LETTERS TO THE EDITOR

doi:10.1093/cvr/cvt189
Online publish-ahead-of-print 30 July 2013

Antioxidant effects of phosphodiesterase-5 inhibitors

This letter refers to ‘The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension’ by Y.-F. Fan et al., Cardiovascular Research (2013) 99, 395–403.

Fan et al. have shown convincing results indicating that the phosphodiesterase-5 (PDE5) inhibitor vardenafil reduces oxidative stress and this effect was associated with attenuation of chronic pulmonary hypertension (PH) in rats and in humans.

We would like to make the point that the results shown by Fan et al. may have underestimated the beneficial effects of PDE5 inhibition in their animal model of PH. This suggestion is based on the fact that they determined biochemical alterations associated with PH in samples from animals that survived the monocrotaline challenge. Since the mortality rate was higher in the control group of monocrotaline-induced PH that received saline (20% mortality rate) when compared with the monocrotaline-induced PH that received vardenafil (5% mortality rate), it is highly probable that their results underestimate the biochemical alterations associated with monocrotaline-induced PH. One could intuitively expect that greater differences between groups would have been found, had the authors studied animals before they died. Moreover, PDE5 inhibition could exert more efficient effects in those animals more severely deprived of endogenous nitric oxide (NO) formation (non-surviving animals) during acute pulmonary embolism.

Another important finding is that the antioxidant effects associated with vardenafil are associated with significant changes in the expression of relevant enzymes involved in the regulation of oxidative stress including endothelial nitric oxide synthase (eNOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX). While these particular results may explain the effects reported by the authors, the antioxidant and antihypertensive effects of vardenafil may also involve other mechanisms not addressed by the authors. Importantly, we have previously shown that PDE5 inhibition with sildenafil attenuates acutely induced PH and this effect was associated with acute antioxidant effects. It is clear that the rapid (1–2 h) antioxidant effects that we found in our animal models of acute pulmonary embolism are not dependent on more delayed effects of sildenafil on the expression of enzymes involved in the regulation of oxidative stress. While the mechanisms explaining acute antioxidant effects associated with PDE5 inhibition are not clear at this time, they apparently contribute to reduce the increases in pulmonary vascular resistance.

References


Joseph E. Tanus-Santos*
Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
*Corresponding author. Tel: +55 16 3602 3163; fax: +55 16 3602 0220, Email: tanus@fmrp.usp.br; tanussantos@yahoo.com

Antioxidant effects of phosphodiesterase-5 inhibitors: reply

We thank Dr. Tanus-Santos for his interest in our study. The study by Muniz et al. found that erectile dysfunction patients with the lowest levels of endogenous nitric oxide (NO) have the best responses to the phosphodiesterase-5 (PDE5) inhibitor sildenafil. We believe an equivalent situation exists in patients with pulmonary arterial hypertension (PAH). We found improved NO production in the patients with PAH included in our study, suggesting that these patients are the best candidates to take advantage of the benefits of vardenafil treatment. This may be because vardenafil is a relatively selective pulmonary vasodilator, which exerts its effect on PAH by increasing levels of cyclic guanosine monophosphate (cGMP) and augmenting the NO-cGMP axis.

Monocrotaline (MCT)-induced PAH in rats may not fully represent PAH in humans; however, it is a well-established experimental model that has been extensively used. In our study, pathologic alterations due to PAH became apparent 7 days after injection and thereafter progressively developed, leading to death ~4 weeks later. Vardenafil treatment not only improved survival, but also reduced the severity of PAH. Similar results were shown in the study by Schermuly et al.; the survival rate of the MCT group decreased gradually to 48% at Day 42, but fewer animals died in the MCT-sildenafil group when compared with the MCT group [survival rates: 70% (14/20) vs. 48% (12/25), respectively]. Vardenafil studies involving other animal models of PAH as well as in vitro studies of related biochemical pathways that might be involved in PAH would be beneficial.

Tanus-Santos and colleagues reported that sildenafil attenuated acutely induced pulmonary hypertension and had antioxidant effects in animal models of acute pulmonary embolism. Indeed, the acute and chronic effects of PDE5 inhibitors were thought to result solely from their ability to increase cGMP levels preferentially in the pulmonary artery smooth muscle cells, thereby inducing relatively selective pulmonary vasodilatation, in addition to antioxidant effects on the vessel wall. However, acute pulmonary

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013. For permissions please email: journals.permissions@oup.com.