The CMP-legionaminic acid pathway in Campylobacter: Biosynthesis involving novel GDP-linked precursors

Ian C Schoenhofen, Evgeny Vinogradov, Dennis M Whitfield, Jean-Robert Brisson, and Susan M Logan

Institute for Biological Sciences, National Research Council, Ottawa, Ontario, K1A OR6 Canada

Received on December 18, 2008; revised on February 17, 2009; accepted on March 7, 2009

The sialic acid-like sugar 5,7-diacetamido-3,5,7,9-tetraoxo-D-glycero-D-galacto-nonulosonic acid, or legionaminic acid, is found as a virulence-associated cell-surface glycoconjugate in the Gram-negative bacteria Legionella pneumophila and Campylobacter coli. L. pneumophila serogroup 1 strains, causative agents of Legionnaire’s disease, contain an α2,4-linked homopolymer of legionaminic acid within their lipopolysaccharide O-chains, whereas the gastrointestinal pathogen C. coli modifies its flagellin with this monosaccharide via O-linkage. In this work, we have purified and biochemically characterized 11 candidate biosynthetic enzymes from Campylobacter jejuni, thereby fully reconstituting the biosynthesis of legionaminic acid and its CMP-activated form, starting from fructose-6-P. This pathway involves unique GDP-linked intermediates, likely providing a cellular mechanism for differentiating between this and similar UDP-linked pathways, such as UDP-2,4-diacetamido-bacillosamine biosynthesis involved in N-linked protein glycosylation. Importantly, these findings provide a facile method for efficient large-scale synthesis of legionaminic acid, and since legionaminic acid and sialic acid share the same absolute configuration, this sugar may now be evaluated for its potential as a sialic acid mimic.

Keywords: Campylobacter jejuni/flagellin glycosylation/legionaminic acid/neuraminic acid/sialic acid

Introduction

The sialic acids are a diverse family of α-keto sugars, sharing a defining 9-carbon structural skeleton, and are typically the outermost moiety of oligosaccharides on vertebrate glycolipids and glycoproteins. They are generally attached to the underlying sugar chain via an α-glycosidic linkage between their 2-position (Figure 1) and either the 3- or 6-hydroxyl group of galactose or N-acetylgalactosamine, the 6-hydroxyl group of N-acetylgalactosamine, or they may also exist as α2,8-linked homopolymers (Lehmann et al. 2006). With the presence of various substitutions at their 4, 5, 7, 8, and 9 positions (Varki A 2007), their various linkages, as well as their prominent and accessible location, it is not surprising that this diverse family of sugars mediates and/or modulates a multitude of cellular interactions. Intercellular adhesion and signaling often results from sialic acid-specific binding proteins, or lectins, present on mammalian cell surfaces, most noted for their importance in regulating the immune system and in neuronal development. For example, the Siglecs (Sia-recognition Ig-supercfamily lectins) MAG and CD22 are involved in the binding of glial cells to gangliosides, which is critical to the long-term stability of myelin as well as inhibition of neurite outgrowth, and in negatively regulating B-cell function, respectively (Varki and Angata 2006; Crocker et al. 2007; Varki 2007). In addition, the neuronal cell adhesion molecule (NCAM) possesses α2,8-linked polysialic acid, which is important for brain development and neuronal regeneration, while its expression correlates with poor prognosis for several neuroendocrine tumors (Bork et al. 2007). Another example of sialic acid having prognostic significance in human cancer is the enhanced expression of α2,6-linked sialic acid on N-glycans, correlating with cancer progression, metastatic spread and poor prognosis for colon, breast, and cervical cancers, to name a few (Hedlund et al. 2008).

It is possible that the importance of sialic acids within humans has contributed to the abundance of pathogens that display, bind, or catabolize sialic acid. In fact, sialic acids are now recognized as the receptor or ligand most frequently used by pathogenic viruses, bacteria, and protozoa (Lehmann et al. 2006). Furthermore, pathogenic bacteria have gained the ability to display sialic acids on their surface, either by de novo synthesis or through specific scavenging mechanisms, which is believed to influence pathogenesis through immune evasion, adhesion, and invasion (Hsu et al. 2006; Severi et al. 2007). For example, the polysialic acid capsules of Neisseria meningitidis B and Escherichia coli K1 are poorly immunogenic, likely due to their molecular mimicry with the polysialic acid found on NCAM. In addition to utilizing host sialic acids as nutrient sources, many pathogenic bacteria possess sialic acid-specific lectins, which assist host–pathogen interactions and ultimately pathogenesis. Interestingly, they may also deploy soluble lectins, or toxins, that bind sialoglycoconjugates, such as the AB5 cholera toxin that recognizes the GM1 ganglioside (Angström et al. 1994; Merritt et al. 1998) and pertussis toxin that recognizes the GD1a ganglioside (Hausman and Burns 1993; Stein et al. 1994). Finally, an increasing number of protozoal pathogens have been found to utilize sialic acid-specific lectins, such as Plasmodium spp., the causative agent of malaria (Lehmann et al. 2006). Moreover, Trypanosomes possess a cell-surface trans-sialidase allowing these organisms to coat themselves with mammalian-derived sialic acid (Pontes de Carvalho et al. 1993).

In addition to presenting sialic acids on their surface, bacteria can also incorporate sialic acid-like sugars...
isogenic mutants for the presence of CMP-legionaminic acid metabolites.

The importance of legionaminic acid as a virulence factor, and its potential in applications as a sialic acid analog, prompted us to elucidate its complete biosynthetic pathway using enzymes from \textit{C. jejuni} 11168 (Figure 2).

Results and discussion

The rationale

As with our characterization of the pseudaminic acid pathway in \textit{Campylobacter} (Schoenhofen, McNally, Brisson, et al. 2006; Figure 1), the elucidation of the legionaminic acid pathway within \textit{Campylobacter} relied heavily on a “holistic” approach involving bioinformatic, comparative genomic, metabolomic, and functional analyses. For clarity in understanding the enzyme function associated with various \textit{Cj} gene designations and the relationship with previous gene nomenclature, we have tabulated this information as a useful reference (see supplementary Table S1). In addition, we have provided, and are recommending the alternate gene designations to better reflect their roles in CMP-legionaminic acid biosynthesis.

One of the most significant insights was the consideration that this pathway may involve alternative nucleotide-linked intermediates. As it has been documented that different nucleotides within NDP-sugars may allow for the separation of biosynthetic pathways (Nikaido et al. 1966; Ginsburg 1978; Maki and Renkonen 2004) and importantly may provide a means for their independent control and regulation, it was believed that the legionaminic acid pathway within \textit{Campylobacter} may be selective for NDPs other than UDP. This would facilitate its separation from similar UDP-utilizing pathways found in \textit{Campylobacter}, such as those for pseudaminic acid and 2,4-diactamidomannosamine, involved in flagellin \textit{O}-linked glycosylation and protein \textit{N}-linked glycosylation, respectively (Figure 3). Several initial findings collectively supported this hypothesis and are as follows. First, \textit{Cj1329} (Ptme), a member of the \textit{Campylobacter} flagellin glycosylation locus (Cj1293–Cj1344), was found to exhibit sequence similarity to NDP-sugar pyrophosphorylases or nucleotidyltransferases and in particular, possesses motifs similar to the characteristic activator (G-X-G-T-R-X_{2}-P-T) and sugar (E-E-K-P) binding domains found within NDP-glucose pyrophosphorylases (Silva et al. 2005). In addition to the expected pathway components \textit{Cj1328, Cj1327, and Cj1331} (NeuC, B, and A homologs; LegG, LegI, and LegF, respectively), the gene products \textit{Cj1329}, \textit{Cj1330}, and \textit{Cj1332} (PtmE, PtmF, and PtmA, respectively) were also found to be necessary for the accumulation of CMP-legionaminic acid (XI) in the metabolome of \textit{C. coli} (McNally et al. 2007). The requirement of a possible nucleotidyltransferase (PtmE) supported our hypothesis, in that this enzyme could be responsible for the production of a novel NDP-sugar precursor required for legionaminic acid synthesis. As these enzymes act on NTP donors and sugar-1-P acceptors to form pyrophosphate and NDP-sugars, it was also possible that some members of the \textit{Cj1293–Cj1344} locus may be responsible for the production of a sugar-1-P acceptor. PtmA (Cj1332) and PtmF (Cj1330) are annotated as possible oxidoreductases, but upon closer examination we found that they shared limited sequence similarity with the N-terminal glutaminase and C-terminal isomerase domains, respectively.

(Figure 1) are unique to microorganisms and may exhibit configurational differences compared with sialic acid. One particu-
Legionaminic acid biosynthesis

Fig. 2. The CMP-legionaminic acid biosynthetic pathway in *C. jejuni*. This biosynthetic pathway involves two segments: (1) synthesis of a GDP-sugar building block (left of the dashed line) and (2) synthesis of the final CMP-nonulosonate (right of the dashed line), which are linked by the enzymatic step shown in gray. The enzymes and biosynthetic intermediates of the CMP-legionaminic acid pathway in order are PtmA and PtmF, glutaminase and isomerase, respectively, comprising a GlcN-6-P synthase; Pgml, phosphoglucosamine mutase; PtmE, GlcN-1-P guanylyltransferase; GlmU, N-acetyltransferase; LegB, NAD-dependent 4,6-dehydratase; LegC, PLP-dependent aminotransferase; LegH, N-acetyltransferase; LegG, NDP-sugar hydrolase/2-epimerase; LegI, legionaminic acid synthase; LegF, CMP-legionaminic acid synthetase; and (I) Fru-6-P; (II) GlcN-6-P; (III) GlcN-1-P; (IV) GDP-GlcN; (V) GDP-GlcNAc; (VI) GDP-2-acetamido-2,6-dideoxy-α-D-xylo-hexos-4-ulose; (VII) GDP-4-amino-4,6-dideoxy-α-D-GlcNAc; (VIII) GDP-2,4-diacetamido-2,4,6-trideoxy-α-D-glucopyranose; (IX) 2,4-diacetamido-2,4,6-trideoxy-α-D-mannopyranose; (X) legionaminic acid; (XI) CMP-legionaminic acid. The assignment of roman numerals to each compound is consistent with label designations found throughout the text. For simplicity, all the sugars are shown in 4C1 form, except for the nonulosonates and Fru-6-P.

GDP-glucosamine-6-P synthase (GlcN-6-P synthase or GlmS). GlcN-6-P synthase is a key enzyme of hexosamine metabolism and is one of the enzymes responsible for the production of GlcN-1-P or GlcNAc-1-P (Mouilleron et al. 2006). Specifically, PtmA and PtmF were each found to share approximately 40% identity and 60% similarity over only 26 residues with the respective domains of *E. coli* GlcN-6-P synthase. This was surprising as, to date, prokaryotic and eukaryotic GlcN-6-P synthases contain both of these domains within one polypeptide. Further support for our hypothesis that this pathway is selective for NDPs other than UDP was provided by the apparent inability of putative legionaminic acid biosynthetic enzymes to efficiently utilize candidate UDP-sugar precursors. Consequently, very limited biosynthetic yields of XI were obtained when using the *Campylobacter* NeuC, B, and A homologs from *L. pneumophila*. The remainder of this article will discuss our findings from in vitro functional analyses of 11 recombinantly produced and affinity-purified enzymes from *C. jejuni* 11168 (Figure 4).

GDP-glucosamine biosynthesis

Further evidence that PtmF and PtmA function in tandem as a GlcN-6-P synthase was the observed stabilization of PtmF by copurification with PtmA. Attempts to isolate only PtmF resulted in aggregates that were unable to enter 12.5% SDS–polyacrylamide gels (data not shown). When PtmF and PtmA were copurified, the PtmF peptide still appeared to aggregate, as indicated by the presence of an additional higher molecular weight species by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) (Figure 4), although to a much lesser extent. As deduced from 1H NMR, PtmF and PtmA were found to efficiently convert fructose-6-P (I) to glucosamine-6-P (II) or glucose-6-P depending on the presence or absence of L-glutamine, respectively (data not shown). These observations
I C Schoenhofen et al.

Fig. 3. A selection of extracytoplasmic sugar modifications from the Campylobacter cell. Glycosylated structures represented are lipooligosaccharide (cyan), periplasmic N-linked glycoproteins (purple), peptidoglycan (orange and blue), and flagella – a polymer of O-linked flagellin glycoproteins (green and red). Sugars found within boxes differ only by their nucleotide adduct, a likely discriminatory tool for these glycosylation pathways. Note that glycosyltransferases responsible for O-glycan attachment to flagellin have yet to be identified. Roman numeral designations are consistent with those found throughout the text and refer to the CMP- legionaminic acid intermediates identified in this study. The enzymes (gray numbers) and alternate sugar names are found in supplementary Tables S2 and S3, respectively.

Fig. 4. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (12.5%) analyses of CMP-legionaminic acid biosynthetic enzymes from Campylobacter jejuni 11168 after nickel-nitrilotriacetic acid purification. Lane 1, PtmAHis6 (arrowhead) and His6PtmF (arrow); lane 2, PgmLHis6; lane 3, His6PtmE; lane 4, His6GlmU; lane 5, LegBHHis6; lane 6, His6LegC; lane 7, His6LegH; lane 8, His6LegG; lane 9, His6LegI; lane 10, LegFHHis6. Molecular mass standards are shown on the left in kDa.

are similar to findings reported for other GlcN-6-P synthases (Teplyakov et al. 1999). To our knowledge, this is the first report of a GlcN-6-P synthase whose functional domains, glutaminase and isomerase, are not naturally fused, the significance of which is currently unknown.

The next committed step in bacterial hexosamine biosynthesis would involve conversion of II to glucosamine-1-P (III) by a phosphoglucosamine mutase. The appropriate mutase was unclear, and as such, we had to look outside of the flagellar glycosylation locus. As the GlcN-6-P synthase is the rate-limiting enzyme in hexosamine metabolism (Mouilleron et al. 2006), it was believed that a general “house-keeping” mutase might be sufficient enough to perform the necessary interconversions for flagellin glycosylation. Originally, Cj0360, an annotated GlmM mutase, was tested and appeared to accumulate GlcN-1,6-diP from II as deduced using 1H NMR (data not shown), but not GlcN-1-P (III). Surprisingly, the gene Cj1407c was also annotated as a phosphoglucomutase and is juxtaposed to fliL (Cj1408), a flagellar component that localizes to the cytoplasmic face of the flagellar basal body MS ring in Campylobacter. Cj1407c, now annotated as PgmL for its involvement in the legionaminic acid pathway, catalyzed the interconversion of II to III without the exogenous addition of Glc-1,6-diP or GlcN-1,6-diP that is typically required for GlmM enzymes (Mengin-Lecreulx and van Heijenoort 1996; Jolly et al. 1999) and allowed for a “one-pot” enzymatic synthesis of GDP-GlcN (IV; see below). PgmL was also capable of converting Glc-6-P to Glc-1-P, as evidenced by the accumulation of GDP-Glc, in addition to IV, in GDP-GlcN “one-pot” reactions (see below).

In determining the nucleotide utilized by the legionaminic acid pathway, we initially looked at the specificity of the nucleotidyltransferase. PtmE was found to be absolutely specific for GTP in reactions involving III (supplementary Figure S1). Importantly, this enabled the large-scale production and
Legionaminic acid biosynthesis

Fig. 5. Capillary electrophoresis analysis of a “one-pot” enzymatic reaction forming GDP-GlcN from Fru-6-P. A control PtmE reaction (A) initially contained GlcN-1-P (III), GTP, and His6PtmE, while the “one-pot” reaction (B) contained Fru-6-P (I), GTP, and each of His6PtmF, PtmAHis6,P gm L H i s6, and His6PtmE. The locations of GTP, IV, and GDP-α-D-Glc are also indicated within the figure. a.u., arbitrary units.

purification of IV (Figure 5A and supplementary Table S4). In addition, when using GlcNAc-1-P as a sugar acceptor, PtmE exhibited promiscuity with respect to activator NTP donors (supplementary Figure S1). This allowed for the large-scale production and purification of GDP-GlcNAc (V), CDP-GlcNAc, and TDP-GlcNAc (Table I and supplementary Table S4) for further testing within the pathway. Note that bacterial cells accumulate III instead of GlcNAc-1-P due to the bifunctional nature of the UDP-GlcNAc forming enzyme GlmU (Mengin-Lecreulx and van Heijenoort 1994), in contrast to eukaryotes that accumulate GlcNAc-1-P primarily due to the actions of a glucosamine-6-P N-acetyltransferase (Buse et al. 1996). As such, it seemed highly probable that the legionaminic acid pathway may utilize guanine nucleotide precursors since PtmE is absolutely specific for GTP in reactions involving the abundant bacterial hexosamine metabolite GlcN-1-P (III). Ultimately, this was confirmed upon further testing of pathway components (see below). In addition, PtmE exhibited specificity for the C4 configuration of Glc as no activity was observed when using GalNAc-1-P, but activity was observed with Glc-1-P (see below), GlcN-1-P, and GlcNAc-1-P. Note that ptmE contains an additional upstream sequence of unknown function called a CBS domain (originally found in cystathionine beta-synthase), which may be involved at some level of regulation.

The efficiency of these NDP-hexosamine enzymes was demonstrated by the production of IV from a “one-pot” enzymatic reaction involving PtmF, PtmA, PgmL, and PtmE, starting from I (Figure 5). In addition to IV, the accumulation of GDP-Glc was also observed in the “one-pot” reaction, a consequence of PtmF/PtmA producing Glc-6-P upon depletion of L-glutamine as well as promiscuity of the downstream enzymes. The identities of the two products observed in Figure 5B were confirmed by further purification and CE-MS analyses (data not shown), NMR analyses (supplementary Table S4), and comparisons with a control preparation of IV (Figure 5A).

Conversion of GDP-GlcN to GDP-GlcNAc
As the synthesis of legionaminic acid would be expected to utilize a 2,4-diacetamido-hexose sugar (Schoenhofen, Lunin, et al. 2006), the assumption was that a GDP-HexNAc intermediate fed into the nonulosonate pathway, thereby reducing the number of enzymatic manipulations required, i.e., IV was not the initial nonulosonate building block. This was later confirmed, as the initial nonulosonate pathway enzyme exhibited preference for the N-acetyl group of V (see below). Of all the enzymatic manipulations leading to the nonulosonate pathway

Table I. NMR chemical shifts δ (ppm) for the sugars of compounds V–XI

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H δ (ppm)</th>
<th>13C δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>H1 5.51</td>
<td>C1 95.1</td>
</tr>
<tr>
<td></td>
<td>H2 3.99</td>
<td>C2 54.5</td>
</tr>
<tr>
<td></td>
<td>H3 3.81</td>
<td>C3 71.7</td>
</tr>
<tr>
<td></td>
<td>H4 3.55</td>
<td>C4 70.3</td>
</tr>
<tr>
<td></td>
<td>H5 3.92</td>
<td>C5 73.8</td>
</tr>
<tr>
<td>VI</td>
<td>H1 5.45</td>
<td>C1 95.3</td>
</tr>
<tr>
<td></td>
<td>H2 4.10</td>
<td>C2 53.5</td>
</tr>
<tr>
<td></td>
<td>H3 3.82</td>
<td>C3 72.4</td>
</tr>
<tr>
<td></td>
<td>H5 4.11</td>
<td>C5 70.9</td>
</tr>
<tr>
<td></td>
<td>H6 1.21</td>
<td>C6 12.4</td>
</tr>
<tr>
<td>VII</td>
<td>H1 5.50</td>
<td>C1 95.6</td>
</tr>
<tr>
<td></td>
<td>H2 4.06</td>
<td>C2 55.0</td>
</tr>
<tr>
<td></td>
<td>H3 3.87</td>
<td>C3 69.1</td>
</tr>
<tr>
<td></td>
<td>H4 2.96</td>
<td>C4 58.6</td>
</tr>
<tr>
<td></td>
<td>H5 4.21</td>
<td>C5 68.0</td>
</tr>
<tr>
<td></td>
<td>H6 1.32</td>
<td>C6 18.0</td>
</tr>
<tr>
<td>VIII</td>
<td>H1 5.50</td>
<td>C1 95.4</td>
</tr>
<tr>
<td></td>
<td>H2 4.05</td>
<td>C2 55.2</td>
</tr>
<tr>
<td></td>
<td>H3 3.80</td>
<td>C3 69.8</td>
</tr>
<tr>
<td></td>
<td>H4 3.68</td>
<td>C4 57.9</td>
</tr>
<tr>
<td></td>
<td>H5 4.05</td>
<td>C5 69.3</td>
</tr>
<tr>
<td></td>
<td>H6 1.16</td>
<td>C6 18.0</td>
</tr>
<tr>
<td>IX</td>
<td>H1 5.11/4.96</td>
<td>C1 94.0/94.0</td>
</tr>
<tr>
<td></td>
<td>H2 4.30/4.46</td>
<td>C2 53.8/54.8</td>
</tr>
<tr>
<td></td>
<td>H3 4.06/3.84</td>
<td>C3 67.7/71.7</td>
</tr>
<tr>
<td></td>
<td>H4 3.77/3.66</td>
<td>C4 54.8/54.5</td>
</tr>
<tr>
<td></td>
<td>H5 3.97/3.51</td>
<td>C5 68.1/72.6</td>
</tr>
<tr>
<td></td>
<td>H6 1.19/1.21</td>
<td>C6 18.0/18.0</td>
</tr>
<tr>
<td>X</td>
<td>H3α 1.83</td>
<td>C3 40.8</td>
</tr>
<tr>
<td></td>
<td>H3e 2.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H4 3.96</td>
<td>C4 68.5</td>
</tr>
<tr>
<td></td>
<td>H5 3.72</td>
<td>C5 53.8</td>
</tr>
<tr>
<td></td>
<td>H6 4.24</td>
<td>C6 70.4</td>
</tr>
<tr>
<td></td>
<td>H7 3.87</td>
<td>C7 54.3</td>
</tr>
<tr>
<td></td>
<td>H8 3.86</td>
<td>C8 67.5</td>
</tr>
<tr>
<td></td>
<td>H9 1.16</td>
<td>C9 20.4</td>
</tr>
<tr>
<td>XI</td>
<td>H3α 1.63</td>
<td>C3 42.6</td>
</tr>
<tr>
<td></td>
<td>H3e 2.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H4 3.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H5 3.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H6 4.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H7 3.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H8 4.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H9 1.10</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from https://academic.oup.com/glycob/article-abstract/19/7/715/1988730 by guest on 01 September 2018
precursor V, it is this step in which we are most uncertain. Since the bifunctional UDP-GlcNAc forming enzyme GlmU, which is responsible for the conversion of III to GlcNAc-1-P with subsequent uridylation, is capable of converting UDP-GlcN to UDP-GlcNAc at low efficiencies (Pompeo et al. 2001), we sought to determine if Campylobacter GlmU was able to N-acetylate IV. This GlmU was found to convert IV to V, but not to completion as is seen with a control N-acetylation reaction using its natural substrate III instead of IV (supplementary Figure S2). We are currently screening other putative N-acetyltransferases from the flagellar glycosylation locus, such as Cj1296/97, Cj1321, and Cj1322/23, for their ability to catalyze efficient conversion of IV to V. Finally, we feel it is unlikely that the pathway would initially proceed I→II→III→GlcNAc-1-P→V, as the promiscuous nature of PtmE with GlcNAc-1-P would result in lowered synthesis of V, but we cannot rule out this possibility. Importantly, our suggested scheme (Figure 2) would also allow PtmE to act on the abundant levels of endogenous III.

Biosynthesis of CMP-legionaminic acid from GDP-GlcNAc

Using the knowledge gained from elucidating the CMP-pseudaminic acid pathway in Helicobacter pylori (Schoenhofen, Lunin, et al. 2006; Schoenhofen, McNally, Brisson, et al. 2006; Schoenhofen, McNally, Vinogradov, et al. 2006), we began unraveling the biosynthetic route for CMP-legionaminic acid (XI), the findings of which are summarized in Figure 2 and Table I. Recent metabolomics findings discounted Cj1319 (LegB) and Cj1320 (LegC), the only remaining putative dehydratase and aminotransferase left in the Campylobacter flagellar glycosylation locus, as having a role in legionaminic acid synthesis (McNally et al. 2007). In contrast, we found these enzymatic manipulations necessary within this pathway. By examining the ability of LegB to act as a dehydratase, we found it to perform C4,6 dehydration of V (Figure 6). Initial reactions only included V and LegB, but failed. However, as NAD(P)+ is usually tightly coupled to these particular enzymes, since it is a necessary cofactor for the C4,6 dehydration reaction, we added NAD+ and NADP+ exogenously in separate reactions. In doing so, LegB was found to catalyze the efficient turnover of V in an NAD+-dependent manner forming the product GDP-2-acetamido-2,6-dideoxy-α-D-xylo-hexos-4-ulose (VI; Figure 6A). It should be noted that other LegB reactions, in the presence or absence of NAD(P)+, with IV, UDP-GlcNAc, CDP-GlcNAc, GDP-GlcNAc, and TDP-Glc did not yield discernable product (data not shown). Furthermore, LegC catalyzed the efficient aminotransfer of VI, forming GDP-4-amino-4,6-dideoxy-α-D-GlcNAc (VII) in a PLP-dependent manner (Figure 6B). LegC is specific for the GDP-keto intermediate VI, as it was unable to convert the UDP-keto intermediates from the pseudaminic acid or 2,4-diacetamido-bacillosamine pathways (Figure 3), providing further support for its role in legionaminic acid synthesis. The in vivo metabolomic and in vitro enzymatic discrepancy for LegB/LegC may be explained by possible low-level crosstalk of pathway intermediates within Campylobacter. This is further strengthened by our observation that low-levels of XI may be obtained when using the sialic acid homologs LegG (Cj1328), LegI (Cj1327), and LegF (Cj1331) with UDP-2,4-diacetamido-bacillosamine from the N-linked glycosylation pathway (data not shown).

The next expected step in the synthesis of XI would involve N-acetylation of VII by a respective transferase. As there are several such uncharacterized transferases in the Campylobacter flagellin glycosylation locus (Cj1296/97, Cj1298, Cj1321, and Cj1322/23), we initially attempted reactions with Pgd, the N-acetyltransferase involved in UDP-2,4-diacetamido-bacillosamine biosynthesis (Olivier et al. 2006; Figure 3). The normal substrate of Pgd is identical to VII only it is UDP-linked. To our surprise, Pgd was able to catalyze N-acetyltransfer of VII, forming GDP-2,4-diacetamido-2,4,6-trideoxy-α-D-Glc (VIII) (data not shown). However, the eventual screening of Cj1298 (LegH) exhibited much greater catalytic rates, resulting in 100% conversion of VII to VIII (Figure 6C). This, together with the presence of Cj1298 within the flagellar glycosylation locus, leads us to conclude that LegH is a dedicated component of legionaminic acid biosynthesis. Importantly, this in vitro cross-complementation of LegH function by Pgd may have prevented its initial identification from in vivo metabolomics screening.

Likely, the most critical checkpoint between the N-linked protein glycosylation and legionaminic acid pathways within Campylobacter is the reaction catalyzed by the NeuC homolog, LegG. This enzyme is expected to perform a C2
epimerization resulting in NDP removal, and in fact, LegG was found to efficiently remove the NDP from substrate VIII (Figure 6D). Upon examination of the sugar product formed, by performing “in-tube” NMR reactions, we observed efficient catalysis of VIII, such that the formation of 2,4-diacetamido-2,4,6-trideoxy-α-D-Man (IX) was near completion within 75 min using only 4 μg of LegG (Figure 7A). Using similar conditions, IX was not observed when the natural product of PgID, UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-Glc (Figure 3), was used as a substrate. Although, when we increased the quantity of LegG 10-fold within this reaction, UDP removal was observed (Figure 7B), but product IX was not. Instead, we observed small quantities of 6-deoxy-2,4-diacetamidoglucal (supplementary Figure S3), an unlikely candidate for the next condensation reaction. As we were able to generate small quantities of XI using the UDP-linked intermediate above, it is possible that the glucal product or nondetectable quantities of IX may inefficiently condense with pyruvate in the next enzymatic step. However, we conclude that the natural synthetic route is as summarized in Figure 2. Note that LegG was also found to catalyze turnover of V with moderate efficiency as assessed by CE (data not shown), which may be an alternative means of accumulating the sialic acid precursor ManNac within Campylobacter. This is the reason why our large-scale biosynthesis of legionaminic acid (X) involved two separate “one-pot” reactions (i.e., V → VIII then VIII → X). Finally, the roles of the NeuB and NeuA homologs LegI (Cj1327) and LegF (Cj1331), respectively, were confirmed. LegI catalyzed the condensation of IX with pyruvate to form X, while LegF efficiently CMP-activated X (Table I).

Conclusions

In summary, we have outlined a facile method for the enzymatic preparation (mg to g quantities) of CMP-legionaminic acid (Figure 8), and corresponding pathway intermediates. As synthetic yields obtained from chemical methods are low, only 7% from condensation of IX with oxaloacetic acid (Tsutkov et al. 2001), our enzymatic method provides an attractive synthetic alternative. Also, since we have defined the NDP-hexosamine enzymatic steps from I, the engineering of E. coli producing strains is now possible (Lundgren and Boddy 2007), with production efficiencies predicted to far-surpass those from in vitro enzymatic methods. The legionaminic acid biosynthetic route described is similar to that proposed by Schoenhofen, Lunin, et al. (2006) and Glaze et al. (2008), except that the sugar precursors are GDP-linked rather than UDP-linked. This likely assists the regulation of O-linked flagellin glycosylation and N-linked protein glycosylation pathways (Figure 3) within Campylobacter, as these pathways may tap into unique metabolite pools. Aside from utilizing different nucleotides, the biosynthetic routes for pseudaminic acid and legionaminic acid differ in the epimerizations performed at C2, C4, and C5 of the 6-deoxy-hexose intermediates, resulting in stereo-chemical differences at C5, C7, and C8 of the final nonulosonates.

Importantly, legionaminic acid shares the same d-glycero-d-galacto absolute configuration as sialic acid. Aside from the suggested role of sialic acid-like sugars to protect Campylobacter cells from host defenses by subverting the host complement pathway, the potential interaction of these sugars with host sialic acid-specific lectins may explain their possible influence in adhesion and infection. This would be in addition to the previously reported roles of Campylobacter lipooligosaccharidyl sialylated glycans in facilitating cell adhesion through interactions with Siglec-7 (Avril et al. 2006). It is also tempting to speculate that legionaminic acid on the surface of L. pneumophila may be the critical factor responsible for inhibiting phagosome–lysosome fusion within macrophages (Fernandez-Moreira et al. 2006), possibly by interfering with the macrophage sialic-acid-dependent adhesion molecule, sialoadhesin. In support of this hypothesis, a recent genomic study implicated the LPS of L. pneumophila serogroup 1 as a conserved determinant in the ability to cause human disease (Cazalet et al. 2008). Serogroup 1 strains are the principal cause of human legionellosis disease, being responsible for approximately 84% of all cases worldwide (Yu et al. 2002). In addition, a similar scenario has been reported for the porcine virus PRRSV, where
it was recently found to exploit the sialic acid binding properties of sialoadhesin for attachment and infection (Delputte et al. 2007). Due to the pathogenic importance of *L. pneumophila* LPS, the enzymatic pathway outlined in this study may be used to assist the identification and development of therapeutics to treat *L. pneumophila* infections. Of great significance, the methods developed in this study may now be harnessed to investigate the potential of legionaminic acid within sialo-biology applications.

Material and methods

His₆-tagged protein expression and purification

Plasmid DNA construction and sequencing were similar to previously described methods (Schoenhofen, McNally, Brisson, et al. 2006; Schoenhofen, McNally, Vinogradov, et al. 2006). Vector or recombinant plasmids were transformed by electroporation into electrocompetent Top10F⁺ or DH10B (Invitrogen, Burlington, ON) *Escherichia coli* cells for cloning purposes or BL21[DE3] (Novagen, Gibbstown, NJ) *E. coli* cells for protein production, except for the expression clone pNRC51.1 which was electroporated into BL21-CodonPlus[DE3]-RIL (Novagen, Gibbstown, NJ) *E. coli* cells. PCR was used to amplify *Campylobacter jejuni* 11168 DNA for subsequent cloning. A list of cloning vectors and recombinant plasmids is provided in supplementary Table S5, and pertinent oligonucleotides are provided in supplementary Table S6. Newly constructed plasmids are as follows: pNRC145.3, encoding an N-terminal His₆-tagged derivative of Cj1330 or PtmF; pNRC141.1, encoding a C-terminal His₆-tagged derivative of Cj1332 or PtmA; pNRC173.1, encoding a C-terminal His₆-tagged derivative of Cj1407c or PgmL; pNRC136.1, encoding an N-terminal His₆-tagged derivative of Cj1329 or PtmE; pNRC175.1, encoding an N-terminal His₆-tagged derivative of Cj0821 or GlmU; pNRC16.1, encoding a C-terminal His₆-tagged derivative of Cj1319 or LegB; pNRC83.1, encoding an N-terminal His₆-tagged derivative of Cj1320 or LegC; pNRC164.3, encoding an N-terminal His₆-tagged derivative of Cj1298 or LegH; pNRC134.1, encoding an N-terminal His₆-tagged derivative of Cj1328 or LegG; pNRC51.1, encoding an N-terminal His₆-tagged derivative of Cj1327 or LegI; and pNRC139.1, encoding a C-terminal His₆-tagged derivative of Cj1331 or LegF.

Typically, each expression strain was grown in 1–2 L of 2× yeast tryptone (Schoenhofen, McNally, Vinogradov, et al. 2006), depending on the expression level, with either kanamycin (50 μg mL^{−1}) and ampicillin (75 μg mL^{−1}) or ampicillin and chloramphenicol (100 μg mL^{−1} and 40 μg mL^{−1}) for selection. The cultures were grown at 30°C, induced at an OD₆₀₀ of 0.6 with 0.1 mM isopropyl-1-thio-β-D-galactopyranoside, and harvested 2.75 h later. For the “GDP-hexosamine” biosynthetic enzymes (PtmF, PtmA, PgmL, and PtmE), cell pellets were resuspended in the lysis buffer (25 mM Tris, pH 7.5, 400 mM NaCl, 10 mM β-mercaptoethanol) containing 10 mM imidazole and complete protease inhibitor mixture, EDTA-free...
(Roche Applied Science, Laval, QC). After the addition of 10 μg mL\(^{-1}\) of DNaseI (Roche Applied Science, Laval, QC), the cells were disrupted by two passes through an emulsiflex C5 (20,000 psi). Lysates were centrifuged at 100,000 \(\times\) g for 50 min at 4°C, and the supernatant fraction was applied to a 2 mL nickel-nitrilotriacetic acid (Qiagen, Mississauga, ON) column equilibrated in the 10 mM imidazole lysis buffer, using a flow rate of 1 mL min\(^{-1}\). After sample application, the column was washed with 10 column volumes of 10 mM imidazole lysis buffer. To elute the protein of interest, a linear gradient from 10 to 100 mM imidazole, in the lysis buffer, over 25 column volumes was applied to the column prior to a final pulse of 20 column volumes of 200 mM imidazole lysis buffer. Fractions containing the purified protein of interest, as determined by SDS–PAGE (12.5%) and Coomassie staining, were pooled and dialyzed against the dialysis buffer (25 mM Tris, pH 7.5) overnight at 4°C. When purifying PtmE for the “large-scale” production of NDP-sugars, the dialysis buffer contained 50 mM Tris, pH 7.5. In addition, PtmF and PtmA were purified together by combining respective resuspended cell pellets before cell lysis. For the “nonulosonate” biosynthetic enzymes (LegB, LegC, LegH, LegG, LegI, and LegP) and GlmU, purification was similar to that mentioned above, except that the lysis buffer contained 50 mM sodium phosphate instead of Tris and the dialysis buffer consisted of 25 mM sodium phosphate, 25 mM NaCl. The pH was adjusted from 7.3 to 7.8 depending on the theoretical pI of each protein. Furthermore, the dialysis buffer for GlmU additionally contained 10 mM β-mercaptoethanol. Protein concentration was measured spectrophotometrically using \(A_{280}\) 0.1% values (PgmLHis\(_{6}\), 0.693; His\(_{6}\)PtmE, 0.513; His\(_{6}\)GlmU, 0.517; LegBHis\(_{6}\), 0.892; His\(_{6}\)LegC, 0.625; His\(_{6}\)LegH, 1.06; His\(_{6}\)LegG, 0.432; His\(_{6}\)LegI, 0.242; LegFHis\(_{6}\), 0.385; and protein concentration was estimated for His\(_{6}\)PtmF/PtmAHis\(_{6}\) preparations using an averaged 0.1% value of 0.82). Yields of purified protein were typically 20 mg L\(^{-1}\) of cell culture, except for His\(_{6}\)LegC, His\(_{6}\)LegH, and His\(_{6}\)LegI with yields of 6, 2.5, and 7.5 mg L\(^{-1}\) of cell culture, respectively.

Enzymatic reactions and metabolite purification

Enzymatic reactions were performed for 4.5 h at 37°C and then overnight at 25°C, with approximately 200 μg mL\(^{-1}\) respective protein concentration using chemicals from Sigma (Oakville, ON) unless otherwise indicated.

GDP-Glucosamine Biosynthesis. The “one-pot” enzymatic synthesis of GDP-GlcN from Fru-6-P (I→IV) was accomplished using a 3 mL reaction containing His\(_{6}\)PtmF, PtmAHis\(_{6}\), PgmLHis\(_{6}\), His\(_{6}\)PtmE, 5 mM Fru-6-P (I), 10 mM L-Gln, 1 mM DTT, 5 mM MgCl\(_{2}\), 0.8 U mL\(^{-1}\) pyrophosphatase, and 2.5 mM GTP in 25 mM Tris, pH 7.5. Large-scale enzymatic synthesis of GDP-GlcN (IV) was accomplished using a 12 mL reaction containing 50 mM Tris, pH 7.5, 1 mM GTP, 1 mM MgCl\(_{2}\), 0.8 U mL\(^{-1}\) pyrophosphatase, 1.2 mM GlcN-1-P (III), and approximately 4.8 mg of His\(_{6}\)PtmE. The large-scale enzymatic synthesis of GDP-GlcNac (V) was performed similar to that discussed above, except that the scale was increased 5-fold and GlcNac-1-P was used in place of GlcN-1-P. Assessment of His\(_{6}\)PtmE substrate specificity was accomplished using nine reactions, 80 μL each, containing 50 mM Tris, pH 7.5, 2 mM MgCl\(_{2}\), 50 μg of His\(_{6}\)PtmE, and various combinations of 10 mM sugar-1-P (GalN-1-P, GlcN-1-P, or GlcNac-1-P), and 0.2 mM NTP (CTP, GTP, or TTP).

Conversion of GDP-GlcN to GDP-GlcNac. The His\(_{6}\)GlmU reaction was performed using 1 mM GDP-GlcN (IV), 1.2 mM acetyl-CoA, and His\(_{6}\)GlmU in 25 mM sodium phosphate, pH 7.8, 25 mM NaCl, and 10 mM β-mercaptoethanol. In addition, a control reaction was performed containing 1 mM GlcN-1-P (III) instead of IV.

Biosynthesis of Legiminonic Acid from GDP-GlcNac. The stepwise enzymatic synthesis of intermediates or products was accomplished in two stages (V→VI→VII→VIII, and then VIII→IX→X) using 1 mM of V, 0.5 mM NAD, 0.8 mM PLP, 8 mM L-Glu, 1.2 mM acetyl-CoA, 1.2 mM PEP, LegBHIs\(_{6}\), His\(_{6}\)LegC, His\(_{6}\)LegH, His\(_{6}\)LegG, and His\(_{6}\)LegI as appropriate, in 25 mM sodium phosphate, pH 7.3, 25 mM NaCl. Assessment of His\(_{6}\)LegG activity involved in monitoring the reaction kinetics by \(\text{'H} NMR\) (see NMR spectroscopy) for 75 min using 0.75 mM GDP-2,4-diacetamido-2,4,6-trideoxy-α-D-Glc (VIII), 4 μg of His\(_{6}\)LegG in 200 μL of 25 mM sodium phosphate, pH 7.3, 25 mM NaCl. In addition, the substrate flexibility of His\(_{6}\)LegG was assessed using a 300 μL reaction containing 40 μg of His\(_{6}\)LegG, 25 mM sodium phosphate, pH 7.3, 25 mM NaCl, and 0.75 mM UDP-2,4-diacetamido-2,4,6-trideoxy-α-D-Glc, with incubation at 37°C for 1.5 h and then overnight at 25°C.

Biosynthesis of CMP-legiminonic Acid. The CMP-activation of legiminonic acid (X→XI) was performed using a 20 mL reaction containing approximately 0.2 mM of X, 50 mM MgCl\(_{2}\), 3 mM CTP, and 15 mg of LegFHis\(_{6}\) in 25 mM sodium phosphate, pH 7.8, 25 mM NaCl, with incubation at 37°C for 5 h and then 25°C for 72 h.

Metabolite purification. Typically, reactions were passed through an Amicon Ultra-15 (10,000 molecular weight cutoff) or Ultra-4 (5000 molecular weight cutoff) filter membrane before analysis. As required, NDP-sugar preparations (GDP-Glc, GDP-GlcN, GDP-GlcNac, CDP-GlcNac, CDP-GlcNac, and CMP-Leg) were lyophilized and desalted/purified using a Superdex Peptide 10/300 GL (GE Healthcare, Piscataway, NJ) column in 25 mM ammonium bicarbonate, pH 7.9. For further purity, the above-mentioned NDP-sugar samples were subjected to anion-exchange chromatography (Mono Q 4.6/100 PE, GE Healthcare, Piscataway, NJ) using ammonium bicarbonate, pH 7.9. Quantification of NDP-sugar preparations was determined using the molar extinction coefficients of CMP (ε\(_{260}\) = 7400), GDP (ε\(_{260}\) = 11,500), TDP (ε\(_{260}\) = 8700), and UDP (ε\(_{260}\) = 10,000).

CE and CE-MS analysis. CE analysis was performed using either a P/ACE 5510 or P/ACE MDQ system (Beckman Instruments, Mississauga, ON) with diode array detection. The capillaries were bare silica 50 μm \(\times\) 50 cm, with a detector at 50 cm, and the running buffer was 25 mM sodium tetraborate, pH 9.4. Samples were introduced by pressure injection for 6 s, and the separation was performed at 18 kV for 20 min. Peak integration was done using the Beckman P/ACE station software.
CE-MS was performed using a Prince CE system (Prince Technologies, Netherlands) coupled to a 4000 QTRAP mass spectrometer (Applied Biosystems/MDS Sciex, Concord, ON). Separations were obtained on an ~90 cm bare silica capillary using 10 mM ammonium acetate in deionized water, pH 7. A separation voltage of 20 kV, together with a pressure of 500 mbar was used for fast CE-MS analysis. The ~5.2 kV electrospray ionization voltage was used for negative-ion mode detection.

NMR spectroscopy
Enzymatic reactions were carried out in 3 mm NMR tubes at 25°C in 10% D2O and were monitored through the acquisition of the 1H spectrum at various time intervals (indicated in min) using a Varian Inova 500 MHz (1H) spectrometer with a Varian Z-gradient 3 mm probe. For structural characterization of compounds, filtered enzymatic reactions or purified material was exchanged into 100% D2O. Structural analysis was performed using a Varian 600 MHz (1H) spectrometer with a Varian 5 mm Z-gradient triple resonance cryogenically cooled probe for optimal sensitivity. All spectra were referenced to an internal acetone standard (δH 2.225 ppm and δC 31.07 ppm).

Acknowledgements
We thank Annie Aubry and Anna Burianova for technical assistance with plasmid construction and growths of expression strains, Denis Brochu for CE technical assistance, Jacek Stupak for CE-MS technical assistance, Dr. David McNally and Nam Khieu for initial NMR characterization, and Tom Devecseri for assistance in preparing figures.

Conflict of interest statement
None declared.

Supplementary Data
Supplementary data for this article is available online at http://glycob.oxfordjournals.org/.

Abbreviations
4-epi-legionaminic acid (4eLeg5Ac7Ac), 5,7-diacetamido-3,5,7,9-tetraacetic acid (3,5,7,9-tetrahydroxy-D-glycero-D-galacto-nonulosonic acid; 724
mannone; ManNAc, N-acetyl-mannosamine; MS, mass spectrometry; MS ring, the first flagellar basal body substructure located in the cytoplasmic membrane; NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; NCAM, neural cell adhesion molecule; NDP, nucleotide diphosphate; Neu, neuraminic acid; NMR, nuclear magnetic resonance; NTP, nucleotide triphosphate; P, phosphate; PEP, phosphoenolpyruvate; Pn, inorganic phosphate; Pf, pyrophosphate; PLP, pyridoxal-5'-phosphate; pseudaminic acid (Pse5Ac7Ac), 5,7-diacetamido-3,5,7,9-tetrahydroxy-L-glycero-D-manno-nonulosonic acid; SDS–PAGE, sodium dodecyl sulfate—polyacrylamide gel electrophoresis; sialic acid (Neu5Ac), 5-acetamido-3,5,7,9-tetrahydroxy-D-glycero-D-galacto-nonulosonic acid; TDP, thymidine-5'-diphosphate; TTP, thymidine-5'-triphosphate; UDP, uridine-5'-diphosphate.

References
Legionaminic acid biosynthesis

