The serotonin transporter, gender, and 17β oestradiol in the development of pulmonary arterial hypertension

Kevin White, Yvonne Dempsie, Margaret Nilsen, Audrey F. Wright, Lynn Loughlin, and Margaret R. MacLean*

Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow G12 8QQ, UK

Received 11 August 2010; revised 20 December 2010; accepted 20 December 2010; online publish-ahead-of-print 22 December 2010

Aims

Idiopathic and familial forms of pulmonary arterial hypertension (PAH) predominantly affect females through an unknown mechanism. Activity of the serotonin transporter (SERT) may modulate the development of PAH, and mice overexpressing SERT (SERT+ mice) develop PAH and severe hypoxia-induced PAH. In the central nervous system, oestrogens influence activity of the serotonin system. Therefore, we examined the influence of gender on the development of PAH in SERT+ mice and how this is modulated by female hormones.

Methods and results

PAH was assessed via measurement of right ventricular systolic pressure (RVSP), pulmonary vascular remodelling (PVR), and right ventricular hypertrophy. Male SERT+ mice did not develop PAH. Female SERT+ mice demonstrated increased RVSP and PVR and this was abolished by ovariectomy. Following exposure to hypoxia, SERT+ mice exhibited severe PAH and this was also attenuated by ovariectomy. Chronic administration of 17β oestradiol re-established the PAH phenotype in ovariectomized, normoxic, and hypoxic SERT+ mice. 17β oestradiol also up-regulated tryptophan hydroxylase-1 (TPH1), 5-hydroxytryptamine1B (5-HT1B) receptor, and SERT expression in human pulmonary arterial smooth muscle cells (hPASMCs). 17β oestradiol stimulated hPASMC proliferation and this was inhibited by both the TPH inhibitor para-chlorophenylalanine and the 5-HT1B receptor antagonist SB224289.

Conclusion

17β oestradiol is critical to the development of PAH and severe hypoxia-induced PAH in female SERT+ mice. In hPASMCs, 17β oestradiol-induced proliferation is dependent on de novo serotonin synthesis and stimulation of the 5-HT1B receptor. These interactions between the serotonin system and 17β oestradiol may contribute to the increased risk of PAH associated with female gender.

Keywords

17β oestradiol • Oestrogen • Gender • Pulmonary arterial hypertension • Serotonin

1. Introduction

Pulmonary arterial hypertension (PAH) is characterized by both remodelling and vasoconstriction of the pulmonary vasculature. Mutations in the gene encoding for the bone morphogenetic protein receptor-2 (BMPRII) are accountable for ~80% of familial PAH cases; however, penetrance for this gene is incomplete as only 20% of BMPRII mutation carriers develop PAH.1 Therefore, it is assumed that other genetic or environmental risk factors are involved.

In both idiopathic and familial forms of PAH, there is a gender bias, with females up to three-fold more likely to present with disease,2–4 although the reasons for this disparity remain unknown. Oestrogens are one possible risk factor in PAH. The ingestion of oral contraceptives has previously been associated with PAH5,6 and female PAH patients show increased expression levels of Estrogen receptor 1 (ESR1), the gene encoding for oestrogen receptor alpha, compared with unaffected females.7 Decreased expression of the oestrogen-metabolizing enzyme cytochrome P450 1B1 (CYP1B1) leading to altered oestrogen metabolism has also been identified in female PAH patients harbouring a BMPRII mutation compared with unaffected female carriers.8

In contrast, experimental models of PAH have repeatedly shown that female rodents exhibit less severe PAH compared with males. For example, female rats exposed to chronic hypoxia develop moderate PAH compared with severe PAH in males.9 Ovariectomized rats
exhibit severe PAH following hypoxic insult and this can be attenuated with 17β oestradiol treatment. In addition, male apolipoprotein E knockout mice (Apoe−/− mice) prescribed a high-fat diet develop a more established PAH phenotype compared against high-fat treated Apoe−/− females. This absence of a suitable animal model which replicates the female bias observed in human PAH has limited experimental research to date.

Multiple studies have implicated serotonin, the serotonin transporter (SERT), and 5-hydroxytryptamine1b (5-HT1b) receptors in the pathobiology of PAH. In mice, the development of hypoxia-induced PAH and dexfenfluramine-induced PAH are dependent on peripheral serotonin synthesis. SERT expression is increased in human pulmonary arterial smooth muscle cells (hPASMCs) derived from idiopathic PAH (IPAH) patients and this is responsible for increased serotonin-induced proliferation in these cells. The 5-HT1b receptor mediates human pulmonary arterial vasoconstriction and is also involved in hPASMC proliferation.

In the central nervous system, oestrogens regulate expression of multiple serotonin pathway mediators, including tryptophan hydroxylase (TPH; the rate-limiting enzyme in serotonin synthesis) and SERT. We have previously shown that mice overexpressing the SERT (SERT+) mice) develop PAH and severe hypoxia-induced PAH. Here, we investigated the possible interactions between serotonin and oestrogens in vitro in hPASMCs, and the effects of gender and 17β oestradiol in vivo on the development of PAH in SERT+ mice.

2. Methods

2.1 SERT+ mice

The generation of SERT+ mice (background strain: C57Bl/6jCBA) has been previously described. Age-matched littermates were studied as controls. All experimental procedures conform with the United Kingdom Animal Procedures Act (1986) and with the ‘Guide for the Care and Use of Laboratory Animals’ published by the US National Institutes of Health (NIH publication No. 85-23, revised 1996), and ethical approval was also granted by the University Ethics Committee.

2.2 Bilateral ovariectomy

To investigate the role of ovarian hormones in the development of PAH, we ovariectomized wildtype (WT) and SERT+ mice at 8–10 weeks of age. Bilateral ovariectomy was performed under inhalational anaesthesia (1.5% isoflurane supplemented with O2). A dorsal midline skin incision was performed and the ovaries located and removed by cauterization. Bilateral ovariectomy was performed under inhalational anaesthesia (1.5% isoflurane supplemented with O2). A dorsal midline skin incision was performed and the ovaries located and removed by cauterization. Approximately 150 arteries from each lung section were assessed. Lung sections from four mice for each group were studied. Approximately 150 arteries from each lung section were assessed.

2.3 17β oestradiol administration

Nine weeks following ovariectomy, 17β oestradiol-containing pellets (0.1 mg/21 day pellet, Innovative Research of America, USA) or vehicle pellets were subcutaneously implanted into the dorsal neck and the assessment of PAH was performed after 21 days. Male mice administered 17β oestradiol pellets were subject to implant 21 days immediately prior to the assessment of PAH, which was carried out at 5 months of age. The selected dose of 17β oestradiol has been previously shown to produce physiologically relevant (<1 nmol/L) concentrations of circulating 17β oestradiol.

2.4 Haemodynamic measurements

The development of PAH in male and female SERT+ mice was investigated in both normoxia and following 14 days of hypobaric hypoxia. Right ventricular (RV) pressure and systemic arterial pressure measurements were measured and analysed as previously described. Age-matched littermate C57Bl/6jCBA mice were studied as controls. Haemodynamic measurements from six to nine mice for each group were assessed.

2.5 Lung histology

Sagittal sections of lung were elastica-Van Gieson stained and microscopically assessed for the muscularization of pulmonary arteries (<80 μm external diameter) in a blinded fashion as previously described. Remodelled arteries were confirmed by the presence of a double elastic laminae. Lung sections from four mice for each group were studied. Approximately 150 arteries from each lung section were assessed.

2.6 Right ventricular hypertrophy

Right ventricular hypertrophy (RVH) was assessed by weight measurement of the RV free wall and left ventricle plus septum (LV+S). The ratio expressed is RV/LV+S.

2.7 hPASMC proliferation

2.7.1 Cell counts

Experimental procedures using hPASMCs conform with the principles outlined in the Declaration of Helsinki, and was also approved by the University Ethics review board (approval reference number: 08/H0304/56). As we established an important role for 17β oestradiol in the development of PAH in vivo, we further examined its mechanisms of action in vitro. With relevance to human PAH, we investigated the effects of 17β oestradiol on hPASMCs. hPASMCs (passage 3–7) were seeded in 24-well plates at a density of 20 000 per well and grown to 60% confluence (DMEM supplemented with 10% FBS) before quiescence in 0.2% FBS for 24 h as described previously. hPASMCs were exposed to a range of concentrations (0.1–1 nmol/L) of 17β oestradiol, oestrone, oestriol (Sigma, UK), or progesterone (Tocris, UK) in the presence of 2.5% FBS and proliferation assessed at 4–5 days. All antagonists were exposed to hPASMCs for at least 30 min prior to the addition of 17β oestradiol. DMEM and drugs were replaced every 48 h. Cell counts were performed in a blinded fashion using a haemocytometer (n = 3 for each experiment and performed in duplicate). The smooth muscle phenotype of the hPASMC was confirmed at passages 3–7 by staining for α-smooth muscle actin.

2.7.2 [3H]Thymidine incorporation

To measure DNA synthesis, hPASMCs (passage 3–7) were seeded in 24-well plates at a density of 20 000 per well and grown to 60% confluence (DMEM supplemented with 10% FBS) before quiescence in 0.2% FBS for 24 h. Cells were then exposed to range of concentrations (0.1–1 nmol/L) of 17β oestradiol, oestrone, oestriol (Sigma, UK), or progesterone (Tocris, UK) in the presence of 2.5% FBS and proliferation assessed at 4 days. Where appropriate, antagonists were exposed to hPASMCs for at least 30 min prior to the addition of 17β oestradiol. DMEM and drugs were replaced every 48 h. Twenty four hours prior to the end of each experiment, 0.2 μCi/well [3H]thymidine was added to each well. hPASMCs were then rinsed with phospho-buffered saline and 5% trichloroacetic acid, then lysed with 0.3 mol/L NaOH. Radioactivity was measured using a liquid scintillation counter, and data expressed as % change compared with 2.5% FBS, as determined by [3H]thymidine incorporation. n = 3 for each experiment and counts performed in duplicate.
2.7.3 Western blot analysis

hPASMCs (passage 3–7) were seeded in 6-well plates at a density of 20 000 per/well and grown to 80% confluency (DMEM supplemented with 10% FBS) before serum starvation for 24 h. Following exposure to 1 nmol/L 17β oestradiol at multiple time points, hPASMC lysates were prepared for immunoblot as previously described.13 Immunoblotting was performed with antibodies against TPH1 (1:200; Chemicon, UK), the 5-HT1B receptor (1:200; Abcam, UK) and SERT (1:200; Abcam, UK). Densitometrical analysis was performed using TotalLab TL100 software. n = 4 for each experiment.

2.8 Statistical analysis

Data were analysed using a two-way ANOVA followed by Bonferroni’s post hoc test, one-way ANOVA followed by Dunnett’s post hoc test, or Student’s t-test as appropriate. Data are expressed as mean ± SEM.

3. Results

3.1 Effects of gender, SERT, ovariectomy, and 17β oestradiol on the development of PAH

In male mice, right ventricular systolic pressure (RVSP), pulmonary arterial remodelling, and RVH were all unaffected following SERT overexpression, this was apparent under both normoxic and hypoxic conditions (Figure 1A–C). In normoxic conditions, sham-operated female SERT+ mice demonstrated increased RVSP and pulmonary arterial remodelling (Figure 2A and B) with RVH being unaffected (Figure 2C). The increased RVSP and remodelling observed in female SERT+ mice was abolished by ovariectomy (Figure 2A and B). The administration of 17β oestradiol in ovariectomized SERT+ mice re-established increases in both RVSP and pulmonary arterial remodelling (Figure 2A and B). RVH was similar in both WT and SERT+ mice and ovariectomy had no further effect. However, ovariectomized SERT+ mice administered 17β oestradiol exhibited a decrease in RVH (Figure 2C). Following exposure to chronic hypoxia, female SERT+ mice developed marked increases in both RVSP and remodelling which were higher than their WT controls. This severe PAH phenotype was attenuated by ovariectomy and subsequently re-established following the administration of 17β oestradiol (Figure 2A and B). RVH was also greater in hypoxic female SERT+ mice and this was unaffected by ovariectomy, however, 17β oestradiol decreased RVH in the ovariectomized group (Figure 2C). There were no differences in mean systemic arterial pressure between any of the groups (data not shown). Comparing male and female differences in WT mice (Figure 1), we observed that hypoxia-induced increases in RVSP and pulmonary arterial remodelling were more severe in male WT mice than female WT mice (P < 0.001). These gender differences were not apparent in SERT+ mice. We observed a marked decrease in uterine weight following ovariectomy, indicative of successful removal of the ovaries (Table 1). Furthermore, an increase in uterine weight was observed in ovariectomized female mice following 17β oestradiol administration, as a consequence of 17β oestradiol-mediated hypertrophy. Two additional controls were performed in this study. We examined the effects of ovariectomy in WT mice. Whilst this had no effect on RVH, it increased both RVSP from 21.31 ± 0.42 to 25.01 ± 0.84 mmHg (P < 0.01; n = 8) and pulmonary arterial remodelling from 7.95 ± 0.63 to 10.7 ± 0.54% (P < 0.01; n = 4). However, in hypoxia, the severity of PAH in WT mice was unaffected following ovariectomy, as assessed by no changes in RVSP, pulmonary arterial remodelling, and RVH (data not shown). To further establish the role of 17β oestradiol in SERT+ mice, we investigated if its administration in males would uncover a PAH phenotype. Figure 3A–C demonstrates, however, that 17β oestradiol had no effect on RVSP, remodelling, or RVH in male SERT+ mice. We also assessed the effects of 17β oestradiol in male WT mice exposed to hypoxia. Hypoxia-induced elevations in RVSP (Figure 3D), pulmonary arterial remodelling (Figure 3E), and RVH (Figure 3F) were all decreased following 17β oestradiol administration.

3.2 Effects of ovarian hormones on hPASMC proliferation

As we identified that 17β oestradiol is critical to the development of PAH in female SERT+ mice in vivo, we wished to determine possible mechanisms and also examine the relevance of this with respect to human PAH. Therefore, we examined the effects of 17β oestradiol on hPASMC proliferation at concentrations of 0.1–1 nmol/L. For comparison, we also examined the effects of oestrone, oestriol, and progesterone on hPASMC proliferation (Figure 4). At 1 nmol/L, 17β oestradiol stimulated hPASMC proliferation, as assessed by an increase of both cell number and DNA synthesis (Figure 4A and B), whereas oestrone, oestriol, and progesterone had no effects on hPASMC proliferation (Figure 4C–H). These proliferative effects of 17β oestradiol are consistent with our in vivo findings.

3.3 Effects of 17β oestradiol on TPH1, 5-HT1B receptor, and SERT expression in hPASMCs

To determine whether 17β oestradiol regulates relevant components of the serotonin system, we exposed hPASMCs to 1 nmol/L of 17β oestradiol at multiple time points and investigated the expression of TPH1, the 5-HT1B receptors, and SERT. 17β oestradiol increased expression of TPH1 (Figure 5A and B), the 5-HT1B receptors (Figure 5C and D), and SERT (Figure 5E and F) at both 4 and 24 h time points.

3.4 Effects of 17β oestradiol on 5-HT-induced proliferation in hPASMCs

Following the observation that 17β oestradiol increased expression of key serotonin pathway mediators involved in the development of PAH, we investigated if the serotonin system was involved in 17β oestradiol-induced hPASMC proliferation. To test this, we investigated the effects of inhibitors for TPH [p-chlorophenylalanine (PCPA) 10 μmol/L], the 5-HT receptors (5-HT1B antagonist, SB224289 300 nmol/L; 5-HT2A antagonist, ketanserin 30 nmol/L), and SERT (citalopram 1 μmol/L) on 1 nmol/L 17β oestradiol-mediated proliferation of hPASMCs. Although none of the inhibitors had any effect on FBS-induced proliferation, both the TPH inhibitor PCPA and the 5-HT1B receptor antagonist SB224289 successfully inhibited 17β oestradiol-induced proliferation (Figure 6A and B), whereas the 5-HT2A receptor antagonist ketanserin and the SERT inhibitor citalopram had no effect.

4. Discussion

Both iPAH and familial PAH occur more in females than in males. For example, in recent epidemiological studies carried out in Scotland,
were female. The reasons for this increased frequency in females are unclear and under investigated. One reason for this under investigation is the absence of a suitable animal model. Paradoxically, it is observed that male rats exhibit severe hypoxia-induced PAH compared with female rats and oestrogens protect against monocrotaline-induced PAH.

This is the first complete study to describe an animal model of PAH with female susceptibility. Preliminary evidence suggests that increased susceptibility in female mice may also be observed in dexfenfluramine-induced PAH and vascular endothelial growth factor (VEGF) receptor antagonist (SU 5416) + hypoxia-induced PAH. In the current study, only female SERT+ mice develop PAH and we provide experimental evidence that interactions between 17β oestradiol and the serotonin system may contribute towards this PAH pathogenesis. We demonstrate that female SERT+ mice develop PAH as indicated by elevated RV pressure and pulmonary arterial remodelling, whereas male SERT+ mice remain unaffected. These results suggest that sex hormones are critical to the development of PAH in this model. To investigate this hypothesis, we ovariectomized these mice and assessed the PAH phenotype after 12 weeks. Ovariectomy completely abolished both the development of PAH and severe hypoxia-induced PAH in SERT+ mice. These results suggest a detrimental role for ovarian-derived hormones in SERT+ mice.

To determine whether 17β oestradiol is the hormone critical to the development of PAH in vivo, we assessed the effects of its re-introduction into ovariectomized SERT+ mice. As previously mentioned, ovariectomy protects SERT+ mice against the development of PAH; however, 17β oestradiol completely re-established a disease phenotype in these mice. Similarly, this hormone also re-established severe hypoxia-induced PAH in ovariectomized SERT+ mice. These results confirm that female gender, via the influence of ovarian-derived 17β oestradiol, is critical to the development of PAH in SERT+ mice.

We wished to establish a cellular model to investigate possible mechanisms of action of 17β oestradiol and also examine the relevance of our in vivo study to human cells. We chose hPASMCs as
these have been extensively studied to investigate critical pathways in PAH. For example, hPASMCs proliferate to serotonin via stimulation of the 5-HT1B receptors and SERT, and have also been studied to further investigate BMPRII signalling in PAH. We observed that 17β-oestradiol stimulated proliferation, whereas oestrone, oestriol, and progesterone had no effect. This is consistent with our observation that 17β-oestradiol re-established a PAH phenotype in ovariectomized SERT+ mice. An aliquot of 1 nmol/L of 17β-oestradiol was sufficient to promote hPASMC proliferation and similar growth effects have been previously reported in rat PASMCs. This is physiologically relevant as 17β-oestradiol circulates at concentrations between 0.1 and 1 nmol/L and smooth muscle hyperplasia is a hallmark of PAH.

The suggestion that 17β-oestradiol is involved in the pathogenesis of experimental PAH is consistent with recent findings in human PAH. Decreased expression of the 17β-oestradiol-metabolizing enzyme CYP1B1 has been reported in female PAH patients harbouring a BMPRII mutation compared with unaffected female carriers. Multiple factors modulate the levels of oestrogen-metabolizing enzymes in the liver and target tissues, and the biological effects of an oestrogen will therefore depend on the profile of metabolites formed and the biological activities of each of these metabolites. 17β-oestradiol is metabolized to both pro- and anti-proliferative metabolites and its effects will depend on its metabolism. 17β-oestradiol can be converted to oestrone and subsequently metabolized to 16α-hydroxyestrone (16-OHE1) via CYP3A4. Or alternatively, 17β-oestradiol is metabolized to 2-hydroxyestradiol (2-OHE) via the oestrogen-metabolizing enzymes CYP1A1/2 and to a lesser extent via CYP1B1. 2-OHE can itself be metabolized to 2-methoxyestradiol (2-ME) via catechol O-methyltransferase. Both 2-OHE and 2-ME have anti-proliferative effects on cells, whereas 16α-OHE1 stimulates proliferation by constitutively activating the oestrogen receptor. Metabolism of 17β-oestradiol will therefore be species-, gender-, and strain-dependent and differential disruption in the balance of metabolites may therefore account for the differential effects of female hormones in different models of PAH. Consistent with this, 17β-oestradiol did not promote PAH in male SERT+ mice suggesting gender differences in oestrogen metabolism and/or its effects.

As discussed above, in other models of PAH it would appear that male gender predisposes to PAH and 17β-oestradiol may actually be protective in PAH. For example, hPASMCs proliferate to serotonin via stimulation of the 5-HT1B receptors and SERT, and have also been studied to further investigate BMPRII signalling in PAH. We observed that 17β-oestradiol stimulated proliferation, whereas oestrone, oestriol, and progesterone had no effect. This is consistent with our observation that 17β-oestradiol re-established a PAH phenotype in ovariectomized SERT+ mice. An aliquot of 1 nmol/L of 17β-oestradiol was sufficient to promote hPASMC proliferation and similar growth effects have been previously reported in rat PASMCs. This is physiologically relevant as 17β-oestradiol circulates at concentrations between 0.1 and 1 nmol/L and smooth muscle hyperplasia is a hallmark of PAH.

Table 1 Effects of ovariectomy and 17β-oestradiol administration on uterine weight in SERT+ mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Uterine weight (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normoxic</td>
<td></td>
</tr>
<tr>
<td>SERT+</td>
<td>182.70 ± 20.31</td>
</tr>
<tr>
<td>SERT+ OVX</td>
<td>17.66 ± 3.44*</td>
</tr>
<tr>
<td>SERT+ OVX+</td>
<td>93.84 ± 8.93**</td>
</tr>
<tr>
<td>17β oestradiol</td>
<td></td>
</tr>
<tr>
<td>Hypoxic</td>
<td></td>
</tr>
<tr>
<td>SERT+</td>
<td>181.85 ± 12.25</td>
</tr>
<tr>
<td>SERT+ OVX</td>
<td>22.33 ± 0.89*</td>
</tr>
<tr>
<td>SERT+ OVX+</td>
<td>119.41 ± 14.64**</td>
</tr>
<tr>
<td>17β oestradiol</td>
<td></td>
</tr>
</tbody>
</table>
| Values are shown as mean ± SEM (n = 6–9) and analysed by one-way ANOVA followed by Dunnett’s post hoc test. SERT, serotonin transporter; OVX, ovariectomized. *P < 0.001 cf. SERT+. **P < 0.001 cf. SERT + OVX.
the anti-proliferative effects of various 17β oestradiol metabolites, it is also an established nitric oxide-dependent vasodilator in rat pulmonary arteries,35 up-regulates endothelial nitric oxide synthase expression in pulmonary arterial endothelial cells36 and suppresses hypoxia-induced endothelin-1 gene expression.37 These effects may protect against the development of PAH in some species and/or strains. However, our results suggest that when SERT is up-regulated, 17β oestradiol loses these protective effects and this may be via facilitating the mitogenic effects of serotonin. The implications of our study may translate clinically and help explain the inconsistency of the occurrence of PAH which may depend on multiple influences on 17β oestradiol metabolism including age, early menopause, gender, and various other factors that affect 17β oestradiol metabolism.

There are multiple serotonin effects within the pulmonary circulation which promote PAH including microthrombosis, arterial vasoconstriction, and proliferation. Indeed, it has been previously shown that TPH1, SERT, and the 5-HT1B receptors are all implicated in both human and experimental PAH. For example, the expression of TPH1, the rate-limiting enzyme involved in peripheral serotonin synthesis, is increased in the lungs of IPAH patients.38 The exogenous administration of serotonin uncovers a PAH phenotype in BMPRII+/− mice39 and also increases the severity of hypoxia-induced PAH in rats.40 In addition, mice deficient of peripheral serotonin (tph1−/− mice), achieved through deletion of the tph1 gene, do not develop hypoxia-induced PAH41 or dexfenfluramine-induced PAH.13 Serotonin effects within the pulmonary vasculature are mediated in part via SERT. For example, hPASMCs derived from IPAH patients proliferate to a greater extent than those from controls following serotonin stimulation and this is dependent on SERT activity.14 A genetic polymorphism leading to increased activity/expression of SERT has been identified in a small cohort of PAH patients.14 Subsequent studies in larger patient studies have failed to support these findings although patients with the SERT polymorphism may present at an earlier age than those without.41,42 As previously reported19 and further observed in the current study, mice overexpressing SERT develop PAH and severe hypoxia-induced PAH. Conversely, mice devoid of the SERT gene are less susceptible to the development of hypoxia-induced PAH.43 Here, our findings demonstrate that female gender is also a risk factor in the development of PAH in SERT+ mice.

In the central nervous system, oestrogens influence serotonin signalling via up-regulation of multiple pathway mediators including TPH and SERT.17,44 On this premise, we hypothesized that 17β oestradiol was similarly affecting the serotonin system within the pulmonary circulation and this was the mechanism through which serotonin and 17β oestradiol synergise to facilitate PAH. Thus, we investigated whether 17β oestradiol regulated expression of peripheral serotonin (tph1−/− mice), achieved through deletion of the tph1 gene, do not develop hypoxia-induced PAH41 or dexfenfluramine-induced PAH.13 Serotonin effects within the pulmonary vasculature are mediated in part via SERT. For example, hPASMCs derived from IPAH patients proliferate to a greater extent than those from controls following serotonin stimulation and this is dependent on SERT activity.14 A genetic polymorphism leading to increased activity/expression of SERT has been identified in a small cohort of PAH patients.14 Subsequent studies in larger patient studies have failed to support these findings although patients with the SERT polymorphism may present at an earlier age than those without.41,42 As previously reported19 and further observed in the current study, mice overexpressing SERT develop PAH and severe hypoxia-induced PAH. Conversely, mice devoid of the SERT gene are less susceptible to the development of hypoxia-induced PAH.43 Here, our findings demonstrate that female gender is also a risk factor in the development of PAH in SERT+ mice.

In the central nervous system, oestrogens influence serotonin signalling via up-regulation of multiple pathway mediators including TPH and SERT.17,44 On this premise, we hypothesized that 17β oestradiol was similarly affecting the serotonin system within the pulmonary circulation and this was the mechanism through which serotonin and 17β oestradiol synergise to facilitate PAH. Thus, we investigated whether 17β oestradiol regulated expression of peripheral serotonin (tph1−/− mice), achieved through deletion of the tph1 gene, do not develop hypoxia-induced PAH41 or dexfenfluramine-induced PAH.13 Serotonin effects within the pulmonary vasculature are mediated in part via SERT. For example, hPASMCs derived from IPAH patients proliferate to a greater extent than those from controls following serotonin stimulation and this is dependent on SERT activity.14 A genetic polymorphism leading to increased activity/expression of SERT has been identified in a small cohort of PAH patients.14 Subsequent studies in larger patient studies have failed to support these findings although patients with the SERT polymorphism may present at an earlier age than those without.41,42 As previously reported19 and further observed in the current study, mice overexpressing SERT develop PAH and severe hypoxia-induced PAH. Conversely, mice devoid of the SERT gene are less susceptible to the development of hypoxia-induced PAH.43 Here, our findings demonstrate that female gender is also a risk factor in the development of PAH in SERT+ mice.

In the central nervous system, oestrogens influence serotonin signalling via up-regulation of multiple pathway mediators including TPH and SERT.17,44 On this premise, we hypothesized that 17β oestradiol was similarly affecting the serotonin system within the pulmonary circulation and this was the mechanism through which serotonin and 17β oestradiol synergise to facilitate PAH. Thus, we investigated whether 17β oestradiol regulated expression of
Figure 4 Human pulmonary artery smooth muscle cell (hPASMC) proliferation to a range of concentrations (0.1–1 nmol/L) of 17β oestradiol, oestrone, oestriol, and progesterone in the presence of 2.5% FBS. 17β oestradiol increases both cell number and DNA synthesis at 1 nmol/L (A and B). Oestrone (C and D), oestriol (E and F), and progesterone (G and H) do not increase hPASMC proliferation at a range of concentrations. *P < 0.05, **P < 0.01 increased proliferation cf. 2.5% FBS. n = 3 for each experiment and performed in duplicate. Data are expressed as mean ± SEM and analysed by one-way ANOVA followed by Dunnett's post hoc test.
any serotonin pathway mediators in hPASMCs. Here, we report for the first time that TPH1 is present in hPASMCs, and this is markedly increased following stimulation with 17β oestradiol. In addition, 17β oestradiol also increased both 5-HT1B receptor and SERT expression in hPASMCs. This may be relevant, as both have previously been shown to interact to promote serotonin-induced hPASMC proliferation.26 On the basis of these findings, we were interested in determining if 17β oestradiol-mediated hPASMC proliferation is completely abolished in the presence of the TPH inhibitor PCPA and the 5-HT1B receptor antagonist SB224289. This suggests that serotonin synthesis, and subsequent activation of the 5-HT1B receptor, is essential in mediating the proliferative response of hPASMCs to 17β oestradiol. It could be expected that the increased SERT expression may also increase the SERT-dependent serotonin activation of small GTPases within the cytoplasm (‘serotonylation’), to further promote the mitogenic effects of serotonin. However, the observation that the SERT inhibitor citalopram was not sufficient to block proliferation suggests a minor role, although co-operation between the 5-HT1B receptors and SERT have previously been shown to mediate serotonin-induced proliferation and therefore a role for SERT in 17β oestradiol-induced proliferation cannot be ruled out. These findings are consistent with a role for serotonin in PAH as TPH1, the 5HT1B receptors, and SERT have all previously been implicated in the pathogenesis of both experimental and human PAH, as discussed above.

We have previously reported that un-dosed SERT+ mice develop elevated RVSP in the absence of RVH.19 Conversely, chronically hypoxic tph1−/− mice develop RVH in the absence of increased RVSP.12 The present study confirms dissociation of these indices in SERT+ mice. Further, we now show that ovariectomy decreased RVSP in SERT+ mice whilst having no effect on RVH, and the administration of 17β oestradiol to ovariectomized SERT+ mice increased RVSP whilst decreasing RVH. One explanation for this dissociation is that both 17β oestradiol and serotonin have direct effects on ventricular cardiomyocytes. 17β oestradiol exerts both pro- and anti-hypertrophic effects on these cells.44 Serotonin is considered a survival factor in cardiomyocytes,45 and apoptosis is a pre-dominant feature of ventricular remodelling.46

In conclusion, here, we have shown that female gender pre-disposes SERT+ mice to the development of PAH and 17β oestradiol is critical to this. 17β oestradiol appears to increase serotonin synthesis in hPASMCs. This, in combination with 17β oestradiol-mediated

Figure 5 Time response effects of 1 nmol/L 17β oestradiol on tryptophan hydroxylase-1 (TPH1), 5-HT1B receptor, and serotonin transporter (SERT) expression in hPASMCs. Representative western blots and densitometrical analysis showing that 1 nmol/L 17β oestradiol increases expression of TPH1 (A and B), the 5-HT1B receptor (C and D), and SERT (E and F) at 4 and 24 h. *P < 0.05 cf. control. n = 4 for each experiment. Quantitative data are shown as mean ± SEM and analysed using one-way ANOVA followed by Dunnett’s post hoc test.
The proliferation of hPASMCs and serotonin-induced constriction of pulmonary arteries have previously been shown to mediate both serotonin-induced proliferation of hPASMCs in the presence of 2.5% FBS. 17β oestradiol-mediated proliferation is inhibited by the presence of the TPH inhibitor, PCPA (10 μmol/L), and the 5-HT1B receptor antagonist SB224289 (300 nmol/L) but unaffected by the 5-HT2A receptor antagonist ketanserin (30 nmol/L) or the SERT inhibitor citalopram (1 μmol/L). Both cell counts and [3H]thymidine incorporation were performed. *P < 0.05, **P < 0.01 increased proliferation cf. 2.5% FBS; †P < 0.05, ††P < 0.01 increased proliferation cf. 1 nmol/L 17β oestradiol. n = 3 for each experiment and performed in duplicate. Data are expressed as mean ± SEM and analysed by one-way ANOVA followed by Dunnett’s post hoc test.

Figure 6
Effects of inhibitors for serotonin synthesis, 5-HT receptors, and serotonin transporter (SERT) on 1 nmol/L 17β oestradiol-mediated proliferation of hPASMCs in the presence of 2.5% FBS. 17β oestradiol-mediated proliferation is inhibited by the presence of the TPH inhibitor, PCPA (10 μmol/L), and the 5-HT1B receptor antagonist SB224289 (300 nmol/L) but unaffected by the 5-HT2A receptor antagonist ketanserin (30 nmol/L) or the SERT inhibitor citalopram (1 μmol/L). Both cell counts and [3H]thymidine incorporation were performed. *P < 0.05, **P < 0.01 increased proliferation cf. 2.5% FBS; †P < 0.05, ††P < 0.01 increased proliferation cf. 1 nmol/L 17β oestradiol. n = 3 for each experiment and performed in duplicate. Data are expressed as mean ± SEM and analysed by one-way ANOVA followed by Dunnett’s post hoc test.

Acknowledgements
We thank Professor N.W. Morrell (University of Cambridge, UK) for the supply of human PASMCs.

Conflict of interest: none declared.

Funding
This work is supported by a Capacity Building Award in Integrative Mammalian Biology funded by the Biotechnology and Biological Sciences Research Council, British Pharmacological Society, Knowledge Transfer Network, Medical Research Council and Scottish Funding Council, the Medical Research Council, and a British Heart Foundation Four Year PhD programme.

References

