Early prediction of proarrhythmic cardiotoxicity in the drug development process

Evgeny P. Anyukhovsky*

Department of Pharmacology, Center for Molecular Therapeutics, College of Physicians and Surgeons of Columbia University, 630 West 168 Street, PH 7West-318, New York, NY 10032, USA

Online publish-ahead-of-print 9 May 2011

This editorial refers to ‘Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk’ by G.R. Mirams et al., pp. 53–61, this issue.

Drug-induced QT interval prolongation and the appearance of life-threatening Torsade de Pointes (TdP) arrhythmia are potential risks during treatment with a variety of drug compounds, including anti-arrhythmics and non-cardiovascular drugs. 1–3 Because of this arrhythmia are potential threat and the appearance of life-threatening Torsade de Pointes (TdP) arrhythmia are potential risks during treatment with a variety of drug compounds, including anti-arrhythmics and non-cardiovascular drugs. 1–3 Because of this arrhythmia are potential threat, Redfern et al.

To assess the ability of new compounds to interact with hERG channels. These experiments do not require labour-intensive) does not have a high predictive value: there is no conclusive evidence to show that drug-induced prolongation of the QT interval inevitably leads to TdP. The link between QT interval prolongation and TdP is very complex and affected by many factors, including age, gender, electrolyte imbalance, disease states, and concomitant medication. 8,9 Modelling of these clinical conditions in animals is very complicated, if at all possible. It is

* Corresponding author. Tel: 212-305-6247; fax: 212-305-8351, Email: ea29@columbia.edu

The opinions expressed in this article are not necessarily those of the Editors of Cardiovascular Research or of the European Society of Cardiology.

doi:10.1093/cvr/cvr130

91, 7–8

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2011. For permissions please email: journals.permissions@oup.com.
therefore important that no assumptions about the mechanisms leading to TdP are needed to show the predictive power of the method of Mirams et al.; it is based simply on a correlation between the results of a simulation study and the clinically recorded incidence of TdP.

In further work, to improve prediction of the model, the authors plan to add more drugs to the data set, including effects of compounds on other ionic currents contributing to repolarization (late sodium and I_{Ks}), and long-term drug-induced changes (membrane protein trafficking and expression). In fact, the more drugs are included in the data set, the stronger and more substantiated the conclusions made will be. With regard to addition of more ion channels and especially data about trafficking and expression, these experiments require more time and are more expensive and labour intensive than those currently used in the model. Therefore, it will be very important to test whether inclusion of these data can significantly improve the reliability of early prediction of a proarrhythmic potential of new drugs.

Currently, the research and development cost to bring a new molecular entity to market is approximately US $1.8 billion, and preclinical drug discovery accounts for almost one-third of this.10 Thus, any new method that can simplify and accelerate the studies assessing cardiac safety of new compounds could increase the number of new and innovative drugs available in the future and decrease their cost. The approach of Mirams et al. shows that the use of computational modelling and simulation in combination with experimental techniques could be a powerful and inexpensive tool for early assessment of drug safety.

References