A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keratan sulfate lacking oversulfated structures

We have generated a monoclonal antibody (R-10G) specific to human induced pluripotent stem (hiPS)/embryonic stem (hES) cells by using hiPS cells (Tic) as an antigen, followed by differential screening of mouse hybridomas with hiPS and human embryonal carcinoma (hEC) cells. Upon western blotting with R-10G, hiPS and human embryonal carcinoma (hEC) cell lysates gave a single but an unusually diffuse band at a position corresponding to >250 kDa. The antigen protein was isolated from the induced pluripotent stem (iPS) cell lysates with an affinity column of R-10G. The R-10G positive band was resistant to digestion with peptide N-glycanase F (PNGase F), neuraminidase, fucosidase, chondroitinase ABC and heparinase mix, but it disappeared almost completely on digestion with keratanase, keratanase II and endo-β-galactosidase, indicating that the R-10G epitope is a keratan sulfate. The carrier protein of the R-10G epitope was identified as podocalyxin by liquid chromatography/mass spectrometry (LC/MS/MS) analysis of the R-10G positive-protein band material obtained on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). The R-10G epitope is a type of keratan sulfate with some unique properties. (1) The epitope is expressed only on hiPS/ES cells, i.e. not on hEC cells, unlike those recognized by the conventional hiPS/ES marker antibodies. (2) The epitope is a type of keratan sulfate lacking oversulfated structures and is not immunologically cross-reactive with high-sulfated keratan sulfate. (3) The R-10G epitope is distributed heterogeneously on hiPS cells, suggesting that a single colony of undifferentiated hiPS cells consists of different cell subtypes. Thus, R-10G is a novel antibody recognizing hiPS/ES cells, and should be a new molecular probe for disclosing the roles of glycans on these cells.

Keywords: embryonic stem cells / induced pluripotent stem cells / keratan sulfate / monoclonal antibody / podocalyxin

Introduction

Carbohydrate-recognizing antibodies are extremely useful experimental tools for monitoring the changes in cell surface glycan structures as well as for identification of specific glycans on a specific cell type with high sensitivity and strict specificity. This is true in the case of pluripotent stem cells, including human embryonic stem (hES) and human-induced pluripotent stem (hiPS) cells (Wright and Andrews 2009). Among the conventional hiPS/ES cell-marker antibodies, stage-specific embryonic antigen (SSEA)-3 (Shevinsky et al. 1982) and SSEA-4 (Kannagi, Cochran et al. 1983; Kannagi, Levery et al. 1983) specifically recognize globosides such as Ga1(β1-3)GalNAc(β1-3)Galα1- Cer and tumor rejection antigen (TRA)-1-60 (Andrews et al. 1984), TRA-1-81 (Andrews et al. 1984), germ cell tumor monoclonal (GCTM)2 (Pera et al. 1988; Cooper et al. 1992) and GCTM343 (Pera et al. 1988) recognize keratan sulfate (Adewumi et al. 2007). Keratan sulfate is a class of glycosaminoglycan (GAG). But in contrast to other GAGs, it does not contain uronic acids, and its repeating disaccharide unit is composed of alternating β-galactose (Gal) and N-acetyl-β-glucosamine (GlcNAc) residues. In most cases, the hydroxyl groups at the C-6 position of GlcNAc residues and/or Gal residues are sulfated. The keratan sulfate-glycan chains are linked to the polypeptide backbone through either N- or O-linkages, and are occasionally modified with sialic acid and fucose.

It should be kept in mind, however, that most of the above antibodies were generated against hEC cells: 2102Ep for...
TRA-1-60, TRA-1-81 and SSEA-4 and GCT27 for GCTM2 and GCTM343. In other words, these antibodies are not specific to hiPS/ES cells; rather, they recognize those glycans that are common to hiPS/ES and embryonal carcinoma (EC) cells. ES cells and EC cells are very closely related cells and have many properties in common, but EC cells are teratocarcinoma. New antibodies that are capable of distinguishing between malignant and normal phenotype would be valuable. With this background, we tried to generate antibodies specific to hiPS cells. We first selected hiPS cell-positive hybridomas, from which hEC cell-positive hybridomas were excluded. By this procedure, we have obtained three antibodies that are capable of distinguishing between hiPS/ES and hEC cells. From these novel antibodies, we have chosen one, designated R-10G, and the biochemical properties of the antibody and its epitope molecules have been investigated. The results demonstrated clearly that R-10G is a novel marker antibody recognizing a type of keratan sulfate lacking oversulfated structures on hiPS cells, and thus should be useful not only as a new molecular probe for disclosing the roles of glycans on the surface of hiPS cells in the maintenance of self-renewal and pluripotency and during the process of differentiation, but also as a potent tool for the evaluation and standardization of hiPS cells with different tissue origins and different histories in regenerative medicine.

Results

Generation of monoclonal antibodies to hiPS cells

In order to raise a panel of monoclonal antibodies to cell surface markers on hiPS cells, freeze-thawed Tic cells in phosphate-buffered saline (PBS) were mixed with Freund’s complete adjuvant (FCA) and used to immunize C57BL/6 mice intraperitoneally or subcutaneously. Primary screening of a total of 960 hybridomas using Tic cell-fixed plates and MRC-5 cell-fixed plates (controls) indicated that 29 hybridomas produced antibodies that exhibited reactivity to surface antigens on Tic cells. Secondary screening was performed for these hybridomas to determine the reactivities of the antibodies to a hEC cell line, 2102Ep and mouse embryonic fibroblast (MEF).

As shown in Table I, a large portion of the antibody panel (Nos. 2, 4, 6, 9, 13, 19, 20, 21, 25, 26, 27, 28 and 29) exhibited significant binding activity not only to Tic cells but also to 2102Ep cells, an EC cell line. Interestingly, however, antibody Nos. 10, 11 and 17 exhibited strong reactivity toward Tic cells but no or very weak reactivity toward 2102Ep cells. These results demonstrated clearly that there are definite differences in the antigen profiles between hiPS and hEC cells, even though there is considerable overlapping between them. The binding of these antibodies to human iPS cells was confirmed by western blotting, in which Tic cell lysates were resolved by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and the culture supernatants of hybridomas were used as primary antibodies. The protein profiles of SDS–PAGE and some representative western blot profiles of Tic cell lysates (7/29 hybridomas) are presented in Figure 1A and B, respectively.

Tic cell lysates gave a large number of protein bands corresponding to from 15 to >300 kDa. On the other hand, the migration positions and the intensities of the immunoreactive bands were characteristic of the respective hybridomas, but these bands appear to be classifiable into three groups on the basis of their apparent molecular sizes: Between 35 and 50 kDa (e.g. clone 27), between 75 and 100 kDa (e.g. clone 25) and over 250 kDa (e.g. clones 10 and 26). Such antibodies that show strong binding in the cell plate assay but a faint or essentially no band on western blotting might interact with

Table I. Summary of hybridoma screening by cell plate binding assay

<table>
<thead>
<tr>
<th>No.</th>
<th>Tic</th>
<th>2102Ep</th>
<th>MRC-5</th>
<th>MEF</th>
<th>No.</th>
<th>Tic</th>
<th>2102Ep</th>
<th>MRC-5</th>
<th>MEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>±</td>
<td>16</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>2</td>
<td>+++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>17</td>
<td>+++</td>
<td>±</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>18</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>4</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>19</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>20</td>
<td>+++</td>
<td>+</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>6</td>
<td>+++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>21</td>
<td>+++</td>
<td>+</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>22</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>23</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>9</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>24</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>25</td>
<td>+++</td>
<td>+</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>26</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>27</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>13</td>
<td>+++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>28</td>
<td>+++</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>29</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The culture supernatant of each hybridoma was added to cell-fixed screening plates (Tic, 2102Ep, MRC-5 and MEF cells), and binding of antibodies to the cells was monitored by DAB staining under a light microscope after treatment with HRP-conjugated anti-mouse IgG as described under Materials and methods. The results are presented as a 5-grade scale from − to ++++.
membrane lipid components (e.g. clones 11, 12 and 17). In lane P, TRA-1-60, a conventional iPS/ES marker antibody, which was used as a positive control, gave a single but a diffuse band in the high-molecular-weight region over 250 kDa, as was expected from a previous report (Andrews et al. 1984). The results of the cell-binding assay indicated that three hybridomas Nos. 10, 11 and 17 seemed to be appropriate to pursue our aim. Of these hybridomas, we focused on No. 10, since these hybridomas exhibited a most striking band upon western blotting as shown in Figure 1B. The hybridoma R-10G was a subclone obtained from hybridoma No. 10. The isotype of antibody R-10G is IgG1.

Binding properties of R-10G as to iPS/ES/EC cells

We examined the binding activity of R-10G toward some other hiPS/ES/EC cell lines using an InCell analyzer 2000 in comparison with those of conventional hiPS and mouse iPS/ES marker antibodies, TRA-1-81, TRA-1-60, SSEA-1, SSEA-3 and SSEA-4. The results of immunocytochemical studies are summarized in Figure 2 (A–F). As shown in (A), antibody R-10G interacted remarkably with three different hiPS cell lines: Tic cells (68 ± 7%, mean percentage binding in four experiments ± SD), 201B7 cells (88 ± 7%) and Squeaky cells (79 ± 9%), and also with two hES cell lines: H9 cells (64 ± 4%) and KhES-3 cells (83 ± 2%). TRA-1-81 (B), TRA-1-60 (C), SSEA-3 (D) and SSEA-4 (E) also exhibited high binding activities of 96–99, 94–99, 64–72 and 85–99%, toward these five types of hiPS/ES cells, respectively, all being consistent with previous studies (Wright and Andrews 2009). These results indicated that R-10G is a hiPS/ES-recognizing antibody like the other conventionally used hiPS/ES marker antibodies. Most importantly, however, in contrast to the other conventional iPS/ES marker antibodies, which bound to an EC cell line, 2102Ep, as effectively as to other iPS/ES cells (68–98%), R-10G did not bind to an EC cell line, 2102Ep, significantly (6 ± 1%) (A). This was confirmed by essentially no binding of R-10G to a different EC cell line, NCR-G3 (data not shown). Taken together, these results indicated clearly that R-10G is a unique iPS/ES marker antibody, which distinguishes between hiPS and hEC cells. SSEA-1 (in F), which is known to be negative as to undifferentiated hiPS/ES/EC cells (Wright and Andrews 2009) did not show significant binding to any of the cell lines used in this experiment, as expected.

Then, we examined the localization of these epitopes on the surface of hiPS (Tic) cells by means of immunocytochemical experiments using a laser confocal scanning microscope. As shown in Figure 3 (A and B), at a low magnification (×100), almost all the TO-PRO 3 (nuclear counterstained)-positive cells in a colony appeared to be stained with R-10G in green, although there were significant differences at the level of staining depending upon the cells. TRA-1-81 appeared to stain also almost all cells ubiquitously in red. However, when the two images were merged into a single one, it was found that the cells in the central region of the colony were largely stained in green, while those in the peripheral region were largely stained in red. This apparent polarity of the epitope expression may be
related to some micro-environmental differences between the central and peripheral regions of a hiPS colony. At a higher magnification (×400, in A and B), the R-10G staining was detected on the surface and boundaries of the cells, but at the same time granular structures stained strongly in green were found in the cytosol. These granular structures were hardly seen in TRA-1-81 and TRA-1-60 stained images, and the red staining was predominantly detected on the surface of the cells. In merged images, some Tic cells were stained in green and the other cells in red, although there were cells or subcellular regions of cells that were stained in yellow, suggesting that some of the cells expressed predominantly either the R-10G or TRA-1-81 epitope, or either the R-10G or TRA-1-60 epitope. However, there were a significant number of cells that co-expressed these two pairs of epitopes (R-10G and TRA-1-81 epitopes and R-10G and TRA-1-60 epitopes) in comparable ratios in close vicinity. These results suggested that hiPS cells are in fact heterogeneous with regard to the expression of cell surface glycans from cell to cell, and suggested the presence of subtypes of cells within a single colony of hiPS cells.

Identification of the R-10G antigen molecule as a podocalyxin

On the basis of the results of western blotting of Tic cell lysates with clone 10 (Figure 1B), which gave a single but diffuse high-molecular-weight protein band, we tried to isolate the presumptive antigen molecule by using an affinity column of R-10G. Freeze-thawed hiPS cells were solubilized in the complete RIPA buffer (see Materials and methods), and the lysate was applied to an R-10G-Sepharose 4B column. Proteins bound to the column and eluted with pH 11.5 buffer were analyzed by western blotting. As shown in Figure 4A, column 1, a single but diffuse R-10G positive band was observed at the same position as that in the case of the whole cell lysate (Figure 1B, clone 10). The isolated antigen was subjected to SDS-PAGE and the resolved protein bands were stained with SYPRO Ruby Protein Gel Stain. The bands corresponding to those on western blotting were excised as three fractions (a, b and c in column 2), and then subjected to in-gel trypsin digestion, and the peptides released were analyzed by LC/MS/MS. The three fractions of the major western blotting band generated several peptides sequences, all of which...
corresponded to partial sequences of human podocalyxin (Figure 4B), and no other alternative sequence was detected for these fractions a, b and c.

Podocalyxin is a heavily glycosylated type-1 transmembrane protein belonging to the CD34 family of sialomucins (Sassetti et al. 1998, 2000) (Figure 4C). The protein was originally described as the major sialoprotein on podocytes of the kidney glomerulus (Kerjaschki et al. 1984). Recently, podocalyxin was shown to be expressed by hematopoietic progenitors, vascular endothelia and a subset of neurons, and it is aberrantly expressed in a number of tumors (Nielsen and McNagny 2009). The human podocalyxin gene (Kershaw, Wiggins et al. 2006) encodes a protein of 558 amino acids. Because the extracellular domain of podocalyxin is extensively glycosylated with sialylated O-linked carbohydrates and five potential N-linked glycosylation sites, the approximate molecular weight of podocalyxin is 160–165 kDa (Kershaw, Beck et al. 1997). Interestingly, podocalyxin was identified to be highly expressed in undifferentiated hES cells (Brandenberger et al. 2004; Cai et al. 2006). In addition, the TRA-1-81 and TRA-1-60 epitopes have been shown to be expressed on a 200 kDa form of podocalyxin (Schopperle and DeWolf 2007). Identification of podocalyxin as the R-10G antigen protein constituted evidence that podocalyxin polypeptide serves as a common carrier for a family of epitopes generated through carbohydrate modifications on the human pluripotent cell surface.

Characterization of the R-10G epitope by glycosidase digestion and western blotting

The unusual diffuse shape of the R-10G reactive band (Figure 1B, clone 10 and Figure 4A) suggested that the band is most probably of a glycoprotein. To examine this, we digested a Tic cell lysate and/or R-10G antigen isolated therefrom with various glycosidases prior to SDS–PAGE, and determined the effects of these treatments on the intensities and the migration positions of the R-10G reactive bands. This experiment was carried out with two other hiPS/ES marker antibodies, TRA-1-81 and TRA-1-60, which have been shown to recognize keratan sulfate (Adewumi et al. 2007) and sialylated keratan sulfate (Badcock et al. 1999), respectively.

As shown in Figure 5A (lanes 1, 3 and 5), upon western blotting, Tic cell lysates gave diffuse bands not only with R-10G but also with TRA-1-81 and TRA-1-60 in high-molecular-weight regions (>250 kDa), this being consistent with the potent immunocytochemical activities of these antibodies toward Tic cells, as described above. Then, we examined the reactivity of the isolated R-10G antigen toward R-10G, TRA-1-81 and TRA-1-60 (Figure 5A, lanes 2, 4 and 6). Unexpectedly, the isolated R-10G antigen reacted not only with R-10G but also with TRA-1-81 and TRA-1-60, giving a single band at the respective positions expected from those for the Tic cell lysates. These results suggested that these three antibodies recognize similar glycans in the same category, keratan sulfate, as their epitopes. In agreement with this hypothesis, upon digestion of the R-10G antigen with keratanase II, which degrades keratan sulfate specifically (see Figure 6), the R-10G epitope as well as the TRA-1-81 epitope was degraded (Figure 5B). It should be noted, however, that the most of the R-10G epitope disappeared easily with a small amount of the enzyme, whereas the TRA-1-81 epitope was relatively stable as to the digestion and was degraded only when a large amount of the enzyme was added. These results suggested that R-10G and TRA-1-81 share a common epitope, keratan sulfate, although the epitope structures recognized by these antibodies are different from each other in some unspecified way.
which degrades various subtypes of heparan sulfates and heparins, did not decrease the R-10G binding activity; rather, the reactivity was enhanced to some extent for some undetermined reasons. These results indicated that neither heparan sulfate/heparin nor chondroitin sulfates are associated with the epitope structure as major constituents. On the other hand, keratanase and endo-β-galactosidase, both of which are keratan sulfate-degrading enzymes, abolished the R-10G binding activity as keratanase II did, confirming that the major epitope of R-10G is a keratan sulfate (see Figure 6).

Then, we studied the effect of PNGase F treatment. As shown in Figure 5D, PNGase F digestion of the R-10G antigen resulted in no decrease in the R-10G binding activity or the migration position of the major reactive band.
indicating that N-linked glycans are not the major constituents of the epitope on the antigen. The same results were obtained for TRA-1-81 and TRA-1-60, excluding the major role of N-glycans as the epitope constituents.

The isolated R-10G antigen contained significant amounts of sialic acid and fucose (see Discussion). Since it was reported previously that the TRA-1-60 epitope was sialylated keratan sulfate, which was destroyed on digestion with neuraminidase either from *Vibrio cholerae* or from *Arthrobacter ureafaciens* (Andrews et al. 1991; Badcock et al. 1999). We examined the effects of these two neuraminidases on the immunoreactivity of the R-10G antigen by western blotting. As shown in Figure 5E, digestion of the R-10G antigen with neuraminidase from *Arthrobacter ureafaciens* resulted in no significant change in the immunoreactive bands for R-10G (lanes 1–3). The same results were obtained for the R-10G antigen with neuraminidase from *Vibrio cholerae* (data not shown). These results indicated that sialic acids are not associated with the R-10G epitope as a major constituent. Similarly, the reactivities of TRA-1-81 and TRA-1-60 to the R-10G antigen were not diminished upon digestion with neuraminidase from *Arthrobacter ureafaciens* (lanes 4–9). Instead, their reactivities were enhanced (lane 4 vs. lanes 5, 6, lane 7 vs. lanes 8, 9), suggesting that sialylation blocks or sterically hinders these epitopes. The same results were obtained with neuraminidase from *Vibrio cholerae* (data not shown).

Recently, the Fuc(*α*1-2)Gal(*β*1-3)GlcNAc structure has been reported to be a pluripotency-associated epitope for hES marker antibodies. 2101B7 and Squeaky, like most of the conventional hiPS/ES lines, H9 and KhES-3, as effectively as to iPS cell lines, Tic, 2101B7 and Squeaky, like most of the conventional hiPS/ES marker antibodies.

Further characterization of the R-10G epitope by chemical analysis

In the next experiment, the oligosaccharides released from the R-10G antigen with keratan sulfate-degrading enzymes were analyzed by reverse-phase ion-pair HPLC system using a fluorometric post-column detection method newly developed by Hirose et al. (in preparation). Figure 7A shows the oligosaccharide profiles released with keratanase II, which hydrolyzes the 1,3-β-glucosaminidic linkages to galactose in keratan sulfate, when the 6-O-position of GalNAc is sulfated (Brown et al. 1995; Oguma et al. 2001) (see Figure 6). A predominant peak was detected at 6.60 min, which corresponds to the disaccharide-repeating units of keratan sulfate, Gal-GlcNAc(6S) (peak 1), followed by a small peak corresponds to Gal-GlcNAc(6S)-Gal-GlcNAc(6S) (peak 2) and some very minor peaks, which include a negligible peak at the position corresponded to Gal-GlcNAc(6S)-GlcNAc(6S) (peak 3). The sulfation index of the GAG family, the average number of sulfate residues per disaccharide-repeating unit, Gal-GlcNAc, was calculated to be 1.02. Figure 7B shows the oligosaccharide profiles released with endo-β-galactosidase, which hydrolyzes the 1,4-β-galactosidic linkage when the 6-O-position of the Gal residue is not sulfated, irrespective of the presence or absence of sulfate on the adjacent GalNAc (Fukuda and Matsumura 1976). One major peak was detected at 6.36 min, which corresponds to the disaccharide-repeating units of keratan sulfate, GlcNAc(6S)-Gal (peak 5), followed by several significant peaks between peak 5 and peak 6. Figure 7C shows the elution profile of endo-β-galactosidase digests of the keratan sulfate from bovine cornea, which was used as a standard of keratan sulfate. Three major peaks such as peaks 5, 6 and 7 were obtained, which correspond to GlcNAc(6S)-Gal, GlcNAc(6S)-Gal(6S)-GlcNAc(6S)-Gal and GlcNAc(6S)-Gal(6S)-GlcNAc(6S)-Gal(6S)-GlcNAc(6S)-Gal, respectively. The presence of peaks 6 and 7 in Figure 7C but no or little peaks at the corresponding positions in Figure 7B may be explained by...
a considerable level of oversulfated structure (sulfation at C-6 of Gal residues) in the keratan sulfate from bovine cornea and in contrast by a negligible level of this sulfation in the R-10G epitope. This is in accordance with a substantially higher sulfation index of the keratan sulfate from bovine cornea, 1.29, than that of the R-10G antigen, 1.02, as described above. It is possible that several significant peaks between peak 5 and peak 6 in Figure 7B may represent additional modifications such as fucosylation, sialylation or something else of Gal residues in the keratan sulfate in the R-10G antigen.

Taking all these results into account, it is reasonable to conclude that the R-10G epitope is a unique keratan sulfate lacking oversulfated structures.

Characterization of R-10G epitopes by ELISA

In this experiment, the binding activity of R-10G toward the biotinylated GAG specimens, which had been fixed to the streptavidin-coated plastic wells, was assayed using an enzyme-linked immunosorbent assay (ELISA) system in comparison with that of 5D4, which is known to recognize a high-sulfated keratan sulfate (Mehmet et al. 1986). As shown in Figure 8A, the keratan sulfate from bovine cornea reacted effectively with R-10G, while the other GAGs, hyaluronic acid, chondroitin, chondroitin sulfate from whale cartilage, chondroitin sulfate from the spinal column of Acipenser medirostris, chondroitin sulfate B, chondroitin sulfate C, chondroitin sulfate D, chondroitin sulfate E and heparan sulfate, did not show any significant binding activity toward R-10G, indicating clearly that the binding specificity of R-10G is very strict for keratan sulfate. In this respect, R-10G is similar to 5D4 (Figure 8B). It should be noted, however, that there is >100-fold difference in the amount of antibodies required to generate adequate responses between these two antibodies, 0.008 μg/mL for 5D4 and 1 μg/mL for R-10G. This may indicate that the keratan sulfate from bovine cornea is abundant in the 5D4 epitope but is scarce in the R-10G epitope. A marked difference between R-10G and 5D4 was also demonstrated by inhibition studies.

As shown in Figure 8C, the binding of R-10G to the keratan sulfate from bovine cornea in the plastic plates was inhibited by the same keratan sulfate in proportion to the amount of the keratan sulfate added to the incubation mixture, as expected. In contrast, a high-sulfated keratan sulfate (KSP-1), which was isolated from shark cartilage according to the procedure as described by Furuhashi (Furuhashi 1961), did not inhibit the R-10G binding at all, indicating the inability of R-10G to bind to a high-sulfated keratan sulfate. On the other hand, as shown in Figure 8D, a highly sulfated-keratan sulfate (KSP-1) inhibited the 5D4 binding approximately 100 times more than that of the keratan sulfate from bovine cornea, confirming the highly specific binding of 5D4 to a high-sulfated keratan sulfate (Mehmet et al. 1986).

In the next experiment, when the keratan sulfate fixed on a well was digested with keratanase II, the R-10G binding activity disappeared almost completely (Figure 8E), as the 5D4 binding activity did (Figure 8F). When the keratan sulfate was digested with keratanase, the R-10G binding activity disappeared again almost completely (Figure 8E), while the 5D4 binding activity was reduced only partially (≏40%) (Figure 8F). This differential susceptibility to keratanase between the R-10G and 5D4 epitopes is most probably due to the substrate specificity of keratanase, which digests the keratan sulfate only when C-6 of the GalNAc is sulfated but C-6 of the galactose residue is not sulfated (Ito et al. 1986).
activities of 5D4 toward various glycosaminoglycans were determined as
330
(see Figure 6). The 5D4 epitope is a high-sulfated keratan sulfate, and C-6 of the galactose linked to GalNAc is fre-
372
(white bars), keratanase (black bars), or keratanase II (dashed bars) at 37°C overnight, was fixed on a streptavidin-coated plate (1 μg/mL), and the binding activity of R-10G (1 μg/mL) (E) or 5D4 (0.008 μg/mL) (F) to the residual oligosaccharide moieties on the plates were assayed as described in (A).

Finally, these studies involving an exogenous keratan sulfate and 5D4 antibodies confirmed strongly the conclusions made with the endogenous antigen molecule on hiPS cells and R-10G, as described above.

Tissue distribution of the R-10G epitope

Conventional hiPS/ES/EC marker antibodies are expressed not exclusively on hiPS/ES/EC cells but the same or cross-reactive epitopes are occasionally expressed either in fetal or adult tissues. For example, TRA-1-81 reacted with human mammary ducts, stomach, the small and large intestine and others, and TRA-1-60 reacted with human smooth muscle cells, the intestine, lung, skin, uterus and others, in addition to hiEC cells (Andrews et al. 1984). In this connection, we examined the tissue distribution of the R-10G epitope by immunohistochemistry studies of human adult and fetal tissues using a human tissue array. Out of 32 human adult and fetal tissues tested, adult brain and adult cerebellum showed strong reactivity to R-10G, which are comparable to that for Tic cells. In contrast, the other adult and fetal tissues, that is, placenta, bladder, brain (fetal), cerebellum (fetal), colon, heart, kidney, liver, lung, skin, skeletal muscle, small intestine, spleen, stomach, thymus and tongue did not show any significant staining to the R-10G except for the fetal liver, in which weak spots like islets were detected. Thus, the mole-
118
cules recognized by R-10G are not confined to hiPS/ES cells but they are expressed on a very limited number of tissues in a unique fashion. In agreement with this staining profile of human tissues, the keratan sulfate isolated from the mouse brain and the rat brain were shown to have sulfation indexes of 1.04 and 1.08, respectively (Oguma et al. 2001), which are close to that of the R-10G antigen on hiPS cells, 1.02.

Discussion

We have established a monoclonal antibody, R-10G, which is a unique iPSC marker antibody distinguishing hiPS cells (normal cells) and hiEC cells (teratoma cells). Using an affinity column of the R-10G antibody, the R-10G antigen mol-
ecule was isolated from hiPS cells and subjected to characterization from various aspects.

The initial characterization of the glycan epitope of R-10G on the hiPS cell surface was carried out with western blotting by comparing the R-10G antigen profiles before and after glycosidase digestion. Of the various glycosidases tested, kerata-
372
nase II, keratanase and endo-β-galactosidase, all known to degrade keratan sulfate, abolished the R-10G positive band almost completely, indicating that the epitope is a keratan sulfate. However, 5D4, the most widely used keratan sulfate-recognizing monoclonal antibody, did not bind to hiPS cells, as seen on immunocytochemical staining (data not shown). In addition, on western blotting, neither Tic cell lysates nor the R-10G antigen isolated therefrom gave any detectable bands with 5D4 (data not shown). Considering the fact that 5D4 recognizes a high-sulfated keratan sulfate (Mehmet et al. 1986), it was reasonable to assume that the R-10G epitope belongs to a type of keratan sulfate, whose level of oversulfation is low for a keratan sulfate. This assumption was confirmed by ion-pair reverse-phase HPLC.

(see Figure 6). The 5D4 epitope is a high-sulfated keratan sulfate, and C-6 of the galactose linked to GalNAc is fre-
quently sulfated and resistant to keratanase digestion. Conversely, these results suggested that C-6 of the galactose residues in the R-10G epitope is mostly not sulfated.

Fig. 8. Characterization of the R-10G epitope by ELISA. (A) Binding activities of R-10G toward various GAGs were determined. GAGs used: HA (hyaluronic acid), Ch (chondroitin from shark cartilage), CSA (W) (chondroitin sulfate from whale cartilage), CSA (S) (chondroitin sulfate from the spinal column of Acipenser medirostris), CSB (chondroitin sulfate B), CSC (chondroitin sulfate C), CSD (chondroitin sulfate D), CSE (chondroitin sulfate E), HS (heparan sulfate) and KS (keratan sulfate). IgG1 from murine myeloma was added to the GAG-coated plates and the amounts of IgG1 bound to the plates were determined as negative controls. (B) Binding activities of 5D4 toward various glycosaminoglycans were determined as described in (A). (C and D) Inhibitory effects of two keratan sulfates from different origins on the antibody binding to keratan sulfate from bovine cornea. To assay mixtures containing R-10G (C) or 5D4 (D), increasing amounts of KS (keratan sulfate from bovine cornea) (open circle) or KPS-1 (high-sulfated keratan sulfate from shark cartilage) (filled circle) were added, and the effects of these inhibitors on the binding activity were determined as described in (A). (E and F) Different sensitivities of the R-10G and 5D4 epitope structures to keratan sulfate-degrading enzymes. Biotinylated keratan sulfate from bovine cornea, which had been treated with either no enzyme (white bars), keratanase (black bars), or keratanase II (dashed bars) at 37°C overnight, was fixed on a streptavidin-coated plate (1 μg/mL), and the binding activity of R-10G (1 μg/mL) (E) or 5D4 (0.008 μg/mL) (F) to the residual oligosaccharide moieties on the plates were assayed as described in (A).
analysis of the digestion products of the R-10G antigen with keratanase II and endo-β-galactosidase. Upon keratanase II digestion, the glycans on the R-10G antigen molecule were shown to be degraded almost completely to the disaccharide-repeating unit of keratan sulfate, Gal-GlcNAc(6S), in parallel with the abolishment of the antibody binding activity, suggesting strongly that the R-10G epitope consists of Gal-GlcNAc(6S) or its tandem repeat structures. This conclusion was confirmed further by the identification of the major component of the endo-β-galactosidase digests as GlcNAc(6S)-Gal. The analysis of the endo-β-galactosidase digests indicated also that there is little sulfation at C-6 of the galactose residues, if any. The sulfation index of the R-10G antigen was calculated to be 1.02. This figure is significantly lower than that of keratan sulfate from bovine cornea, 1.20, and much lower than that of keratan sulfate from bovine cartilage, 1.57 (Oguma et al. 2001). The lack of oversulfation in the R-10 antigen was further confirmed by an ELISA study involving biotinylated keratan sulfate from bovine cornea, which had been fixed on avidin-coated plates as described above.

Taken these results together, it may be reasonable to propose that the R-10G epitope consists of the basic repeating unit of keratan sulfate, Gal-GlcNAc(6S), or its tandem repeat with few oversulfation, which are frequently observed at C-6 of galactose residues in many other keratan sulfates from various origins. However, it is clear that the exact sequence of the R-10G epitope remains to be elucidated and further studies using latest technologies such as glycan sequencing with LC/MS/MS and epitope profiling with carbohydrate microarray platform will be pursued. In this regard, it would be interesting to refer to a recent report (Natunen et al. 2011) that TRA-1-60 and TRA-1-81 require Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAc (a dimeric type 1 lactosamine structure) as a minimal epitope.

Since R-10G, TRA-1-60 and TRA-1-81 share a common carrier protein and the affinity-purified R-10G antigen reacted not only with R-10G but also with TRA-1-60 and TRA-1-81 (Schopperle and DeWolf 2007), the structural relationship between these three immunogenic glycoproteins was speculated. Upon western blotting of the R-10G antigen and Tic cell lysates, slight but significant differences were detected in the migration positions of the respective antibody-reactive bands; they decreased successively in the order of R-10G, TRA-1-60 and TRA-1-81 with some overlapping (see Figure 5A), suggesting that either the size or the number of glycan chains carrying the R-10G epitope may be larger than that of those carrying the TRA-1-60 or the TRA-1-81 epitope. Significant differences were also detected in the relative intensities of the bands of the R-10G antigen as to the corresponding bands of the Tic cell lysates; the ratio decreased from R-10G to TRA-1-60 through TRA-1-81. The R-10G epitope-carrying podocalyxin was most effectively adsorbed to a column, indicating the immunological distinctiveness of these epitopes. The column less effectively captured particularly the TRA-1-60 epitope. The precise glycan structures of these epitopes remain to be elucidated, but the TRA-1-60 and TRA-1-81 epitopes probably belong to a type of keratan sulfate similar to the R-10G epitope, because 5D4, an antibody recognizing a high-sulfated keratan sulfate and BCD4, another commercially available antibody recognizing keratan sulfate, did not bind to hiPS/ES cells (R-10G/TRA-1-60/TRA-1-81 reacting cells) (data not shown), although these epitopes were susceptible to digestions with keratan sulfate-degrading enzymes in vitro (Figure 5B).

Carbohydrate analysis of the R-10G antigen isolated from 1.0 × 10^6 Tic cells indicated that it contained 370, 84, 1026, 46 and 51 pmol of glucosamine, galactosamine, galactose, sialic acid and fucose, respectively. These figures are consistent with the idea that keratan sulfate is the major glycan constituent of the R-10G antigen. Pronase digestion of the R-10G antigen released glycopeptides, which bound to the R-10G column. Approximately 2/3 of glucosamine applied to the column was recovered in the bound fraction, indicating that the glycan portion of the R-10G antigen plays a crucial role as the epitope and the polypeptide portion of the R-10G antigen may not be associated with the epitope activity. Since some of the hiPS/ES marker epitopes such as SSEA-3 and SSEA-4 are expressed on glycolipids, we examined whether or not the R-10G epitope is expressed on glycolipids as well as on glycoproteins. Total lipids were extracted from Tic cells by chloroform/methanol (2:1 v/v) and then by chloroform/methanol/water (1:2:0.8 v/v). The extracts were subjected to TLC blotting with R-10G and the epitope was visualized with a chemiluminescent kit as described for glycoproteins. No R-10G positive component was detected under the conditions tested, in which the SSEA-4 epitope was clearly visualized, indicating that essentially all the R-10G epitopes were expressed on glycoproteins (data not shown).

Finally, the epitopes defined by the R-10G antibody differ from those recognized by the other human iPS/ES cell-specific antibodies and from other keratan sulfate-recognizing antibodies that had been described and provide a new marker for studying the roles of glycans on the surface of hiPS/ES cells in the maintenance of self-renewal and pluripotency and during the process of differentiation, but also as a potent tool for the evaluation and standardization of hiPS cells with different tissue origins and different histories in regenerative medicine. Furthermore, the R-10G antibody might be useful in studies of cancer biology, since the lack of the R-10G epitope on tumor cell surfaces may be somehow relevant to the aberrant properties of tumor cells.

Materials and methods

Materials

Antibodies. Anti-human TRA-1-60 (clone # TRA-1-60, mouse IgM), anti-human TRA-1-81 (clone # TRA-1-81, mouse IgM) and anti-human/mouse SSEA-4 (clone # MC813, mouse IgG3) antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA), and anti-human/mouse SSEA-1 (clone # MC480, mouse IgM), and anti-human/mouse SSEA-3 (clone # MC631, rat IgM) antibodies were obtained from R&D Systems (Minneapolis, MN). Anti-keratan sulfate antibodies, clone # 5D4 (mouse IgG1) and clone # BCD4 (mouse IgG1) were obtained from Seikagaku Biobusiness (Tokyo, Japan).
Glycosaminoglycans. Keratan sulfate from bovine cornea, keratan sulfate from shark cartilage, hyaluronic acid from pig skin, chondroitin from shark cartilage, chondroitin sulfate from whale cartilage, chondroitin sulfate from the spinal column of *Acipenser medirostris*, chondroitin sulfate B from pig skin, chondroitin sulfate C from shark cartilage, chondroitin sulfate D from shark cartilage, chondroitin sulfate E from squid cartilage and heparan sulfate from bovine kidney were obtained from Seikagaku Biobusiness.

Enzymes. PN呅ase F (recombinant protein from *Escherichia coli*) was obtained from Roche Diagnostics GmbH (Mannheim, Germany), neuraminidase (*Arthrobacter ureafaciens*) from Nacalai Tesque (Kyoto, Japan), neuraminidase (*Vibrio cholerae*) from Roche Diagnostics GmbH, α1–3/4 fucosidase from Takara Bio (Shiga, Japan), α1–2 fucosidase from New England Biolabs (Ipswich, MA). Chondroitinase ABC (*Proteus vulgaris*), a heparanase mix (a mixture of heparanase, heparitinase I and heparitinase II), keratanase (*Pseudomonas* sp.), keratanase II (*Bacillus* sp.) and endo-β-galactosidase (*Escherichia freundii*) were from Seikagaku Biobusiness. Pronase (*Streptomyces griseus*) was obtained from Merck Millipore (Billerica, MA).

Cells and cell culture. HiPS cell lines: Tic (JCRB1331) and Squeaky (JCRB1329), which were generated from MRC-5 (Toyoda et al. 2011), human embryonic lung fibroblasts, by transduction of four defined factors: Oct3/4, Sox2, Klf4 and c-Myc (Takahashi et al. 2007), were obtained from the Japanese Collection of Research Bиeresources (JCRB), National Institute of Biomedical Innovation (Osaka, Japan). 201B7 were provided by the Center for iPSC Cell Research and Application (CiRA), Kyoto University (Kyoto, Japan). Human ES cell lines, H9 (WA09), were obtained from the Wisconsin International Stem Cell (WISC) Bank, WiCell (Madison, WI), and KθES-3 was provided by the Institute for Frontier Medical Sciences, Kyoto University (Kyoto, Japan). These cells were maintained in KSR-based medium that consisted of KNOCKOUT DMEM/F-12 (400 mL, Invitrogen-Life Technologies, Carlsbad, CA), MEM nonessential amino acids solution (4.0 mL, Invitrogen-Life Technologies), 200 mM L-glutamine (5.0 mL), KNOCKOUT Serum Replacement (100 mL, Invitrogen-Life Technologies), 55 mM 2-mercaptoethanol (0.925 mL) and human basic fibroblast growth factor (bFGF, Sigma-Aldrich, St. Louis, MO) on mitomycin C-inactivated mouse embryonic fibroblasts (MEF, Merck Millipore), in 25 cm² flask (Corning, Corning, NY) at 37°C/5% CO₂. Human EC cell line 2102Ep was a generous gift from Prof. Peter Andrews (University of Sheffield) to National Institute of Biomedical Innovation (NIBIO), and NCR-G3 (JCRB1168) was obtained from JCRB. MRC-5 (JCRB9008) was a fibroblast-like cell line derived from human lung tissue of a 14-week-old male fetus, was obtained from JCRB. H9 and 2102Ep were cultured only in NIBIO following the Guidelines for Derivation and Utilization of hES Cells of the Ministry of Education, Culture, Sports, Science and Technology of Japan. Furthermore, the study was approved by Independent Ethics Committee of NIBIO. A human tissue array was obtained from BioChain Institution, Inc. (Hayward, CA).

Preparation of monoclonal antibodies recognizing hiPS cells

Preparation of hiPS cells for immunization and screening. An hiPS cell line, Tic, was used as the immunogenic antigen and also as the screening probe. Tic cells cultured in KSR-based medium on MEF were then transferred to a growth factor defined serum-free culture medium hESF9, described previously (Furue et al. 2008). HESF9 medium comprised ESF basal medium without HEPES with 1-ascorbic acid 2-phosphate (hESF-grow, Cell Science and Technology Institute, Sendai, Japan) (Furue et al. 2005) supplemented with six-factors (human recombinant insulin, human apotransferrin, 2-mercaptopethanol, 2-ethanolamine, sodium selenite and oleic acid conjugated with fatty acid-free bovine serum albumin (FAB-BSA)), heparin sulfate sodium salt and human bFGF. After culturing at 37°C for 2 days, the undifferentiated hiPS cells (3 × 10⁵ ~ 1 × 10⁶ cells/25 cm² flask) were harvested by treatment with 0.1% ethylenediaminetetraacetic acid (EDTA)-4Na/phosphate-buffered saline (PBS), washed with PBS and stored at −80°C until just before use as the immunogen. For screening, the cells, which had been incubated with ROCK inhibitor (10 μM, Y27632; Wako Pure Chemical Industries, Osaka, Japan) (Watanabe et al. 2007) for 1 h, were harvested with ACCUTASE™ (1 mL; Merck Millipore), washed with KSR-based medium, resuspended in hESF9 medium and then seeded on fibronectin-coated 96-well plates (5 × 10⁴ cells/well; BD, Franklin Lakes, NJ). After 4 days of culture, cells were fixed with 1% acetic acid/ethanol (100 μL/well) for 10 min at room temperature. After washing with PBS, the plates were stored at −80°C until just before use.

Immunization. Two different protocols were used for the immunization of mice with hiPS cells. In protocol A, freeze-thawed Tic cells (1.5 × 10⁷ cells in 0.5 mL PBS) were emulsified with an equal volume of Freund’s Complete Adjuvant (FCA, Thermo Fisher Scientific, Rockford, IL), and then injected into three 8-week-old female C57BL/6 mice (200 μL/mice) intraperitoneally on Day 0, followed by a booster injection on Day 25, and the mice were sacrificed on Day 28. In protocol B, an FCA emulsion of Tic cells was injected subcutaneously into three mice (200 μL/mice) and the mice were sacrificed after 2 weeks.

Cell fusion and cloning. Lymphocytes from the spleens of the protocol A mice and lymph nodes from the protocol B mice were mixed and fused with P3U1 mouse myeloma cells using polyethylene glycol. Fused cells were seeded onto ten 96-well tissue culture plates, and hybridomas were selected by adding the hybridoma medium (S-Clone cloning medium CM-B containing hypoxanthine, aminopterin and thymidine (HAT); Sanko Junyaku, Tokyo, Japan). On Day 7 after plating, the first screening was performed using Tic cell-fixed plates. The culture supernatant from each hybridoma was added to Tic cell-fixed screening plates, which had been pretreated with a blocking solution containing 0.1% H₂O₂ (Blocker Casein; Pierce-Thermo Fisher Scientific) overnight. The hybridoma culture supernatant was incubated on the cell plates at room temperature for 2 h. After washing the plates with PBS, 1:2000-diluted horseradish peroxidase (HRP)-conjugated
anti-mouse IgG (Takara Bio) was added to each well, followed by incubation for 1 h. After final washing, 3,3′-diaminobenzidine (DAB) (Metal Enhanced DAB Substrate Kit (Pierce-Thermo Scientific)) was added to the plates and coloring was allowed to proceed for 10–15 min, followed by observation of the stained plates under a light microscope (Olympus IX 7, Olympus, Tokyo, Japan). The hiPS-positive antibody-producing hybridomas were then subjected to the second cell screening, in which human hiEC cells (2102Ep), human fibroblasts (MRC-5) and MEF cells were used as probes as well as hiPS cells (Tic). The isotypes of antibodies were examined by using a mouse monoclonal antibody isotyping test kit (AbD Serotec, Kidlington, UK).

Purification of the R-10G antibody from mouse ascites fluid. The R-10G hybridoma cell line was injected intraperitoneally into pristane-treated SCID mice (CB-17/lcr-scid Jel). Two weeks later, the ascites fluid (2.5 mL) was collected from the mice and applied to a Protein A-Sepharose column (1 × 6.0 cm) (GE Healthcare, Buckinghamshire, UK). The R-10G antibody bound to the column in 1.5 M glycine-NaOH buffer, pH 8.9/3 M NaCl was eluted with 0.1 M citric acid-phosphate buffer, pH 4.0. The eluate containing the R-10G antibody (IgG1) was immediately neutralized to pH 7–8 by adding 3 M Tris–HCl buffer, pH 9.0.

Immunocytochemistry

Imaging analysis. Cells seeded onto 24-well plates were fixed in 4% paraformaldehyde (PFA) at room temperature for 15 min, blocked with 3% fetal bovine serum (FBS) (ES cell-qualified; Invitrogen-Life Technologies)/PBS for 1 h and then incubated with primary antibodies (R-10G (10 µg/mL), TRA-1-60 (2 µg/mL), TRA-1-81 (2 µg/mL), SSEA-1 (5 µg/mL), SSEA-3 (5 µg/mL) and SSEA-4 (2 µg/mL)) at 4°C overnight. After washing with PBS three times each for 5 min, localization of antibodies was visualized by incubation with Alexa Fluor 647-conjugated chicken anti-mouse IgG (Invitrogen-Life Technologies) as the secondary antibody at 4°C overnight followed by observation of the stained plates under a light microscope. The cells were then incubated with Alexa Fluor 555-conjugated goat anti-mouse IgM as the secondary antibody as described above. After washing with 0.1% FBS/PBS three times, the cells were fixed with 0.1% Triton X-100/4% PFA at room temperature for 10 min, followed by staining with TO-PRO3 (1:500 in PBS, Invitrogen-Life Technologies) and monitored under a confocal laser scanning microscope FV1000 (Olympus, Tokyo, Japan).

Isolation of R-10G antigens from hiPS cells

Human iPS cell lysates were prepared by dissolving Tic cells (1.25 mg protein/1 × 10^8 cells, as determined with a Micro BCA protein assay kit (Pierce-Thermo Scientific)) in the complete RIPA buffer (0.5 mL) under sonication. This buffer consists of RIPA lysis buffer (6 mM Tris–HCl, pH 8.0, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 0.004% sodium azide), protease inhibitor cocktail, 2.5 mM PMSF and 1 mM sodium orthovanadate (Santa Cruz Biotechnology). The lysate was centrifuged to remove insoluble residues and the supernatant was applied to an R-10G-Sepharose 4B column (gel volume, 0.4 mL), which had been prepared by coupling R-10G (4 mg protein) to BrCN-activated Sepharose 4B (1.0 mL; GE Healthcare) in 0.1 M NaHCO_3 buffer, pH 8.3/0.5 M NaCl according to the manufacturer’s instructions. After washing the column with the complete RIPA lysis buffer, the protein bound to the column was eluted with an eluting buffer consisting of RIPA buffer (1:10 diluted) protease inhibitor cocktail, PMSF, sodium orthovanadate and 0.1 M diethylamine (pH 11.5). The eluate containing the R-10G antigen was immediately neutralized by adding 1 M Tris–HCl buffer, pH 6.8. In some experiments, the R-10G-Sepharose 4B column was washed with 0.1% Nonidet P-40/20 mM Tris–HCl, pH 7.4/150 mM NaCl, and the protein bound to the column was eluted with 0.1% Nonidet P-40/10 mM Tris–HCl, pH 7.4/150 mM NaCl/0.1 M diethylamine, pH 11.5.

SDS-PAGE and western blotting

SDS–PAGE and western blotting were performed according to the methods of Laemmli (1970) and Towbin et al.(1992). Briefly, samples were resolved by electrophoresis on a 4–15% gradient SDS-polyacrylamide gel (Mini-PROTEAN TGX gel; Bio-Rad Laboratories, Hercules, CA) under nonreducing conditions unless otherwise stated, followed by either western blotting or protein staining. For western blotting, resolved proteins were transferred to Immobilon Transfer membranes (Merck Millipore), followed by immunoblot detection with R-10G (3 µg/mL), TRA-1-81 (1 µg/mL) or TRA-1-60 (1 µg/mL). For visualization, a chemiluminescent substrate kit (Pierce-Thermo Scientific) was used with HRP-conjugated rabbit anti-mouse immunoglobulin (Dako Cytomation, Denmark A/S), followed by analysis with a Lumino-Image Analyzer, Las 4000 mini (GE Healthcare). Protein was stained with Coomassie brilliant blue G-250 (Gel Code Blue; Invitrogen-Life Technologies).

Identification of the R-10G antigen protein

Following SDS–PAGE, gels were stained with SYPRO Ruby Protein Gel Stain (Invitrogen-Life Technologies), and protein bands corresponding to the western blotting bands were
excised from the gel and subjected to in gel trypsin digestion. The peptides extracted from the gel pieces were analyzed by LC/MS/MS using a liquid chromatography instrument (Paradigm MS4 HPLC system; Michrom Bioresources, Auburn, CA) equipped with a linear ion trap type mass spectrometer (LTQ; Thermo Fisher Scientific, Waltham, MA). A reversed-phase column (L-column Micro; 150 × 0.075 mm, 3 μm; Chemicals Evaluation and Research Institute, Tokyo, Japan) was used as the analytical column, the eluents being 2% CH3CN containing 0.1% formic acid (Pump A) and 90% CH3CN containing 0.1% formic acid (Pump B). The peptides were eluted at a flow rate of 300 nL/min with a gradient of 265% of B buffer in 50 min. Data-dependent MS/MS acquisition was performed for the most intense ions as precursors. The spectrum data obtained on LC/MS/MS were subjected to database search analysis with the TurboSEQUEST (BioWorks 3.1; Thermo Fisher Scientific) by using the UniProt database. The static modification of carbamidomethylation (58.0 u) at Cys was used as the modified parameters for database search analysis. The SEQUEST criterion, known as Xcorr vs. Charge State, was set to 1.5(+1), 2.0(+2), 2.5(+3) and 3.0 (+4) for the protein identifications.

Glycosidase digestions for western blotting

The reaction mixtures consisting of the cell lysates (~12 μg protein, corresponding to 1 × 10⁷ cells) or the R-10G antigen (corresponding to ~1 × 10⁵ cells) in complete RIPA buffer were digested with various glycosidases under the conditions given below, and the digests were subjected to SDS–PAGE and western blotting. In some experiments, when the solvent for R-10G antigens (RIPA buffer) inhibited the intended enzyme activity, the RIPA buffer was replaced with 0.1% Nonidet P-40/10 mM Tris–HCl, pH 7.4/150 mM NaCl by using an R-10G-Sepharose 4B column (gel volume; 0.4 mL). For chondroitinase ABC digestion, the R-10G antigen was digested with 2 μU of chondroitinase ABC in 20 μL of 50 mM Tris-acetate buffer, pH 8.0, at 37°C for 18 h. For heparanase digestion, the R-10G antigen was digested with 6 μU of heparanase mix in 17 μL of 30 mM sodium acetate buffer, pH 7.0, containing 3 mM calcium acetate, at 37°C for 18 h. For heparinase mix digestion, the R-10G antigen was digested with 6 μU of heparinase mix in 17 μL of 30 mM sodium acetate buffer, pH 7.0, containing 10 mM calcium acetate and 0.2% Nonidet P-40, 100 mM NaCl and 0.01% BSA, at 37°C for 18 h.

Isolation of R-10G epitope glycopeptides from the R-10G antigen

The R-10G antigen (~14 μg protein derived from 3 × 10⁷ Tc cells) was digested with pronase (1.4 μg) in 600 μL of 0.1 M borate buffer, pH 8.0, containing 10 mM calcium acetate and 0.04% NaN₃, at 37°C for 72 h. The digest was applied to a column of Sephadex 25 (1 × 17.5 cm), which had been equilibrated and eluted with 10 mM NH₄HCO₃, pH 8.0, to separate glycopeptides from small-size amino acids and peptides. The collected glycopeptides were applied to an R-10G-Sepharose 4B Column (gel volume; 0.4 mL), which had been equilibrated with 0.1 M Tris–HCl buffer, pH 7.4, containing 150 mM NaCl. After washing the column with the equilibrium buffer, the glycopeptides bound to the column were eluted with 0.1 M diethylamine (pH 11.5) containing 150 mM NaCl. The eluate containing R-10G epitope glycopeptides was immediately neutralized by adding 1 M Tris–HCl buffer, pH 6.8. The passthrough fraction was collected as nonepitope glycopeptides and the bound fraction was collected as epitope glycopeptides.

Carbohydrate analyses of the R-10G antigen and the glycopeptides obtained therefrom

Neutral sugars were determined according to the procedures described previously (Terada et al. 2005). Briefly, samples were subjected to gas-phase hydrolysis in 4 N HCl and 4 N trifluoroacetic acid (50:50, v/v) 100°C for 4 h. The hydrolysates were reductively aminated with 2-aminopyridine (PA). Analysis of PA-monosaccharides was carried out essentially according to the method described by Suzuki et al. (1991). Sialic acid was determined according to the procedures described previously (Terada et al. 2005). Briefly, sialic acid was liberated from oligosaccharides by heating a sample in 0.1N H₂SO₄ at 80°C for 1.5 h and the liberated sialic acid was labeled with 1,2-diamino-4,5-methylenedioxybenzene (DMB) and quantitated by a fluorometric high-performance liquid chromatography (HPLC) method according to the method of Ito et al. (2002) on a C18 column. The amino sugars were determined according to the procedures described previously (Toyoda et al. 1998). Briefly, samples were subjected to hydrolysis in 6N HCl at 100°C for 2.5 h. Amino sugars released on hydrolysis were separated on a TSKgel
SCX column (4.6 mm i.d. × 150 mm) and eluted with 0.35 M borate/NaOH buffer (pH 7.6) at 60°C, high sensitivity being achieved by post-column reaction with 1% 2-cyanoacetic acid. The oligosaccharides released from keratan sulfates on keratanase II digestion were separated with a reversed-phase ion-pair HPLC system using the fluorometric post-column detection, and the degree of sulfation was determined according to the previous procedures (Oguma et al. 2001) and a separate manuscript in preparation by Hirose et al. (in preparation).

Characterization of R-10G epitopes by means of ELISA

GAGs (10 mg/mL) in 2-morpholinoethanesulfonic acid (MES) (Wako Pure Chemical Industries) buffer, pH 5.5 (1 mL) and the biotinylation reagent (50 mM EZ-link Hydrazide-Biotin (Pierce-Thermo Scientific) in dimethyl sulfoxide (DMSO) (Sigma-Aldrich) (25 μL) were mixed, and then the condensing agent (100 mg/mL in MES buffer, pH 5.5, 1-ethyl-3-(3-dimethylaminopropyl) carbodimide-HCl (EDC), (Pierce-Thermo Scientific)) (12.5 μL) was added, followed by incubation overnight at room temperature. The biotinylated GAGs were dialyzed and stored at −20°C until needed for the ELISA assay. The streptavidin (20 μg/mL, Vector Laboratories, Burlingame, CA) (50 μL/well) was immobilized on an ELISA 96-well plate (Nalgene Nunc) overnight at 4°C. To the streptavidin-coated wells, the blocking solution (5-fold dilution, Applie Block, Seikagaku Biobusiness) (250 μL/well) was added, followed by incubation at room temperature for 2 h. After washing the wells with T-Tris-buffered saline (TBS) buffer (50 mM Tris–HCl, pH 7.5, 0.15%NaCl, 0.05% Tween 20 (Wako Pure Chemical Industries) and 0.1% ProCline 950 (Sigma-Aldrich)), the biotinylated GAGs (1 μg/mL, 100 μL) were added, followed by incubation for 30 min at room temperature. After washing the wells with T-TBS buffer, 100 μL of R-10G (1.0 μg/mL) or 5D4 (0.008 μg/mL) was added to the GAG-coated well, followed by incubation at room temperature for 1 h. After washing the wells with T-TBS buffer, the amounts of R-10G and 5D4 bound to the GAGs were determined by incubation with 100 μL of HRP-labeled second antibody (polyclonal goat anti-mouse immunoglobulins/HRP; Dako Cytomation) (0.5 μg/mL) and 100 μL of TMB (3,3',5,5'-tetramethyl benzidine, BioFX). IgG1 from murine myeloma cells (1.0 μg/mL; Sigma-Aldrich) was used as a negative control. For inhibition experiments, increasing amounts of keratan sulfate (up to 1.0 μg/mL) isolated from bovine cornea or a high-sulfated keratan sulfate isolated from shark cartilage (Kerato polysulfate-1) (Furuhashi 1961) were added to the assay system composed of the biotinylated keratan sulfate from bovine cornea on a well plate and the assay was carried out as described above. For enzymatic modifications, the biotinylated keratan sulfate (20 μg/mL, 100 μL) was treated with keratanase (20 μU/mL, 100 μL) or keratanase II (20 μU/mL, 100 μL) at 37°C overnight, and the products were fixed to a streptavidin-coated well plate, and the binding activities of R-10G (1 μg/mL) and 5D4 (0.008 μg/ mL) as to the residual oligosaccharide moieties on the biotinylated keratan sulfate were determined as described above.

All of the sugar residues have the D-configuration except fucose, which has the L-configuration.

Funding

This work was supported by Grants-in-Aid for Scientific Research B-20370052 (to T.K.), C-24570171 (to T.K.) and C-20590074 (to N.K.), for Young Scientists Start-up 20890255 (to M.N.), a Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) Fellows 22-9530 (to M.N.) from JSPS, a Grant-in-Aid for Scientific Research on Innovative Areas 24110517 (to T.K.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Grants from the Ministry of Health, Labor and Welfare of Japan (to M.K.F. and T.K.) and by the R-GIRO (Ritsumeikan Global Innovation Research Organization) Program (to H.T.).

Acknowledgements

We thank Tomoko Tominaga and Saori Kamo for the secretarial assistance.

Conflict of interest

M.K.F. is one of the patent holders and inventors of the basal medium: ESF. However, the licensing fee is <$10,000 dollars.

Abbreviations

BSA, bovine serum albumin; DAB, dianobenzidine; DMB, 1,2-diamino-4,5-methylenedioxybenzene; DMSO, dimethyl sulfoxide; EC, embryonal carcinoma; ELISA, enzyme-linked immunosorbent assay; FAF, fatty acid-free; FBS, fetal bovine serum; FCA, Freund’s complete adjuvant; Fuc, fucose; GAG, glycosaminoglycan; Gal, galactose; GalNAc, N-acetylgalactosamine, GCTM, germ cell tumor monoclonal; GlcNAc, N-acetylglucomamine; HAT, hypoxanthine, aminopterin and thymidine; hEC, human embryonal carcinoma; hES, human embryonic stem; hiPS, human induced pluripotent stem; HPLC, high performance liquid chromatography; HRP, horseradish peroxidase; iPSC, induced pluripotent stem; IKT, kerato polysulfate-1; KS, keratan sulfate; LC, liquid chromatography; MEF, mouse embryonic fibroblast; MES, morpholinoethanesulfonic acid; MS, mass spectrometry; NIBIO, National Institute of Biomedical Innovation; PA, 2-aminopyridine; PAGE, polyacrylamide gel electrophoresis; PBS, phosphate-buffered saline; PFA, paraformaldehyde; PNGase F, peptide N-acetylgalactosaminidase, PODXL, SDS, sodium dodecyl sulfate; podocalyxin; SSEA, stage-specific embryonic antigen; TBS, Tris-buffered saline. TRA, tumor rejection antigen.

References

K Kawabe et al.

