Urotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation

María Rodríguez-Moyano†, Ignacio Díaz†, Natalia Dionisio², Xuexin Zhang³, Javier Ávila-Medina¹, Eva Calderón-Sánchez¹, Mohamed Trebak³, Juan Antonio Rosado², Antonio Ordoñez¹*, and Tarik Smani¹*

¹Group of Cardiovascular Physiopathology Lab 113, Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville, Hospital of Virgen del Rocío/CSIC/University of Sevilla, Avenida Manuel Siurot s/n, Sevilla 41013, Spain; ²Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres 10071, Spain; and ³Nanobioscience Constellation, College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12203, USA

Received 4 March 2013; revised 12 July 2013; accepted 6 August 2013; online publish-ahead-of-print 9 August 2013

Time for primary review: 64 days

Aims

Urotensin-II (UII) is a vasoactive peptide that promotes vascular smooth muscle cells (VSMCs) proliferation and is involved in the pathogenesis of atherosclerosis, restenosis, and vascular remodelling. This study aimed to determine the role of calcium (Ca²⁺)-dependent signalling and alternative signalling pathways in UII-evoked VSMCs proliferation focusing on store-operated Ca²⁺ entry (SOCE) and epithelium growth factor receptor (EGFR) transactivation.

Methods and results

We used primary cultures of VSMCs isolated from Wistar rat aorta to investigate the effects of UII on intracellular Ca²⁺ mobilization, and proliferation determined by the 5-bromo-2-deoxyuridine (BrdU) assay. We found that UII enhanced intracellular Ca²⁺ concentration ([Ca²⁺]) which was significantly reduced by classical SOCE inhibitors and by knock-down of essential components of the SOCE such as stromal interaction molecule 1 (STIM1), Orai1, or TRPC1. Moreover, UII activated a Gd³⁺-sensitive current with similar features of the Ca²⁺ release-activated Ca²⁺ current (I.CRAC). Additionally, UII stimulated VSMCs proliferation and Ca²⁺/cAMP response element-binding protein (CREB) activation through the SOCE pathway that involved STIM1, Orai1, and TRPC1. Co-immunoprecipitation experiments showed that UII promoted the association between Orai1 and STIM1, and between Orai1 and TRPC1. Moreover, we determined that EGFR transactivation, extracellular signal-regulated kinase (ERK) and Ca²⁺/calmodulin-dependent kinase (CaMK) signalling pathways were involved in both UII-mediated Ca²⁺ influx, CREB activation and VSMCs proliferation.

Conclusion

Our data show for the first time that UII-induced VSMCs proliferation and CREB activation requires a complex signalling pathway that involves on the one hand SOCE mediated by STIM1, Orai1, and TRPC1, and on the other hand EGFR, ERK, and CaMK activation.

Keywords

Smooth muscle • Proliferation • Ion channels • EGFR

1. Introduction

Vascular smooth muscle cells (VSMCs) play a central role in controlling vascular tone and maintaining the integrity of vessel wall. Under physiological conditions, VSMCs contraction and relaxation are regulated by bioelectrically active mediators which are synthesized and secreted to modulate the vascular tone. Many of these mediators might play also a pathological role, and induce abnormal cellular proliferation during disease-related vascular remodelling.¹ Urotensin-II (UII) has emerged as a potent vasoconstrictor in different mammal species, including humans, and has been related to several cardiovascular diseases.²,³ The particular interest of the UII system relies into its ‘quasi-irreversible’ binding to a G-protein-coupled receptor (GPCR), known as a urotensin receptor (UTS2R).⁴ UTS2R is functionally linked to Gq and phospholipase C (PLC), and its activation promotes long-term effects such as VSMCs proliferation.⁴,⁵ UII mediates VSMCs proliferation and

¹ These authors contributed equally to this work

* Corresponding author. Tel: +34 9559230 57; fax: +34 955923101. Email: tasmani@us.es (T.S.); antorfernan@us.es (A.O.).

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013. For permissions please email: journals.permissions@oup.com.
remodelling through different signalling molecules such as ERK1/2 and RhoA/Rho kinase,6 or via Ca2+/calmodulin-dependent kinase (CaMK).7 Moreover, a recent study has implicated epidermal growth factor receptor (EGFR) transactivation and ERK phosphorylation in UII-induced rat aortic VSMCs proliferation.8

Recently, we have determined that UII-induced rat coronary artery contraction involves [Ca2+]i, increase through the store-operated Ca2+ entry (SOCE) pathway, which depends on the activation of the Ca2+-sensory regulatory protein stromal interaction molecule 1 (STIM1), and Orai1, the pore forming subunit of store-operated calcium channel (SOCC).9 Only in recent years, the activation of the SOCE pathway has been associated with VSMCs proliferation.10–12 VSMCs switch from a ‘contractile’ to a ‘synthetic’ proliferative phenotype is regulated by a rise in [Ca2+]i, and by up or down-regulation of several SOCE-associated proteins as STIM1 and Orai1.12,13 Similar findings have been shown for some TRPC channels (TRPC1/3/5/6) that are activated by the sarcoplastic reticulum depilation and suggested to be part of the endogenous SOCC.14

Several reports have also demonstrated that SOCE is important for transcription factor activation that regulate the expression of many proliferating genes. Particularly, nuclear factor of activated T-cell (NFAT), or Ca2+/cAMP response element-binding protein (CREB) that are activated by Ca2+-induced phosphorylation.15–18 Additionally, CREB can be targeted by different signalling pathways, such as EGFR and ERK1/2, which promote VSMCs proliferation and/or hypertrophy.18

Given the increasing importance of SOCE in VSMC proliferation and neo-intima formation,13 this study sought to unveil the role of SOCE and the transcription of CREB in UII-mediated proliferation, taking in consideration the increasing interest regarding UII signalling mechanism and its relationship with cardiovascular disease.3

2. Methods

All the procedures of this study were approved by the Bioethical Committee of the Institute of Biomedicine of Seville (IBiS, Spain) in accordance with the animal care guidelines of the European Communities Council (86/609/EEC). An expanded Materials and Methods section detailing the protocols and techniques used in this study can be found in the Supplementary material online.

2.1 Primary aortic smooth muscle cell preparation

Adult male Wistar rats weighing 250–350 g were heparinized (4 IU/g i.p.) and anesthetized by i.p. administration of pentobarbital sodium overdose. Primary culture of aortic VSMCs was prepared following the same protocol as described previously.19,20

2.2 Intracellular Ca2+ measurement

Changes in [Ca2+]i were measured in Fura-2-AM-loaded cells. Fluorescence images of 15–30 cells were recorded and analysed with a digital fluorescence imaging system (InCyt Basic lm2, Intracellular Imaging, Inc., Imsol, UK) as described previously.9,21

2.3 Patch clamp study

Whole-cell patch clamp recordings were performed to register Icrac in VSMCs. The patch clamp technique was carried out using an Axopatch 200B and Digidata 1440A (Axon Instruments) as described previously.10,13

2.4 BrdU immunofluorescence

Cell proliferation was estimated by the 5-bromo-2-deoxyuridine (BrdU) incorporation assay. Briefly, cells were grown until they reached 70% confluence, then culture medium was replaced with serum-free DMEM, supplemented with 0.1% foetal bovine serum. Cells were then incubated with UII and grown for additional 48 h. After different treatments, cells were immunostained following the protocol described in Supplementary material online.

3. Results

3.1 UII activates store-operated Ca2+ entry and Icrac-like currents in VSMCs through UTS2R

First, we studied the increase of [Ca2+]i, stimulated by UII in aortic VSMCs. Figure 1A shows that UII (100 nM) evoked a Ca2+ response with two components: a [Ca2+]i increase in free Ca2+ solution corresponding to Ca2+ release from intracellular stores followed by a sustained enhancement in [Ca2+]i after Ca2+ (2 mM) re-addition, which corresponds to Ca2+ influx from extracellular medium. Next, we examined UTS2R and PLC inhibition with urantide22 and U73122, respectively. As illustrated in Figure 1A, both urantide (100 nM) and U73122 (50 μM) inhibited UII-induced Ca2+ release and extracellular Ca2+ influx.

Recently, we have demonstrated that UII-induced coronary artery vasoscontriction involves Ca2+ entry through SOCC.9 Here, we examined whether these channels participate in UII-mediated Ca2+ entry in aortic VSMCs. Figure 1B shows that UII (100 nM) evoked a Ca2+ influx, after re-addition of extracellular Ca2+ (2 mM), similar to that typically induced by passive depletion of the intracellular store with thapsigargin (2 μM). As summarized in Figure 1B, UII-evoked Ca2+ entry was blocked with classical inhibitors of SOCE, Gd3+ (5–10 μM) and 2-aminoethoxydiphenyl borate (2APB) (75 μM). Furthermore, the addition of ML9 (25 and 50 μM) after Ca2+ restoration also inhibited significantly the Ca2+ influx elicited by UII, as shown in Figure 1C.

Next, to characterize the current mediating UII-induced SOCE in VSMCs, we tested if UII could activate CRAC channels in VSMCs. VSMCs have been demonstrated to start expressing whole-cell currents through CRAC channels (Icrac-like current) after several passages in culture medium.10 Whole-cell current was measured in a bath solution containing 20 mM Ca2+ to determine Ca2+-Icrac and was amplified using short pulses of standard divalent-free (DVF; Na2+-Icrac) solutions. Figure 2A shows that cell dialysis with 150 mM free-Ca2+ solution did not activate any inward current. Meanwhile, as shown in Figure 2B and summarized in Figure 2C and D, UII (1 μM) addition to the bath solution stimulated a significant inward Ca2+-Icrac current that was amplified in DVF solution. Both developed inward currents, Ca2+-Icrac and Na+-Icrac, were sensitive to Gd3+ (5 μM, Figure 2B). The analysis of the current–voltage (I–V) curve for Ca2+-Icrac (Figure 2E) and Na+-Icrac (Figure 2F) confirms the inward rectification of UII-induced current, one of the features of Icrac. Altogether, these data show for the first time that UII activates SOCE and Icrac-like current in aortic VSMCs.

3.2 UII promotes VSMCs proliferation associated with a significant rise in SOCE

The effect of UII on VSMCs proliferation was assessed by BrdU incorporation. Figure 3A shows that VSMCs incubation with UII (100 nM)
during 48 h promoted significant increase in BrdU positive marked cells. However, cell pre-treatment with SOCE blockers, ML9 (5 μM) and 2APB (50 μM), inhibited significantly VSMCs proliferation, which confirms SOCE role in UII proliferative effects. Cell proliferation has been associated with several intracellular Ca^{2+} alterations with a great implication of SOCE.10,14 So, we examined whether long-term incubation with UII could potentiate the rise in [Ca^{2+}]i mediated by SOCE.

Thapsigargin-activated SOCE was evaluated in serum-starved VSMCs treated 48 h with UII (100 nM) to mimic the same condition as in Figure 3A. As illustrated in Figure 3B, thapsigargin (2 μM) induced significantly higher responses in VSMCs incubated with UII comparing with untreated cells, which indicates that VSMCs proliferation is accompanied with a significant increase in SOCE. Next, we checked the expression of key proteins related to SOCE in UII-mediated proliferating VSMCs. Figure 3C shows that serum-starved cells treated with UII (100 nM during 48 h) presented significant increase in mRNA expression of STIM1 and Orai1 but not Orai3, whereas Orai2 expression was slightly decreased. In addition, TRPC1 that is believed to participate in the SOCE signalling pathway was also up-regulated in VSMCs treated with UII. These data confirm that proliferating VSMCs stimulated with UII show high degree of SOCE due apparently to the up-regulation of STIM1, Orai1, and TRPC1.

Figure 1 Urotensin-II activates UTS2R and induces store-operated Ca^{2+} influx. (A) Representative traces presented as fura-2 ratio (F340/F380) in aortic VSMCs and summary data of UII induced [Ca^{2+}]i mobilization in isolated VSMCs. UII (100 nM) was applied 3–4 min in the absence of extracellular Ca^{2+} and then Ca^{2+} (2 mM) was added as indicated. Traces are for VSMCs treated with UII (control), for cells pre-incubated 10 min with U73122 (100 nM), or with PLC inhibitor (U73122, 50 μM). (B) Left panel illustrates representative recordings of the changes in [Ca^{2+}]i. UII (100 nM) or thapsigargin (TG, 2 μM) were applied as indicated in (A). Traces are for VSMCs treated with UII or TG, and for cells incubated with UII and treated with 2APB (+2APB, 50 μM) 1–2 min before Ca^{2+} addition as indicated by ‘*’. Right panel shows summary data of experiments illustrated in left. ‘basal’ is for Ca^{2+} influx in untreated VSMCs, and ‘+Gd^{3+}’ is for Ca^{2+} influx recorded in cells pre-incubated 3 min with gadolinium (5 μM). (C) Representative recordings (black trace) and summary data of the effects of ML9 (25 and 50 μM respectively) applied after Ca^{2+} influx induced by UII (100 nM). The addition of vehicle (grey trace) rather than ML9 had no effect on Ca^{2+} influx. The summary data in (A, B, and C) correspond to large number of cells (n = 60–220 cells) from 4–12 primary cultures. Data are means ± SEM.
3.3 UII-stimulated VSMCs proliferation requires STIM1 and Orai1-dependent SOCE

STIM1 and Orai1 are key proteins for SOCE activated by UII in the coronary artery. Thus, we investigated the role of STIM1 and Orai1 in cells transfected with siRNA in UII-induced Ca²⁺ increase and proliferation of aortic VSMCs. Supplementary material online, Figure SIA confirms that knockdown of STIM1 and Orai1 was successfully achieved in VSMCs transfected with siRNA. The study of [Ca²⁺]i mobilization showed that UII induced a sustained Ca²⁺ influx in cells transfected with scrambled siRNA similar to that recorded in non-transfected cells (Figure 4A). Meanwhile, STIM1 and Orai1 knockdown with siRNA significantly decreased UII-stimulated Ca²⁺ influx (Figure 4A). Moreover, Figure 4B and Supplementary material online, Figure SIB show that Orai1 and STIM1 down-regulation prevented VSMCs proliferation. These results confirm that STIM1 and Orai1 are implicated in UII-induced SOCE and VSMCs proliferation.

3.4 Evidence of TRPC1 participation in UII stimulation of calcium entry and VSMCs proliferation

Several reports have investigated the role of TRPC1 in SOCE in excitable and non-excitable cells. Here, we explored the potential participation of TRPC1 in Ca²⁺ influx and VSMCs proliferation induced by UII. Figure 4A and C confirm that siRNA-mediated TRPC1 down-regulation induced by UII in VSMCs, Ca²⁺ ICRAC and Na⁺ ICRAC were developed in seven and five VSMCs. (E and F) The current–voltage (I–V) relationships for Ca²⁺ ICRAC (E) (grey trace) and Na⁺ ICRAC (F) (grey trace) were taken from (A and B), respectively, where indicated with ‘+’ and ‘*’. In all sweeps represented in (E and F), background currents were subtracted. Data are means ± SEM.
between TRPC1 and Orai1, and between Orai1 and STIM1. Altogether, these data indicate that UII activates a functional interaction between key SOCE proteins, STIM1, Orai1, and TRPC1, that allows Ca^{2+} entry with consequent VSMCs proliferation.

3.5 Role of EGFR transactivation, ERK phosphorylation, and CaMKII in UII signalling

UII effects on $[\text{Ca}^{2+}]$i increase and proliferation have been related to other signalling pathways as EGFR, ERK, or CaMK. Figure 5A shows that UII (100 nM) activated EGFR phosphorylation 5 min after its addition which was sustained through 20 min of cells exposure to UII. EGFR phosphorylation was efficiently reduced in cells pre-treated with EGFR inhibitor AG1478 (100 nM, Figure 5A right). Furthermore, ERK activation is important for the EGFR signalling pathway; therefore, we determined ERK phosphorylation by UII. Figure 5B shows that ERK phosphorylation increased within 5 min of UII (100 nM) expression higher levels of STIM1, Orai1, and TRPC1 mRNA compared with untreated quiescent VSMCs (0.1%FBS). Orai2 mRNA expression decreased, meanwhile Orai3 mRNA levels remained unchanged ($n = 4–5$). ‘*’ and ‘†’ indicate significance at $P < 0.05$ comparing with untreated VSMCs. Data are means ± SEM.

Figure 3 Urotensin-II stimulates VSMCs proliferation associated with an increase in SOCE and STIM1, Orai1 and TRPC1 expression. (A) Left panel, representative images showing the immunostaining with anti-BrdU antibody (upper images) and DAPI (to detect nuclei, lower images) of VSMCs. UII (100 nM) was applied during 48 h in control VSMCs, or in cells pre-incubated 5 min with ML9 (10 μM) or with 2APB (50 μM) to inhibit SOCE. Right panel, summary data showing the per cent of BrdU positive cells in experiments done as in left panel ($n = 3–4$). (B) Representative traces of Ca^{2+} changes and summary data showing that thapsigargin (TG, 2 μM) activated higher SOCE in growth-arrested VSMCs treated 48 h with 100 nM UII (0.1%FBS+UII) than in untreated quiescent VSMCs (0.1%FBS). $n = 40–80$ cells from three independent cultures. (C) VSMCs treated 48 h with UII (100 nM) expressed higher levels of STIM1, Orai1, and TRPC1 mRNA compared with untreated quiescent VSMCs (0.1%FBS). Orai2 mRNA expression decreased, meanwhile Orai3 mRNA levels remained unchanged ($n = 4–5$). ‘*’ and ‘†’ indicate significance at $P < 0.05$ comparing with untreated VSMCs. Data are means ± SEM.
ML9 (10 μM) reduced significantly EGFR and ERK phosphorylation. Furthermore, we tested the implication of EGFR and ERK activation in UII-mediated [Ca^{2+}] increase and cells proliferation, respectively. As shown in Figure 5C and D, the pre-incubation of VSMCs with AG1478 (100 nM) and PD98059 (10 μM) reduced significantly [Ca^{2+}] increase and VSMCs proliferation.

Moreover, a previous study has implicated CaMK in UII-induced pulmonary artery VSMCs proliferation.7 Hence, we explored CaMKII implication in UII effects in aortic VSMCs using the specific inhibitor KN93. As shown in Supplementary material online, Figure SIIIA, pretreatment of cells with KN93 (2 μM) to block CaMKII inhibited significantly intracellular Ca^{2+} influx induced by UII, and potently prevented VSMCs proliferation (Supplementary material online, Figure SIIIB). These data confirm that UII effects in rat aorta VSMCs involve the transactivation of EGFR, ERK phosphorylation, and CaMKII signalling pathways.

Figure 4 STIM1, Orai1, and TRPC1 participate in Urotensin-II evoked SOCE and proliferation of VSMCs. (A) Representative traces and summary data showing [Ca^{2+}] changes recorded in VSMCs treated 5 min with UII (100 nM) in experiments similar to those shown in Figure 1B. Data are from VSMCs transfected 72 h prior to the experiments, with scramble siRNA (scramble), STIM1 siRNA (siSTIM1), Orai1 siRNA (siOrai1), or TRPC1 siRNA (siTRPC1). ‘Basal’ is for Ca^{2+} influx in untreated VSMCs, and ‘control’ is for non-transfected cells treated with UII. Data are from four to seven different transfections. (B and C) Data summary indicating the per cent of BrdU positive cells in VSMCs transfected with scrambled siRNA (scramble), siRNA against STIM1 (siSTIM1), Orai1 (siOrai1), or TRPC1 (siTRPC1). UII (100 nM) was applied during 48 h before the BrdU assay, n = 3–4 independent experiments. (D and E) Summary data representing by immunoprecipitation and western blotting, the quantification of TRPC1–Orai1 and STIM1–Orai1 association in non-stimulated (0.1% FBS), UII-(100 nM) treated cells, and TG-(2 μM) treated VSMCs. Cells were treated 5 min with either UII or TG. Data are means ± SEM, n = 5–6 independent cultures.
3.6 UII activates CREB phosphorylation through SOCE and EGFR transactivation

To highlight downstream pathways involved in UII-mediated SOCE of VSMCs proliferation and to elucidate the link between [Ca$^{2+}$]$_i$ increase and its effects on VSMCs proliferation, we focused on CREB contribution in UII effects. Figure 6A and Supplementary material online, Figure SIV show that VSMCs exposure during 5 min with different concentrations of UII significantly activated CREB. Next, SOCE role in CREB activation was examined. We found that SOCE pharmacological inhibition (Figure 6B), and knockdown of STIM1, Orai1, or TRPC1 (Figure 6C) significantly prevented UII-induced CREB activation, which
confirms the important role of SOCE. Furthermore, we studied the implication of EGFR, ERK, and CaMKII in CREB phosphorylation. Experiments shown in Figure 6D and Supplementary material online, Figure SIIIC demonstrate that all the inhibitors of these ones reduced significantly UII-mediated CREB activation, which indicates that UII activation of CREB involves SOCE and other signalling pathways. Finally, we explored the CREB role in VSMCs proliferation in cells transfected with siRNA against CREB. Figure 6E demonstrates that CREB silencing inhibited significantly UII-induced VSMCs proliferation suggesting the important role of CREB transcription in VSMCs proliferation.

4. Discussion

Several lines of evidence have demonstrated a major contribution of the UII system to cardiovascular diseases, metabolic syndrome, diabetes, or renal disease.3,23 UII acts as a chronic vasoactive regulator thanks to its ‘pseudo-irreversible’ binding and its slow-rate dissociation from the receptor, which leads to prolonged activation of UTS2R allowing long-term effects such as VSMCs proliferation.5,6 Here, we provide pharmacological and molecular data demonstrating the critical role of SOCE key proteins, such as STIM1, Orai1, and TRPC1, in UII-mediated VSMC proliferation. Moreover, our data confirm that UII effects are more complex.
and involve several proliferative signalling pathways, such as EGFR trans-
activation, ERK, CaMKII, and CREB stimulation.

UII binding to its receptor UTS2R stimulates the synthesis of IP₃, which releases Ca²⁺ from internal stores known to activate SOCE simil-
arily to other agonists of GPCR.²⁹,²⁴ We provide data showing that UII acts through UTS2R and PLC signalling cascade, and the induced Ca²⁺-entry displays classical pharmacological features of SOCE. The electro-
physiological study confirms that at least part of the UII-induced Ca²⁺-
flux depends on CRAC-like current. We show for the first time that UII activates a small current in the presence of external Ca²⁺, that is ampli-
dified in DVF bath solutions. The developed current presents similar bio-
physical properties of classical CRAC current, such as strong inward
rectification, and inhibition by low concentrations of lanthanides. Similar characteristics of CRAC currents have been previously recorded in sythetic rat aorta VSMCs activated by cell dialysis with 20 mM BAPTA or with PDGF.¹⁰,¹³ Previously, we have shown that STIM1 and Orai1 are necessary for UII-induced Ca²⁺ entry and vasoconstriction in the rat coronary artery.¹ Here, we determine that UII addition to growth-arrested VSMCs stimulates their proliferation that is associated with an enhancement of thapsigargin-activated SOCE owing certainly to the up-regulation of STIM1, Orai1, and TRPC1. These results agree with previous studies which demonstrated that VSMCs switch from a ‘con-
tractable’ to a ‘synthetic’ proliferative phenotype was associated with changes in the expression of proteins related to Ca²⁺ homeostasis, such as CaV 2.1 channels, Orai1, TRPCs, or intracellular receptors.¹⁴,²⁵ Our data confirm the relevant role of STIM1 and Orai1, in both UII-induced Ca²⁺ influx and VSMCs proliferation, consistent with earlier studies that established the essential role of Orai1 and STIM1 for SOCE and the consequent VSMCs proliferation activated by differ-
ent stimuli in rat aortic VSMCs.¹⁰–¹³

Importantly, we also demonstrate the involvement of TRPC1 in UII-stimulated Ca²⁺ influx and VSMCs proliferation. The implication of TRPC1 in SOCE still remains under debate.²⁶–²⁸ Several groups have shown different interaction between proteins to form the SOCE signalling macromolecular complex (see reviews²⁹,³⁰). Recent studies have shown that SOCE is independent of TRPC1,¹¹,¹² but others have suggested that mammalian SOCC might be heterotetramers and can be formed by different isoforms of TRPC, or by the association between TRPC and Orai.²⁷,³⁰ This discrepancy remains unresolved and might be due to the experimental approaches and/or agonists used to stimulate VSMCs. Here, we show that UII can activate TRPC1 and Orai1-dependent Ca²⁺ entry, and under Ca²⁺ buffering only CRAC current is developed, which might be amplified by TRPC1 asso-
ciation with Orai1. The functional and/or physical association between SOCE key proteins have been barely investigated in VSMCs. Previous studies in VSMCs have demonstrated that STIM1 functionally associates to TRPC1,²⁶ L-type Ca²⁺ channels,³¹ and ion transporters.¹⁴ Our co-immunoprecipitation experiments demonstrate that passive store depletion with thapsigargin or UII addition promotes TRPC1 association with Orai1 and the association between STIM1 and Orai1, which con-
firms such results determined in other cell lines as HEK cells,²⁷ plate-
lets,²⁸ and recently in pulmonary arterial VSMCs.³² Therefore, we be-
think that one of the most important findings in the present study is that upon UII application, Orai1 functionally and physically associates with STIM1 and TRPC1 in aortic VSMCs, which apparently form a macromolecular pathway that mediates [Ca²⁺]i enhancement and further cell proliferation.

Considerable interest has been focused towards the influence of ion channels plasticity and gene expression in VSMCs. It is well known that the sustained Ca²⁺ influx through SOCC is crucial for transcriptional act-
vitation of CREB, which drives cellular proliferation through several pro-
iferating genes.¹⁵ In this study, we show that UII promotes CREB phosphorylation through SOCE which depends on STIM1, Orai1, and TRPC1 in accordance with previous studies.¹¹,¹⁷ although TRPC1 appeared not involved in angiotensin-II-induced VSMCs proliferation.¹¹ Important, we demonstrate that cells transfection with siRNA against CREB significantly inhibited cells proliferation, confirming the essential role of CREB activation for VSMCs proliferation.

Moreover, in this report we confirm the implication of other signalling
pathways in UII effects. We demonstrate that UII promotes EGFR trans-
activation, ERK activation, and CaMKII, similar to other GPCR agonists. We demonstrate that UII-evoked Ca²⁺ entry, CREB activation, and VSMCs proliferation are partially dependent on these signalling path-
ways in agreement with data shown in previous studies.⁶–⁸ Transactiva-
tion of EGFR seems a critical signalling step for some GPCR.³³ Similar results have been determined in VSMCs stimulated with hydrogen per-
oxide (H₂O₂) which promotes EGFR transactivation and ERK1/2 stimu-
lation followed by CREB phosphorylation.³⁴ Furthermore, we determine significantly diminished UII-mediated phosphorylation of EGFR and ERK due to SOCE inhibition. The role of extracellular Ca²⁺ entry by SOCE has been linked to activation of the proliferative kinase ERK1/2 that is involved in cell proliferation and migration.³⁵ In addition, recents studies have demonstrated that epithelium growth factor (EGF) activation of EGFR stimulates SOCE in human mesanlgeal cells,³⁶ or in cancer cell line,³⁷ which confirms the relevance and the need of further investigation to highlight the role of EGFR transactivation in VSMCs proliferation.

As summarized in the schematic model in Supplementary material online, Figure S5, we have shown that UII promotes CREB activation and VSMCs proliferation through the multi-complex signalling
pathway that involves SOCE, EGFR transactivation, ERK1/2, and CaMKII pathways. Our results shed more light on the functional role of UII in the arterial remodelling processes that occur during cardiovas-
cular diseases,³³ and confirm different molecular players of SOCE as possible targets for therapeutic strategies to improve vascular occlusive diseases.

Supplementary material

Supplementary material is available at Cardiovascular Research online.

Conflict of interest: none declared.

Funding

This study was supported by Spanish Ministry of Science and Innovation (BFU-2010-21043-C02-01; BFU-2010-21043-C02-02); Instituto Carlos III and Cardiovascular Network (RD12/0042/0041, PI12/00941); and from The Anduslanal Government (P10-CVI-6095; PI-0108-2012). M.T. group is supported by grant form NIH (HL097111). N.D. was supported by a fellow-
ship from The Extremadura Government (PRE09020).

References

