Members 5 and 6 of the Candida albicans BMT family encode enzymes acting specifically on β-mannosylation of the phospholipomannan cell-wall glycosphingolipid

Céline Mille1,2,3, Chantal Fradin1,2, Florence Delplace4,5, Pierre-André Trinel1,2,3, Annick Masset2,3, Nadine François4, Bernardette Coddeville4,5, Piotr Bobrowicz7,9, Thierry Jouault2,3, Yann Guerardel4,5, Stefan Wildt7,10, Guilhem Janbon8, and Daniel Poulain1,2,3,6

20; Fax: +33-3-20-62-34-16; e-mail: daniel.poulain@univ-lille2.fr

Received on March 27, 2012; revised on June 1, 2012; accepted on June 5, 2012

A family of nine genes encoding proteins involved in the synthesis of β-1,2 mannose adhesins of Candida albicans has been identified. Four of these genes, BMT1–4, encode enzymes acting stepwise to add β-mannoses on to cell-wall phosphopimannan. None of these acts on phospholipomannan, a glycosphingolipid member of the mannose-inositol-phosphoceramide family, which contributes with PPM to Candida and Candidiasis. The structure, distribution, and biosynthesis of Candida and Candidiasis are complex due to the apparent homogeneous linear structure of the residues. In a previous study, it was shown that β-Mans and how they are associated with different Candida albicans attributes and vaccine candidates have generated extensive literature (Jouault et al. 1995, 2000; Poulain et al. 2002). The role of PLM in C. albicans biology is unknown, but it is not essential since inactivation of the MIT1 gene involved in its upstream biosynthetic pathway does not affect viability or growth (Mille et al. 2004). In contrast, the absence of PLM appears to affect virulence of C. albicans in animal models. This effect was, at least partly, attributed to the lack of expression of β-mannose (β-Man) residues which are a specific feature of Candida Albicans. The structure, distribution, biological activities and immunological properties of β-Mans as specific Candida Albicans attributes and vaccine candidates have generated extensive literature (Jouault et al. 1995, 2000; Dalle et al. 2003). However, much is unknown about the biosynthesis of β-Mans and how they are associated with different Candida Albicans molecules. The discovery of the genes BMT1–9 encoding enzymes involved in β-Man transfer (Mille et al. 2008) is useful for deciphering a process which appears to be unexpectedly complex due to the apparent homogeneous linear structure of the residues. In a previous study, it was established that β-mannosyltransferases (Bmst) 1–4 act sequentially in the addition of β-Man to Candida Albicans phosphopimannan (PPM). This molecule, termed “mannan” by physicians and immunologists, is a complex repertoire of α- and β-Man epitopes that sometimes have opposite effects on the host. β-Man epitopes are distributed in the acid-stable fraction of PPM where their synthesis is under the control of

Keywords: β-1,2 oligomannosides / Candida Albicans / glycosphingolipid / mannosyltransferase / phospholipomannan
Bmts 1,3 and in the acid-labile fraction (phosphodiester-linked, also designated as phosphomannan) where their synthesis is under the control of Bmts 2–4 (Figure 1A). Surprisingly, none of these Bmts acts on PLM β-mannosylation despite the striking structural homology between acceptors represented by PPM and PLM phosphomannans (Figure 1A and B). There are two differences in the distribution of β-Man residues in C. albicans serotypes A and B. These differences in antibody recognition, sometimes related to differences in pathogenic potential, are associated with the absence of β-Man in the PPM acid-stable fraction of serotype B strains (Shibata et al. 1985; Kobayashi et al. 1990, 1992). Further studies showed that a second phenotypic character of serotype B strains was the presence of a truncated PLM (Trinel et al. 2005).

Here, knowledge gained from PLM structural analysis and biosynthetic pathways was used to characterize members of the BMT gene family acting on PLM β-mannosylation.

Results

Identification of two members of the Bmt family involved in the PLM biosynthetic pathway

In a previous study (Mille et al. 2008), a family of nine genes was described in C. albicans, termed BMTs according to their homology with Pichia pastoris BMT genes encoding Bmts. Sequence homology between the nine Bmts and different glycosyltransferase families clustered the different mannosyltransferases according to their enzyme activities (Figure 2).

The different BMT genes were disrupted using a polymerase chain reaction (PCR)-based method (Gola et al. 2003). This generated a set of strains carrying disruptions of a single or both alleles of each gene in the parental strain, BWP17 (Mille et al. 2008) (Table I). Using these mutants, it was established that four of the nine genes, BMT1–4, encode enzymes with a specific role in β-mannosylation of PPM, either on its acid-labile or acid-stable moiety (Mille et al. 2008) (Figure 1A). This study focused on genes whose deletion had an effect on PLM β-mannosylation (Figure 3A) and which corresponded to orf19.1464 and orf19.5602 in the Candida genome database (http://www.candidagenome.org/). These genes were named BMT5 and BMT6. As shown in Figure 3A, no significant reduction in β-Man epitopes on other manno-glycoconjugates was observed after deletion of these genes. This deletion had no effect on surface expression of β-Man epitopes as analyzed by immunofluorescence or on growth or morphogenesis in vitro (data not shown).

BMT5 and BMT6 deletions have no effect on sphingolipid biosynthesis

It was previously shown that PLM biosynthesis follows the sphingolipid biosynthetic pathway up to mannose-insitol-phosphoceramide (MIPC) and then diverges by the addition of Man-P to MIPC instead of the addition of inositol-phosphate, leading to M(IP)2C (Trinel et al. 2002; Mille et al. 2004) (Figure 1B). To analyze whether BMT5 and BMT6 deletions specifically affect PLM β-mannosylation or act upstream on phospho-inositol-sphingolipid biosynthesis, sphingolipids were extracted and analyzed. Sphingolipids from the mutant strain mit1Δ, which is blocked upstream of MIPC synthesis (Figure 1B), were used as negative controls. Thin-layer chromatography (TLC; Figure 4A) using purified PLM as a standard showed alterations of PLM biosynthesis among GSLs extracted from bmt5Δ and bmt6Δ compared with BWP17. As shown in Figure 4B, electrospray mass spectra of GSLs isolated from BWP17, bmt5Δ and bmt6Δ showed the presence of signals at m/z 678, 953, 1115 and 1357 in all strains, corresponding to M(IP)2C, IPC and MIPC (Figure 1B). As reported previously (Trinel et al. 2002), each of these sphingolipids displays the same heterogeneity as four peaks that arise from the various combinations of C18 or C20 phytosphingosine with C24, C25 or C26 hydroxylated fatty acids in the ceramide moiety of these molecules. Mass spectra of BWP17 and bmt5Δ strains did not show any significant differences in the sphingolipid range, whereas the spectrum of

Fig. 1. (A) Schematic representation of Bmt1–4 activities on C. albicans cell-wall PPM. PPM contains oligomannosides linked via a phosphodiester bond that can be released by acid hydrolysis. These oligomannosides correspond to the PPM acid-labile fraction, whereas the remaining PPM fraction is called acid-stable. (B) Detailed structure and biosynthetic pathway of C. albicans PLM with Bmt5–6 activities deduced from this study. The arrows indicate where the enzymes act and which β-mannose is added.
the \(\textit{bmt6}\Delta \) strain showed two additional major signals at \(m/z \) 826.3 and 840.3 attributed to tri-mannosylated PLM, as previously established for NIH-B strain (Trinel et al. 2005) (Figure 4B). Altogether, mass spectroscopy analyses demonstrated that the modification of PLM biosynthesis in \(\textit{bmt5}\Delta \) and \(\textit{bmt6}\Delta \) did not result from the upstream absence of MIPC but from a modification of \(\beta\)-Man synthesis.

\textit{Bmt5} and \textit{Bmt6} are involved in \(\beta\)-1,2 mannose transfer on PLM

Alteration of PLM \(\beta\)-mannosylation was assessed by western blot analysis with specific monoclonal antibodies (mAbs). As shown in Figure 3B, the reactivity of mAb 5B2, specific for \(\beta\)-Mans with mannobiose as a minimal epitope (Trinel et al. 1992; Collot et al. 2008), to \(\textit{bmt5}\Delta \) PLM was dramatically reduced, whereas \(\textit{bmt6}\Delta \) PLM had a lower molecular weight than BWP17 and \(\textit{bmt5}\Delta \) PLMs, presumably due to a lower degree of \(\beta\)-Man polymerization. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis of purified PLM from the different strains revealed a single signal at \(m/z \) 1703, corresponding to Man\(_3\)-P-MIPC, in \(\textit{bmt6}\Delta \) PLM, whereas BWP17 and \(\textit{bmt5}\Delta \) PLMs gave a broader range of mass spectrometry peaks representing PLM forms with different degrees of \(\beta\)-Man polymerization (Table II). The lower degree of polymerization of \(\textit{bmt6}\Delta \) PLM was confirmed by western blot analysis with mAb B6.1 which recognizes only serotype B strain PLM with a predominant form, Man\(_3\)-P-MIPC (Trinel et al. 2005). This mAb, which binds only to \(\beta\)-1,2 tri- or tetra-Man (Han et al. 1997) (Figure 1C) detected both \(\textit{bmt6}\Delta \) and NIH-B PLMs (Figure 3C), although recognition of the latter was less than

Fig. 2. Neighbor-joining phylogenetic tree of different \textit{C. albicans} mannosyltransferases. This tree, based on the entire enzyme sequences, illustrates the relatedness of the Bmts and reveals a cluster of Bmts according to the \(\beta\)-mannosylation step and common acceptor (also see Figure 1).
bmt6Δ PLM as it contains, in addition to Man₃-P-MIPC, other forms of PLM with higher degrees of polymerization (Trinel et al. 2005). The weak bmt5Δ PLM β-mannosylation (Figure 3B) could be associated with the presence of Man-P-MIPC that cannot be differentiated from M(IP)₂C in TLC and mass spectrometry analysis. Oligomannosides were then released from PLM by acid hydrolysis and separated by electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5). As expected, mannosides with a high degree of polymerization were mainly seen in BWP17 electrophoresis (Figure 5).

Table 1. C. albicans strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Parental</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWP17</td>
<td>arg4::hisG/arg4::hisG/his1::hisG/his1::hisG/ura3::λimm434/ura3::λimm434::ARG4/BMT5</td>
</tr>
<tr>
<td>AL79</td>
<td>bmt5Δ::ARG4/BMT5</td>
</tr>
<tr>
<td>AL88</td>
<td>bmt5Δ::ARG4/bmt5Δ::HIS1</td>
</tr>
<tr>
<td>AL98</td>
<td>bmt5Δ::ARG4/bmt5Δ::HIS1, RPS10::Clp10-BMT5-URA3</td>
</tr>
<tr>
<td>AL78</td>
<td>bmt6Δ::ARG4/bmt6Δ::HIS1, RPS10::Clp10-BMT6-URA3</td>
</tr>
<tr>
<td>AL87</td>
<td>bmt6Δ::ARG4/bmt6Δ::HIS1</td>
</tr>
<tr>
<td>AL97</td>
<td>bmt6Δ::ARG4/bmt6Δ::HIS1</td>
</tr>
<tr>
<td>NIH-B</td>
<td>C. albicans serotype B</td>
</tr>
<tr>
<td>792</td>
<td>mit1Δ CAF2</td>
</tr>
<tr>
<td>bmt1Δ</td>
<td>bmt1Δ::ARG4/bmt1Δ::HIS1</td>
</tr>
<tr>
<td>bmt2Δ</td>
<td>bmt2Δ::ARG4/bmt2Δ::HIS1</td>
</tr>
<tr>
<td>bmt3Δ</td>
<td>bmt3Δ::ARG4/bmt3Δ::HIS1</td>
</tr>
</tbody>
</table>

Fig. 3. Analysis of β-1,2 mannosylation of C. albicans glycoconjugates. Western blots of whole-cell extracts were stained with anti-β-1,2 oligomannoside monoclonal antibodies: 5B2, specific for β-Mans with mannobiose as a minimal epitope (A, B) and B6.1, specific for β-1,2 mannotriose (C). The PLM is indicated by an arrow. Parts B and C focused only on PLM. BWP17 (parental strain, serotype A); BMT5::bmt5Δ (AL79); bmt5Δ (AL88); bmt5Δ + BMT5 (AL98); BMT6::bmt6Δ (AL78); bmt6Δ (AL87); bmt6Δ + BMT6 (AL97); NIH-B (C. albicans serotype B).

β-Mannosylation of phospholipomannan
stable fraction, PPM acid-labile fraction or PLM, respectively, and therefore act on α-linked mannose residues (Figure 1A and B). Bmt4 and Bmt6, which also display 41% sequence identity (62% homology), are involved in the addition of the third β-Man either to PPM or PLM, with β-linked mannose as an acceptor (Figure 1A and B). Despite the striking structural homology between PLM and the acid-labile fraction of PPM (Figure 1A and B), deletion of the \textit{BMT1}–4 genes had no effect on PLM β-1,2 mannosylation and Bmt1–4 displayed substrate specificity for PPM (Mille et al. 2008). According to these data, we investigated whether the converse was true (i.e. if deletion of \textit{BMT5} and \textit{BMT6} had an effect on PPM biosynthesis). For this purpose, purified PPM from \textit{bmt5Δ} and \textit{bmt6Δ} was analyzed by western blot (Figure 6A) using mAb B9E, specific for β-Mans of the PPM acid-stable fraction (Figure 1) and β-Mans released by acid hydrolysis from the PPM acid-labile fraction by fluorophore-assisted carbohydrate electrophoresis (FACE; Figure 6B). In contrast to \textit{bmt1–4Δ} (Mille et al. 2008), no modification of β-mannosylation of the PPM acid-stable (Figure 6A) and acid-labile (Figure 6B) fractions, respectively, was observed in the \textit{bmt5Δ} and \textit{bmt6Δ} strains. This shows that Bmt5 and Bmt6 had no activity on PPM and that these two enzymes also exhibit substrate specificity.

Discussion

Yeast sphingolipids participate in bilayer stability, protein sorting, organization of the cortical actin cytoskeleton and endocytic uptake and cell signaling via membrane rafts (Wachtler and Balasubramanian 2006). \textit{C. albicans}
sphingolipids are essential for survival of the yeast, as revealed by its sensitivity to aureobasidin A, an IPC synthase inhibitor (Sugimoto et al. 2004). *C. albicans* can derive one class of its sphingolipids, MIPC, from a specific biosynthetic pathway that adds β-Man after mannosylphosphorylation to generate a complex GSL called PLM (Trinel et al. 2002) (Figure 1B). This molecule is, at least partly, present at the cell-wall surface, a localization that facilitates its interaction with host components, namely through its shedding in contact with host cells (Jouault et al. 1998; Poulain et al. 2002). It induces tumour necrosis factor alpha secretion from cells of macrophage lineage via a target lesion revascularization (TLR-2)-dependent pathway (Jouault et al. 1994, 2003) and macrophage apoptosis via upstream modulation of the ERK pathway (Ibata-Ombetta et al. 2001, 2003) following ingestion of yeasts. However, the regulation of *C. albicans* PLM expression remains largely unknown (Trinel et al. 1996; Poulain et al. 2002). Furthermore, its glycan moiety, mainly β-Man degrees of polymerization, is variable, as shown in serotype B strains that display a truncated PLM compared with serotype A strains (Trinel et al. 2005).

GSLs are known virulence factors in different pathogens, sometimes in relation to subtle changes in their structure (Toledo et al. 2007). With regard to the role of glycolipids in fungal virulence, a recent study based on homozygous deletion has identified a glucosylceramide as the first small molecule synthesized by *C. albicans* to be specifically required, albeit independently from morphogenesis (Noble et al. 2010). Furthermore, studies concentrating on dimorphic fungi with mAbs against different moieties of GSLs have shown close structure/activity relationships (Toledo et al. 2010). Up to six GSLs were purified and characterized from the mycelium of the opportunistic fungus *Aspergillus fumigatus* (Simenel et al. 2008). Among these, a study investigating the specificity of the human T-cell repertoire against these mould antigens identified a member of the GSL family containing galactofuranose in its glycan moiety which strongly promoted activation of the pathogenic Th17 response (Bozza et al. 2009).

Regarding the biological activity of *C. albicans* PLM, the biosynthetic pathway from MIPC to PLM has to be elucidated. Addition of β-Man residues is not specific to PLM as other *C. albicans* cell-wall molecules such as the outer layer PPM carry these particular oligomannosides that confer specific adhesive (Li and Cutler 1993; Fradin et al. 1996, 2000; Dromer et al. 2002; Dalle et al. 2003) and immunomodulatory (Han and Cutler 1995; Jouault et al. 1995, 1997; Ibata-Ombetta et al. 2001, 2003) properties. The β-1,2 mannosylation pathway of PPM has recently been elucidated, and nine members of a new family of Bmts have been discovered. Four of these enzymes, Bmt1–4, are involved in PPM biosynthesis (Mille et al. 2008). Here, the activity of two other members of the Bmt family was also characterized. β-Man epitope mapping of bmt5Δ and bmt6Δ single null mutants compared with the parental strain clearly shows that these two mutants are affected in their PLM β-mannosylation. Mass spectrometry of bmt5Δ and bmt6Δ PLMs revealed that Bmt5 and Bmt6 are specifically involved in the later stages of PLM biosynthesis, β-1,2 mannosylation, and that their deletion has no impact on complex sphingolipid (IPCs, MIPCs and M (IP)2Cs) biosynthesis. Results of combined western blot, mass spectrometry, FACE and TLC analyses lead to the conclusion that Bmt5 and Bmt6 are involved in the addition of the first and third β-Mans to PLM, respectively (Figure 1B).

Table II. Negative-ion MALDI-TOF mass spectrometry of PLMs from parental and deleted strains

<table>
<thead>
<tr>
<th>Composition</th>
<th>Measured average m/z value</th>
<th>BWP17</th>
<th>bmt5Δ</th>
<th>bmt6Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man1-P-MIPC</td>
<td>1703.2</td>
<td>nd</td>
<td>1703.3</td>
<td></td>
</tr>
<tr>
<td>Man7-P-MIPC</td>
<td>2351.4</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man8-P-MIPC</td>
<td>2513.5</td>
<td>2513.9</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man9-P-MIPC</td>
<td>2675.6</td>
<td>2676.0</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man10-P-MIPC</td>
<td>2837.7</td>
<td>2838.1</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man11-P-MIPC</td>
<td>2999.7</td>
<td>3000.1</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man12-P-MIPC</td>
<td>3161.8</td>
<td>3162.3</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man13-P-MIPC</td>
<td>3323.9</td>
<td>3325.4</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man14-P-MIPC</td>
<td>3485.9</td>
<td>3486.5</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man15-P-MIPC</td>
<td>3649.0</td>
<td>3649.0</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Man16-P-MIPC</td>
<td>3811.0</td>
<td>3811.0</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

Groups of peaks (arising from variability of the lipid moiety) spaced by 162 mass units were detected. They correspond to [M + Na – 2H] adduct ions. Major peak values reported were attributed to PLM predominant forms with C20 phytosphingosine and C24 hydroxylated fatty acid. nd: not detected.

Fig. 5. Analysis of β-Mans released from purified PLM. Oligomannosides released by acid hydrolysis from purified PLMs were analyzed by FACE. Different carbohydrate standards were used to evaluate the monomer number in the oligomannoside chains: M1, mannose; M2, β-mannobiose; M3, β-mannotriose.
It was not possible to identify the Bmt that adds the second β-Man to PLM glycan. Although Bmt3 initially appeared to be a good candidate because it adds the second β-Man to PPM (Figure 1A), its deletion had no effect on the PLM structure, similar to Bmt7–9 single deletions. It is therefore assumed that Bmt5 can add both the first and the second β-Man to PLM glycan such as Mnt1 and Mnt2 that are able to add both the first and the second α-1,2 Mans to mannanprotein O-glycans (Munro et al. 2005). It is also suggested that Bmt4 and Bmt6 are responsible for the addition of the fourth and further β-Mans to PPM and PLM, respectively. To date, analyses concentrating on PPM and PLM have enabled us to define the functions of six Bmts out of nine. The putative functions of Bmts 7–9 remain elusive mainly because, in addition to PPM and PLM, a large number of C. albicans molecules could also be β-mannosylated, which comprises most C. albicans cell-wall mannanproteins, whatever is their mode of anchorage in the cell wall (soluble, β-1,6 and β-1,3 glucan linked) (Fradin et al. 2008).

Comparison of phylogenetic analyses of the nine Bmt sequences with potential functions (Figure 2) shows that the strongest sequence homologies for Bmt5 and Bmt6 were found with Bmt2 and Bmt4, respectively. The results from this analysis are coherent when considering the structural similarities between PLM and PPM. As shown in Figure 1, both Bmt5 and Bmt2 add a β-Man to an α-Man linked to a phosphate group, whereas Bmt6 and Bmt4 add a β-Man to a β-1,2 mannobiose. An intriguing question is why C. albicans needs two different sets of related enzymes for identical stages of β-mannosylation with preferential substrates, PPM or PLM. These overlapping activities are advantageous for the yeast as they can prevent the deleterious effect of gene loss to the cell wall. PLM could be indeed partly β-mannosylated in the bmt5Δ strain. On the other hand, specific β-mannosylation processes between the two pathophysiologically relevant molecules facilitate differential β-Man expression on these manno-glycoconjugates, which is coherent with previous observations showing different β-mannosylation processes for PPM and PLM (Trinel et al. 1996).

Considering the immunological evidence for the importance of β-Man interactions with both innate receptors (Poulain and Jouault 2004; Jouault et al. 2006; Jawhara et al. 2008) and effectors of adaptive immunity (Han et al. 1998; Xin et al. 2008), further studies are necessary to assess how this specific trait of unforeseen complexity, namely in terms of regulation (Trinel et al. 1996; Mille et al. 2004), and high entropy is related to C. albicans adaptation to the human host. Definition of C. albicans GSLs is part of this challenge.

Materials and methods
Strains and growth conditions
The C. albicans strains used in this study are listed in Table 1. Strains were grown in YPD-Arg-His-Urd medium (1% yeast
extract, 2% peptone, 2% dextrose, 20 mg/L arginine, 20 mg/L histidine, 20 mg/L uridine) at 37°C for 16 h. *Escherichia coli* strains TOP10 or DH5α were used for recombinant DNA work. All procedures for manipulating DNA were performed using standard procedures (Sambrook et al. 1989).

Monoclonal antibodies

5B2 is a rat-mouse IgM with β-1,2 mannobiose as a minimal epitope (Trinel et al. 1992). B6.1 is a mouse IgM specific for a β-1,2 mannotriose (Han et al. 1997). B9E, a mouse IgM, is specific for β-1,2 Mans present on the nonreducing end of α-1,2 chains of the PPM acid-stable fraction (Ponton et al. 1993) (Figure 1A).

Deletion of BMT genes

The two *C. albicans* open reading frames (ORFs), orf19.1464 and orf19.5602, were deleted sequentially from strain BWP17 by PCR-based gene targeting (Gola et al. 2003) (Table 1). Two plasmids were used to release selectable markers, CaARG4 and CaHIS1, by NotI digest. Each marker was amplified by PCR using primers including the first and the last 100 bp of gene-specific sequences. The generated disruption cassettes were used to transform BWP17 by the lithium acetate method (Sanglard et al. 1996). First, the selectable marker CaARG4 was used to generate independent heterozygous strains on synthetic dextrose plates supplemented with 20 mg/L histidine and 20 mg/L uridine. Correct insertion of the marker was verified by PCR. A second round of transformation was performed to delete the second allele with the CaHIS1 marker by the same method. Homologous integration was verified by PCR.

Reintroduction of BMTs into null strains

BMT5 and BMT6 ORFs, with ~500-bp upstream and downstream nucleotides, were amplified by PCR using AccuPrime PfX DNA polymerase (Life technologies, Saint Aubin, France). The amplified fragment was cloned into the pCRII-TOPO vector (Life technologies, Saint Aubin, France). The BMT gene was then excised by digestion with SacI and NotI, and ligated into SacI- and NotI-digested Clp10 (Murad et al. 2000) to obtain the reintegration vector. The bmtΔ null strains were transformed with SacI- or NotI-digested reintegration vector. Transformants were screened by PCR to check the reintroduction of the BMT gene at the RPS10 locus.

Whole-cell protein extraction and western blot analysis

Strains were grown at 37°C in YPD-Arg-His-Urd and were extracted by alkaline extraction under reducing conditions (Trinel et al. 1992). Briefly, cells were incubated on ice in 1.85 M NaOH and 5% β-mercaptoethanol. Proteins and glycoconjugates were then extracted in sodium dodecyl sulfate (SDS) for 5 min at 100°C. Extracts were adjusted to the same protein concentration and analyzed by SDS-polyacrylamide gel electrophoresis (PAGE; Laemmli 1970) on a 5–20% acrylamide gel slab. Membranes were probed with mAbs 5B2 diluted 1:1000 and B6.1 diluted 1:1000 and then incubated with a 1:1000 dilution of alkaline phosphatase-conjugated anti-rat IgM or anti-mouse IgM, respectively.

Analysis of sphingolipids

Strains were grown at 37°C in YPD-Arg-His-Urd and washed in phosphate-buffered saline (PBS). Cells were then broken with a French press (Aminco, SLM Instruments, Inc.) at 20,000 psi, dialysed and lyophilized. Sphingolipids were then extracted and purified by successive extractions with chloroform/methanol and chloroform/methanol/water mixtures (Trinel et al. 1999) except that care was taken to avoid micelle formation in order to improve PLM solubility (Trinel et al. 2002). The different supernatants were pooled, analyzed by TLC on 10 × 5 cm silica gel 60 plates (Merck, Lyon, France) using a butanol/acetic acid/water (20/8/17) solvent system and revealed with an orcinol stain. The sphingolipid extracts were finally analyzed by mass spectrometry. Electrospray mass measurements were carried out in negative-ion mode on a triple quadrupole instrument (Micromass Ltd., Altrincham, UK) fitted with an atmospheric pressure ionization electrospray source. A mixture of polypropylene glycol was used to calibrate the quadrupole mass spectrometer. The samples were dissolved in dimethyl sulfoxide and further diluted in methanol to obtain a final concentration of 0.25 µg/µL. Solutions were infused using a Harvard syringe pump at a flow rate of 3 µL/min. The quadrupole was scanned from 500 to 2000 Da with a scan duration of 6 s and a scan delay of 0.1 s. The samples were sprayed using a 3.5 kV needle voltage and the declustering cone was set at 70 V.

PLM purification

Sphingolipids were extracted as described in the section Analysis of sphingolipids, dried and then submitted to extensive butanol/water partitions of the chloroform/methanol/water (10/10/3) extracts. Sphingolipids in the water phase were finally purified on phenyl-sepharose using increasing concentrations of ethanol (1–40%) for elution. Purification and control of PLM fractions were checked and analyzed by TLC using a butanol/acetic acid/water (20/8/17) solvent system and visualized with orcinol reagent.

Analysis of PLM by mass spectrometry

MALDI-TOF mass spectra were acquired on a Voyager Elite DE-STR mass spectrometer (Perceptive Biosystems, Framingham, MA) equipped with a pulsed nitrogen laser (337 nm) and a gridless delayed extraction ion source. The spectrometer was operated in negative reflection mode by delayed extraction with an accelerating voltage of 20 kV, a pulse delay time of 200 ns and a grid voltage of 66%. Samples were prepared by mixing 0.5 µL of PLM solution in water (0.02 µg/µL) with 0.5 µL of 2,5-dihydroxybenzoic acid matrix solution (10 mg/mL in methanol/water, v/v) directly on the target. The samples were allowed to dry for about 5 min at room temperature. Between 100 and 150 scans were acquired for each spectrum.

PPM extraction

PPM from cells grown in YPD-Arg-His-Urd medium was extracted by autoclaving in citrate buffer at pH 7.0 (Faille et al. 1992). Briefly, cell pellets were suspended in 20 mM citrate buffer and autoclaved at 125°C for 90 min. Suspensions were harvested, and Fehling’s solution was
added to the supernatant to precipitate PPM. The PPM was then washed in methanol/acetic acid (8/1) and dried in a Speed Vac concentrator. Sugar concentrations were estimated by the sulfuric–phenol colorimetric method (Dubois et al. 1951). PPM was analyzed by SDS–PAGE as described in the section Whole-cell protein extraction and western blot analysis. Membranes were probed with mAb B9E diluted 1:750.

Face analyses of β-Mans released from PLM and PPM

Previously extracted PLM or PPM was hydrolyzed in 20 mM HCl for 1 h at 100°C to release n-oligomannosides. After neutralization, hydrolysates were then dried and tagged with 0.15 M 8-amino-naphthalene-1,3,6-trisulfonate (ANTS) and 1 M sodium cyanoborohydride for 16 h at 37°C (Goins and Cutler 2000). The dried samples were resuspended in glycerol/water (1/4). Electrophoresis of ANTS-labeled oligomannosides was performed on 35% (w/v) acrylamide separating gels. Acid-hydrolyzed dextran and synthetic or purified oligosaccharides were also tagged with ANTS and used as carbohydrate standards. Gels were dried and images were acquired with the Gel Doc 2000 image analysis apparatus from Biorad equipped with a 365 nm UV-transilluminator.

Phylogenetic analysis

The phylogenetic tree of mannosyltransferases was calculated using clustalW software and the resulting tree was plotted using the NJplot software. The tree is based on the entire sequence of proteins and includes other glycosyltransferases involved in cell-wall biosynthesis than BMT genes.

Funding

This work was supported by the “Agence Nationale de la Recherche” [ANR 06 ERA NET PAHO 006 02] and [ANR-09-MIE-031-01]; the “Fonds commun interministériel de Recherche et Développement”-LEVACI “Produits à base de levure pour l’amélioration du confort intestinal” [LINT CO592-3]; and the European project “AllFun” from the 7th Framework programme-Health [260338].

The mass spectrometry facility used in this study was funded by the European Community (FEDER); the Région Nord-Pas de Calais (France); the CNRS; and the Université des Sciences et Technologies de Lille.

Acknowledgements

We gratefully acknowledge Prof. J. Cutler (Research Institute for Children, New Orleans, USA), Prof. J. Pontón (Universidad del País Vasco, Bilbao, Spain) and Prof. A. J. P. Brown (Department of Molecular and Cell Biology, Aberdeen, UK) for providing B6.1, B9E and Clp10, respectively. We thank Dr. V. Hopwood for help in preparing the manuscript.

Conflict of interest

None declared.

Abbreviations

ANTS, 8-amino-naphthalene-1,3,6-trisulfonate; β-Man, β-1,2-linked oligomannoside; BMTs, β-mannosyltransferase genes; Bmt's, β-mannosyltransferases; FACE, fluorophore-assisted carbohydrate electrophoresis; GSL, glycosphingolipid; IPC, inositol-phosphoceramide; mAb, monoclonal antibody; MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight; MIPC, mannose-inositol-phosphoceramide; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; PLM, phospholipomannan; PPM, phosphopeptidomannan; SDS–PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; TLC, thin-layer chromatography.

References

β-Mannosylation of phospholipomannan

Downloaded from https://academic.oup.com/glycob/article/22/10/1332/1988050 by guest on 05 March 2022

