression profiling

Total RNA was isolated and reverse transcription (RT) PCR analysis was performed following the protocol described previously (see Supplementary material online, Methods).

2.10 p53 real-time reverse transcriptase PCR pathway array

A real-time reverse transcriptase polymerase chain reaction (RT2-PCR) array was performed at SuperArray Biosciences Corp. (Frederick, MD) for p53 signalling pathway analyses in myo-Tg and p53−/+/myo+/+ mice using the RNA obtained from the heart tissues (see Supplementary material online, Methods).

2.11 Ingenuity Pathway Analysis™ for generating the functional network

On the basis of cut-off value (fold increase/decrease) of 2, selected candidate genes obtained from the RT2-PCR array were used as focus molecules subjected to the Ingenuity Pathway Analysis™ (IPA) functional network (see Supplementary material online, Methods). From this functional network, nodal molecules were selected for their validation and to postulate the functional role.
2.12 Protein isolation and immunoblot analysis for protein expression profiling

Total protein was isolated from left ventricular tissues (from three independent individuals in each case) and immunoblot analysis was done following the protocol described previously. Expression levels were quantified with NIH ImageJ software, and obtained values were expressed in arbitrary units.

2.13 Nuclear protein extraction and electrophoretic mobility shift assay

Nuclear protein extraction from WT and Tg mouse hearts (three individuals in each experiment for each group) and electrophoretic mobility shift assay (EMSA) were performed following the protocol described earlier (see Supplementary material online, Methods).

2.14 Statistical analysis

Results obtained in individual experiments were expressed as mean ± SEM. A Student's t-test was performed to determine the statistical significance. Differences between more than two experimental groups were evaluated for statistical significance either by one-way analysis of variance (ANOVA) or by two-way ANOVA (for p53 expression of WT and p53^+/+ /myo^+/+ mice at various ages) with Bonferroni's post tests using
GraphPad Prism 4.0 software (GraphPad software, San Diego, CA, USA). Differences were considered significant at $P < 0.05$.

3. Results

3.1 Elevated expression of myo and p53 during HF

Cardiac-specific overexpression of myo in myo-Tg mice resulted in increased HW:BW ratio (10.4 ± 0.4 mg/g) and enlargement of the heart compared with age-matched WT mice (4.7 ± 0.1 mg/g) during HF (Figure 1A). Increased expression of myo protein in 36-week-old myo-Tg mice (Figure 1B) was found to be associated with elevated levels of p53 protein expression (Figure 1C).

3.2 Activation of p53 by myo

To study the involvement of p53 and the specificity of p53 in myo-induced CH that transits to HF, in vitro experiments were performed. Isolated neonatal rat cardiomyocytes were stimulated with myo (40 μM) and with 5-FU (20 μg/mL) in separate experimental sets. Confocal micrography of immunostained unstimulated and stimulated cells showed that there was an increase in the expression...
and nuclear localization of p53 molecules in both myo-stimulated and 5-FU-stimulated cells compared with unstimulated cells (Figure 1D). Significant increases in cell surface area ($P < 0.001$ and $P < 0.05$) in stimulated cells (Figure 1E) confirmed that the above-mentioned stimulation resulted in cell growth. Furthermore, p53 EMSA profile (Figure 1F) of WT and myo-Tg mice showed a significant increase ($P < 0.001$) in the activation of p53 in myo-Tg mice compared with WT mice (Figure 1G). Thus, p53 expression and activation have been proved to be induced directly by myo.

3.3 Changes in p53 expression during progression of CH to HF

To determine at what phases—initiation, progression, or transition of CH to HF—p53 expression becomes altered, we quantified p53 levels in myo-Tg and age-matched WT mice at 4, 8, 12, 16 and 36 weeks of age, these ages representing different phases of the disease, as described earlier. At the initiation phase of CH (4 weeks) and during the progression phase of the disease (8 and 12 weeks), despite having hypertrophy, as indicated by a significant ($P < 0.001$) increase in HW:BW ratio in myo-Tg mice compared with age-matched WT mice, p53 expression levels remained unaltered (no significant changes between WT and myo-Tg, $P > 0.05$, Figure 2A). Time-dependent significant changes ($P < 0.001$) for p53 expression started at 12 weeks, but the changes were observed both in WT and Tg mice. Changes in HW:BW ratio continued to increase beginning at 16 and 36 weeks of age. The period between these two points represent the transition phase of CH to HF. p53 expression levels suddenly elevated significantly ($P < 0.001$) and continued to increase beginning in this transition phase (from 16 weeks onward) in myo-Tg mice compared with age-matched WT mice (Figure 2A). This increase indicates that the elevation of p53 occurs only at the point when chronic CH worsens to HF, not at the initiation or progression phases of the disease.

3.4 Elevated levels of p53 and myo in human HF and in a murine HF model

To evaluate the correlation between changes in p53 and myo expression levels with HF, we examined the p53 expression profile in non-failing and failing human hearts and in a TAC mouse model of experimentally induced HF where we have shown increased myo expression (Figure 2B). Levels of p53 expression were found to be elevated significantly ($P < 0.001$) in failing human heart and in TAC mice compared with non-failing hearts and sham control, respectively (Figure 2B).

3.5 Alteration of p53 expression parallels myo gene expression

We also studied the effect of alteration of myo gene expression on p53 expression in our Tet control binary myo-Tg mouse model. In the binary myo-Tg mice, myo expression is controlled with a cardiac-specific Tet-responsive system (Tet-on/Tet-off), where gene expression initiation was achieved by removing doxycycline from the drinking water (S. Gupta and S. Sen, unpublished results). A significant ($P < 0.001$) increase in HW:BW ratio (5.56 ± 0.27 mg/g) was observed in Tet-off (myo gene on) binary Tg mice compared with HW:BW ratio (4.52 ± 0.28 mg/g) of Tet-on (myo gene-off) binary Tg mice. This increase was associated with increased levels of myo protein expression (Figure 2B). We found that when the myo gene was expressed, there were elevated levels of p53 protein compared with Tet-on binary myo-Tg mice, in which the myo gene is turned off (Figure 2B). Thus, there is a correlation between myo gene expression and elevated levels of p53 protein expression.

3.6 Generation of double-Tg mice and expression of p53 and myo

To test the hypothesis that in the absence of p53, myo-induced CH failed to worsen to HF, we generated double-Tg mouse lines (p53$^{-/-}$/myo$^{+/+}$) by breeding our previously reported myo-Tg (myo$^{+/+}$) mice11 with p53-null (p53$^{-/-}$) mice16 (Figure 3A and B). The filial individuals obtained from these breedings possess various heterozygous/homozygous genotypes in typical Mendelian fashion throughout several consecutive generations (Figure 3A and B). The obtained double-Tg p53$^{-/-}$/myo$^{+/+}$ mice are p53 null with a myo overexpression background. We have also generated FVB/BL-6 crossbred WT mice by breeding FVB WT with BL-6 WT mice, as myo-Tg (myo$^{+/+}$) mice have an FVB parental background and p53-null (p53$^{-/-}$) mice have a BL-6 background. The HW:BW ratio in all types of WT mice used (FVB, BL-6, and FVB/BL-6 crossbred) showed no significant changes (Bonferroni’s corrected value of $P > 0.05$), indicating that differences in parental background does not affect cardiac mass (Figure 3C). The p53$^{-/-}$/myo$^{+/+}$ mice, before developing tumours due to the p53-null condition, were analysed at 16 weeks of age, which is the point of transition of CH to HF phase. p53 expression profiling of both p53$^{-/-}$/myo$^{+/+}$ mice and FVB/BL6-WT mice showed reduced levels of p53 expression compared with myo-Tg mice (Figure 4A). Myo expression, at both the...
Figure 5 Absence of p53 in p53^{−/−}/myo^{+/+} double Tg mice resulted in the regression of cardiac mass associated with improved cardiac function. (A) HW:BW ratios showing significant (Bonferroni’s corrected $P < 0.001$) reduction in cardiac mass in p53^{−/−}/myo^{+/+} mice compared with myo-Tg mice. The results are presented as mean ± SEM and represent three independent experiments. (B) Hearts from 16-week-old FVB/BL6-WT, myo-Tg, and p53^{−/−}/myo^{+/+} mice; (C) Haematoxylin–eosin stained cells from left ventricles of FVB/BL6-WT, myo-Tg, and p53^{−/−}/myo^{+/+} mice (×20 magnification, white bar represents 25 μm); (D) Measurement of left ventricular cell surface area showing significantly enlarged cell (Bonferroni’s corrected $P < 0.001$) in myo-Tg mice compared with FVB/BL6-WT and p53^{−/−}/myo^{+/+} mice. Data (mean ± SEM) for each group is an average of nine individual measurements; (E) Masson’s trichrome staining of the left ventricles demonstrates collagen deposition (white arrowhead) in myo-Tg mice (×20 magnification, white bar represents 50 μm); (F) M-mode echocardiography showing improved cardiac function in p53^{−/−}/myo^{+/+} mice, where values for both ejection fraction (EF) and fractional shortening (FS) increased significantly (Bonferroni’s corrected $P < 0.001$) compared with myo-Tg mice and are almost identical to those of WT mice; (G) RT-PCR analysis showing downregulation of the hypertrophic marker gene atrial natriuretic factor (ANF) in p53^{−/−}/myo^{+/+} mice. In RT-PCR analysis, GAPDH was analysed as a loading control.
transcript and protein level, was also reduced in the absence of p53 in p53-/-/myo+/+ mice (Figure 4B and C).

3.7 Reduction in cardiac mass and improvement of cardiac function in the absence of p53

Significant (P < 0.001) reduction in the HW:BW ratio was observed in p53-/-/myo+/+ mice (5.2 ± 0.21 mg/g) compared with myo-Tg mice (7.9 ± 0.58 mg/g) (Figure 5A). The values obtained for p53+/+/-/myo+/+ mice were between those of the myo-Tg and p53-/-/myo+/+ mice, and all WT mice were in the same range of values, which were much lower than those of the myo-Tg mice (data not shown). Reduction in heart size (Figure 5B) was observed in p53-/-/myo+/+ mice. Enlargement of the left ventricular cell, which was observed in myo-Tg mice compared with FVB/BL6-WT, reduced significantly (P < 0.001) in p53-/-/myo+/+ mice (Figure 5C and D). Furthermore, deposition of collagen fibre, present in myo-Tg mice, were absent in p53-/-/myo+/+ mice (Figure 5E). All these observations indicated that even in the condition of myo over-expression, hypertrophy did not develop because of the absence of p53 in p53-/-/myo+/+ mice. In addition to reduction in cardiac mass, cardiac function in p53-/-/myo+/+ mice improved significantly (Bonferroni’s corrected value of P < 0.001) compared with myo-Tg mice, as observed in echocardiographic analysis (Figure 5F), see Supplementary material online, Table S1). Particularly, fractional shortening and ejection fraction values of the p53-/-/myo+/+ mice became similar to those of WT mice. Therefore, our data showed that in the absence of p53, even in mice engineered to overexpress myo, cardiac function remains similar to that of WT mice. Furthermore, downregulation of atrial natriuretic factor, a hypertrophy marker gene (Figure 5G), indicated the prevention of hypertrophy in the p53-/-/myo+/+ mice.

3.8 Involvement of the p53 signalling cascade in the transition of CH to HF

To further confirm the participation of p53 signalling in CH and HF, we performed RT²-PCR profiling of the p53 signalling pathway in p53-/-/myo+/+ and myo-Tg mice. Analysis of the RT²-PCR p53 pathway array showed that a total of 24 gene products were up- or downregulated (10 upregulated and 14 downregulated) based on the cut-off value 2 in p53-/-/myo+/+ mice compared with myo-Tg mice (Table 1). We have used these selected genes as focus molecules with which to build an IPA™ functional network. The IPA™ Knowledge Base generated the functional network (Figure 6) by including 18 focus molecules. In addition to these, the network selected related molecules from the Knowledge Base for a total of 49 network participants. Of these 49 network participants, five molecules (caspase, NF-kB, Myc, Bcl2, and Cdkn1a) were generated as nodal molecules

Table 1 Candidate molecules of the p53 pathway obtained by p53 RT²-PCR pathway array

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>GenBank ID</th>
<th>Gene description</th>
<th>Mean fold changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex1</td>
<td>NM_009687</td>
<td>Apurinic/apirimidinic endonuclease 1</td>
<td>2.86</td>
</tr>
<tr>
<td>Bag1</td>
<td>NM_009736</td>
<td>Bcl2-associated athanogene 1</td>
<td>2.14</td>
</tr>
<tr>
<td>cng1</td>
<td>NM_009831</td>
<td>Cyclin G1</td>
<td>2.53</td>
</tr>
<tr>
<td>Crodd</td>
<td>NM_009950</td>
<td>CASP2 and RIPK1 domain containing adaptor with death domain</td>
<td>2.10</td>
</tr>
<tr>
<td>Goddh45a</td>
<td>NM_007836</td>
<td>Growth arrest and DNA-damage-inducible 45 alpha</td>
<td>3.36</td>
</tr>
<tr>
<td>Msh2</td>
<td>NM_008628</td>
<td>Msh homolog 2 (Escherichia coli)</td>
<td>2.29</td>
</tr>
<tr>
<td>Ptg1</td>
<td>NM_013917</td>
<td>Pituitary tumour-transforming 1</td>
<td>17.85</td>
</tr>
<tr>
<td>Rpml</td>
<td>NM_023396</td>
<td>Reprimo, TP53-dependent G2 arrest mediator candidate</td>
<td>2.92</td>
</tr>
<tr>
<td>Sfi1</td>
<td>NM_018754</td>
<td>Stat5</td>
<td>5.97</td>
</tr>
<tr>
<td>Xrcc3</td>
<td>NM_009533</td>
<td>X-ray repair complementing defective repair in Chinese hamster cells 5</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Selected up- and downregulated transcripts of the p53 pathway in p53-/-/myo+/+ mice (fold changes over myo-Tg mice) based on a cut-off value of 2. Values are expressed as the mean of fold changes from three independent experiments.
that play a central role; the other participant molecules are in some way related to those nodal molecules.

3.9 Involvement of IPATM-generated nodal molecules in HF

Furthermore, we have validated the participation of IPATM-generated nodal molecules, namely, Cdkn1a, Bcl2, c-Myc, caspase-3, and NF-κB. Immunoblot analysis showed that the levels of these nodal molecules were reduced in p53$^{-/-}$/myo$^{+/+}$ mice compared with myo-Tg mice (Figure 7A). Gel mobility shift assay revealed suppression of NF-κB activity in p53$^{-/-}$/myo$^{+/+}$ mice, whereas in myo-Tg mice, the activity was higher than in WT mice (Figure 7B and C). Changes in NF-κB activity is expected to correlate with changes in IκB-α protein level. Immunoblot analysis showed a decrease in IκB-α protein levels that is associated with suppressed NF-κB activation in p53$^{-/-}$/myo$^{+/+}$ mice compared with myo-Tg mice (Figure 7D).

4. Discussion

It is well established that myo triggers CH, which then transits to HF. An early activation of myo during human HF was observed by O’Brien et al. In that same study, it was reported that myo levels increased as the severity of the disease increased. In myo-Tg mice that have cardiac-specific overexpression of myo, initiation of CH occurs at a very early age (4 weeks); hypertrophy in these mice gradually worsens to HF at 36 weeks of age. Importantly, the molecular changes observed in the hearts of myo-Tg mice are similar to those observed in other models of hypertrophy, such as TAC, the DOCA-salt model, and renal hypertensive rat. Moreover, myo-Tg mice provide a murine model of HF that closely mimics symptoms of human HF. Overexpression of myo in the myo-Tg mouse model thus allows us to study the molecular changes that occur during different phases of the disease, starting from the initiation of CH through progression of the disease and during the transition to HF.

Figure 6 IPATM functional network as generated by focus molecules. Selected upregulated (shades of red) and downregulated (shades of green) candidate molecules, obtained from an RT2-PCR p53 pathway array, were used as focus molecules to generate the functional network. Candidate molecules not shaded by any colour were generated by the network from its knowledge base. IPA-predicted nodal molecules, which can regulate the entire network, are circled in blue. Solid arrows between molecules depict experimentally proven relationships. Dashed lines depict inferred interactions based on experimental evidence.
Affymetrix gene array profiling revealed an increase in p53 gene expression in myo-Tg mice specifically at the HF stage. Thus, we hypothesized that p53 is involved in myo-induced CH that progressively leads to HF. To test our hypothesis, we performed in vitro experiments to determine whether or not myo stimulation involves elevated p53 expression. We previously reported that myo stimulates myocyte growth when isolated neonatal rat cardiomyocytes are treated with myo. In this study, activation and increased expression of p53, associated with an increase in cell surface area and thereby cell growth, was observed in myo-stimulated neonatal rat cardiomyocytes (Figure 1D and E). This observation supports our hypothesis that p53 actively participates in myo-induced CH and HF. Furthermore, activation of p53 in myo-Tg mice (Figure 1F and G) indicated that p53 is directly regulated by myo. Other researchers have also reported participation of p53 in various forms of HF, but none of the previous studies had determined the stage at which p53 participates in heart disease.

Because the myo-Tg model mimics the phenomenon of human HF, we took advantage of this model to study the involvement of p53 at various phases of CH and HF. Our data clearly showed that p53 expression levels became elevated only during the transition from the CH phase to the HF stage, but not prior to that, even when there was occurrence of CH (Figure 2A). This observation is in accord with the earlier report of Sano et al.; those authors suggested that the accumulation of p53 is required for the transition from CH to HF. Upregulation of p53 may insure cell-cycle arrest when cardiomyocytes are stimulated by pro-growth factors like myo, permitting cardiomyocyte hypertrophy rather than proliferation. The very small change in p53 expression at 12 weeks of age compared with 4 and 8 weeks is probably due to the ageing process, as similar changes were observed in WT mice. Furthermore, we confirmed that elevated p53 expression is not restricted solely to our myo-Tg HF model; it was also evident in failing human hearts and in the TAC mouse model (Figure 2B). The relationship between elevated expression of p53 and myo expression was established in the Tet-control myo-binary Tg mice that conditionally overexpress myo. In these binary-Tg mice, we found that p53 protein levels increased when myo gene expression

Figure 7 Expression profiles of IPA™-predicted nodal molecules. (A) Immunoblot analysis showing downregulation of IPA-predicted nodal molecules Cdkn1a, Bcl2, c-Myc, and caspase (active caspase3) in p53^{−/−}/myo^{+/+} mice, revealing active participation of these molecules in the prevention of HF in the absence of p53; (B) EMSA showing regression of NF-κB activity in p53^{−/−}/myo^{+/+} mice; (C) Quantification of EMSA. Values obtained from three independent experiments are expressed as arbitrary units (AU), (Bonferroni’s corrected P < 0.001). (D) Immunoblot analysis showing downregulation of IκB-α protein in p53^{−/−}/myo^{+/+} mice correlating the regression of NF-κB activity in the absence of p53 to prevent HF. (GAPDH was analysed as a loading control for A & D).
was conditionally turned on (Figure 2B). Similarly, coherence of elevated level of myo and p53 was also observed in failing human hearts and TAC mice (Figure 2B). All these findings indicate that p53 plays an active and important role at the point of transition of CH to HF.

As p53 was found to be involved during the process of CH and HF, we hypothesized that a lack of p53 might improve cardiac function and inhibit the transition to HF. We therefore generated the p53+/−/myo+/− double-transgenic mice (Figure 3A and B). In these mice, compared with myo-Tg mice, cardiac mass and cardiac cell size were reduced significantly, and cardiac function was improved (Figure 3A–F). This implies that p53 should be a relevant therapeutic target for the treatment of HF, as has been proposed previously.24,32 The fact that hypertrophy did not develop in the absence of p53 appears to be due to inhibition of myo expression.

Although we have demonstrated the involvement of p53 in CH and HF, the intricate signalling cascade that is presumably involved remains to be fully explored. A combination of transcriptional profiling and IPA™ analysis provides the opportunity for mechanistic studies.33,34 Transcriptional profiling of myo-Tg and p53+/−/myo+/− mouse hearts using an RT²-PCR pathway array revealed the involvement of several p53 pathway members in the disease process.

The IPA™ functional network, generated using candidates obtained from transcriptome profiling, revealed the involvement of the regulator of cell cycle progression protein Cdkn1a/p21, anti-apoptotic protein Bcl2, and apoptotic effector protein caspases as nodal molecules (Figure 6). These nodal molecules were downregulated in p53+/−/myo+/− mice compared with myo-Tg mice (Figure 7A), suggesting active participation in the regulation of cardiac function. This observation supports our previous findings that both cell death and cell regeneration occur simultaneously during the transition of hypertrophy to HF.13

The Bcl2 family of proteins is regulated by p53,35 and elevated levels of Bcl2 in patients with HF have been reported by Olivetti et al.36 Upregulation of Bcl2 in response to HF induced by pressure overload has also been documented.37 Here we observed downregulation of Bcl2 (Figure 7A) in the absence of its regulator protein p53, confirming that the deletion or blocking of p53 can inhibit/prevent the transition of the hypertrophic process to HF.

Interestingly, the IPA™ software predicted that NF-κB is one of the nodal molecules involved in p53-related CH and HF. Activation of NF-κB, particularly in myo-induced hypertrophy, is necessary for the induction of CH that leads to HF.29,38 We have shown that NF-κB-stimulated myocyte growth is regulated by interaction and nuclear co-translocation of myo and NF-κB-p65.14 NF-κB and p53 proteins share similarities in their structure, DNA binding, and regulation by ankyrin-repeat proteins.39 Myo is an ankyrin-repeat protein and may regulate p53, as it regulates NF-κB-p65, during the CH process. Under certain conditions, NF-κB activation occurs simultaneously with the induction of Cdkn1a/p21, a principal target of p53.35 Apart from its participation in myo-induced CH, NF-κB generally promotes resistance to programmed cell death.41–43 Conversely, p53 induces apoptosis or cell-cycle arrest.44,45 However, p53 can indirectly stimulate NF-κB through induction of Cdkn1a/p21.40 During the transition of CH to HF, elevated levels of p53 activate NF-κB and a high level of NF-κB activation is obtained at the time of transition to HF. On the basis of this putative regulatory mechanism, repression of NF-κB activation should occur, as confirmed in our study (Figure 7B and C), in the absence of p53, a condition that is reflected in improved cardiac function and regression of cardiac mass in p53+/−/myo+/− mice.

The major new finding of this study is that, in the absence of p53, CH (which usually transits to HF in our model of murine HF) was prevented from occurring. Although the possible mechanisms involving p53, NF-κB, and other nodal molecules such as Bcl2 in the transition to HF require further detailed study, data obtained from this investigation clearly suggest that deletion/inhibition of p53 can prevent or minimize the occurrence of HF. It is evident that the elevation of p53 expression occurs only during the transition of CH to HF, but not prior to that; thus, therapeutically inhibiting p53 at the initiation of transition phase (12–16 weeks in myo-Tg mice) may prevent or delay the onset of HF in patients as well.

Supplementary material

Supplementary material is available at Cardiovascular Research online.

Acknowledgements

The authors acknowledge Sathymangala V. Naga Prasad, PhD (Department of Molecular Cardiology, LRI, Cleveland Clinic), for providing BL6 and TAC mice; Nikolai Sopko, PhD (Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic) for discussion with the hemodynamic data analysis; Christine S. Moravec, PhD (Director of Basic Research, Kaufman Center for Heart Failure, Cleveland Clinic), of the heart transplant team for providing the human heart tissues and Ms Linda Vargo (Imaging Core, Lerner Research Institute, Cleveland Clinic) for assistance in histological preparations.

Conflict of interest: none declared.

Funding

This work was supported by a grant from the National Institutes of Health [HL R01 47794] to S.S.

References

