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Resistin is a hormone secreted by adipocytes that acts on
skeletal muscle myocytes, hepatocytes, and adipocytes
themselves, reducing their sensitivity to insulin. In the
present study, we investigated how the expression of
resistin is affected by glucose and by mediators known to
affect insulin sensitivity, including insulin, dexametha-
sone, tumor necrosis factor-� (TNF-�), epinephrine, and
somatropin. We found that resistin expression in 3T3-L1
adipocytes was significantly upregulated by high glucose
concentrations and was suppressed by insulin. Dexameth-
asone increased expression of both resistin mRNA and
protein 2.5- to 3.5-fold in 3T3-L1 adipocytes and by �70%
in white adipose tissue from mice. In contrast, treatment
with troglitazone, a thiazolidinedione antihyperglycemic
agent, or TNF-� suppressed resistin expression by �80%.
Epinephrine and somatropin were both moderately inhib-
itory, reducing expression of both the transcript and the
protein by 30–50% in 3T3-L1 adipocytes. Taken together,
these data make it clear that resistin expression is regu-
lated by a variety of hormones and that cytokines are
related to glucose metabolism. Furthermore, they suggest
that these factors affect insulin sensitivity and fat tissue
mass in part by altering the expression and eventual
secretion of resistin from adipose cells. Diabetes 51:
1737–1744, 2002

T
he protein hormone resistin is secreted from
adipocytes and antagonizes insulin-stimulated
glucose metabolism in skeletal muscle myo-
cytes, hepatocytes, and adipocytes themselves.

As such, administration of resistin to mice diminishes
glucose tolerance (1). Resistin also has an inhibitory effect
on adipose differentiation (2), suggesting that in addition
to being an important regulator of insulin sensitivity,
resistin may also modulate adipogenesis.

Insulin resistance, which is the hallmark of type 2
diabetes (3–6), is induced by mostly unidentified genetic
elements combined with factors such as obesity, high-fat

diet, insufficient exercise, inflammation, and abnormal
plasma levels of various hormones (7–9). In that regard,
serum resistin levels are markedly elevated in insulin-
resistant mice fed a high-fat diet, indicating that resistin is
likely crucially involved in the insulin resistance associ-
ated with obesity and a high-fat diet (1). On the other hand,
the degree to which resistin is involved in the pathogenesis
of insulin resistance associated with factors other than
obesity remains unclear. We therefore examined the effect
on resistin expression of various hormones and cytokines
known to affect insulin sensitivity.

RESEARCH DESIGN AND METHODS

Materials. Dexamethasone was purchased from Sigma, somatropin (rDNA
origin) (Genotropin) was from Pharmacia Upjohn, recombinant murine tumor
necrosis factor � (TNF-�) was from Genzyme, troglitazone was from Sankyo,
and 3-isobutyl-1-methylxanthine was from Wako Bioproducts. The enhanced
chemiluminescence detection system was from Amersham Pharmacia Bio-
tech. All other reagents from commercial sources were of analytical grade.
Antibody. The antiresistin antibody used in this study was raised in rabbits
against recombinant resistin protein produced in Sf-9 cells using a baculovirus
system as previously described (10). The antibody was affinity purified on
Affigel-10 (BioRad, Hercules, CA) columns, to which the recombinant resistin
had been coupled, and was then extensively dialyzed against PBS. The
antibody against mouse �-actin was purchased from Sigma.

Cell culture. 3T3-L1 fibroblasts were initially maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% donor calf serum
(Life Technologies) under an atmosphere of 90% air/10% CO2 at 37°C.
Differentiation was induced 2 days after the cultures reached confluence by
incubating the cells for 48 h in DMEM supplemented with 0.5 mmol/l of
3-isobutyl-1-methylxanthine, 4 �g/ml dexamethasone, and 10% fetal bovine
serum (Life Technologies). Thereafter, the cells were maintained for an
additional 4–10 days in DMEM supplemented with 10% fetal bovine serum,
and the medium was changed every other day. With this protocol, �90% of the
cells expressed the adipocyte phenotype.
Gene transduction. To obtain recombinant adenoviruses, the expression
cosmid cassette was ligated to a cDNA encoding resistin with a COOH-
terminal Flag epitope, after which homologous recombination of the recom-
binant cosmid cassette with its parental virus genome was carried out as
previously described (10). As a control, we also constructed an adenoviral
vector into which LacZ cDNA was subcloned. Confluent cultures of COS-7
cells, maintained in DMEM supplemented with 10% fetal bovine serum, were
then infected with the indicated adenovirus for 3 days. Thereafter, the medium
was collected, and Western blot analysis was carried out using an anti-Flag or
antiresistin antibody as a probe.
Animals. Mice were purchased from Tokyo Experimental Animals and fed a
standard rodent diet (60% carbohydrate, 24.5% lipid, and 15.5% protein). Some
mice received intramuscular injections of dexamethasone (10 mg/kg) once a
day for 5 consecutive days. Food was withdrawn 12–14 h before experimen-
tation, at which time the mice were killed by decapitation. White epididymal
adipose tissue was then removed and immediately homogenized for 30 s in 10
volumes of Isogen RNA isolation kit using a polytron operated at maximum
speed.
RNA preparation. Total cell RNA was isolated from 3T3-L1 adipocytes using
an Isogen RNA isolation kit (Nippon Gene, Tokyo). RNA concentrations were
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estimated based on absorbance at 260 nm, and 10 �g RNA from each sample
was used for the RNase protection assay described below.
Preparation of riboprobes. To obtain mouse resistin cDNA, PCR was
performed based on reported sequences obtained from mouse cDNA libraries.
The amplified fragment, which corresponded to nucleotides 1–345 of mouse
resistin cDNA, was subcloned into pBluescript II SK minus, after which the
resultant plasmids were then linearized with ClaI and used for in vitro
expression. The fragment corresponding to nucleotides 1–250 of mouse
�-actin was obtained by PCR, subloned into pBluescript II SK minus, and used
as a control.
RNase protection assay. RNase protection assays were carried out accord-
ing to the manufacturer’s instructions (RPA III; Ambion, Austin, TX). Pooled
10-�g samples of total RNA from adipocytes were hybridized with the
riboprobes for resistin. After treatment with RNase, the protected fragments
were resolved on 5% polyacrylamide-urea gels and subjected to autoradiog-
raphy. The intensities of the resultant bands were then determined using a
Molecular Imager GS-525.
Immunoprecipitation and immunoblotting. 3T3-L1 adipocytes and mouse
adipose tissue, prepared as described above, were lysed in PBS containing 1%
Triton, 0.35 mg/ml PMSF (phenylmethylsulfonyl fluoride), and 100 mmol/l
sodium vanadate, after which the lysates were centrifuged for 10 min at
15,000g and 4°C to remove insoluble materials. The supernatants were then
immunoprecipitated with 5 �g antiresistin antibody. The resultant immuno-
precipitates were boiled in Laemmli sample buffer containing 100 mmol/l
dithiothreitol, after which SDS-PAGE and immunoblotting were carried out
using antiresistin antibody as a probe (10). The intensities of the resultant
bands were then determined using a Molecular Imager GS-525.

TNF-� measurement. Serum was collected from mice immediately after
decapitation. Serum TNF-� levels were then measured using an ELISA
(enzyme-linked immunosorbent assay) system (Amershan Pharmacia Bio-
tech) according to the manufacturer’s instructions.
Statistical analysis. Results are expressed as means � SE. Comparisons
were made using unpaired Student’s t test. Values of P � 0.05 were considered
statistically significant.

RESULTS

Effect of insulin and glucose on the expression of

resistin. The effects of 100 nmol/l insulin on expression of
resistin mRNA and protein in cultured 3T3-L1 adipocytes
were assessed using RNase protection assays (Fig. 1A)
and Western blot analysis, respectively, with antiresistin
and anti-Flag antibodies as probes (Fig. 1B). We found that
insulin diminished expression of the mRNA and protein by
37 and 30% (P � 0.005), respectively, within 24 h after its
addition to the cell cultures. During the same period,
resistin expression was unchanged in cells incubated
without the added insulin (data not shown). Moreover,
control assays using yeast RNA, which does not hybridize
the resistin probe, confirmed that RNA from 3T3-L1 adi-
pocytes hybridized and protected the probe RNA from

FIG. 1. Effect of insulin and glucose on expression of resistin mRNA and protein in 3T3-L1 adipocytes. A and B: 3T3-L1 adipocytes were incubated with
100 nmol/l insulin for the indicated periods in DMEM containing 25 mmol/l glucose during the insulin stimulation. Expression of resistin or �-actin
mRNA and protein were assessed using an RNase protection assays (A) and Western blot analysis (B), respectively. A: Two RNase protection assays,
carried out in tubes containing the same amount of labeled mouse resistin probe plus 10 �g yeast RNA, which does not hybridize the probe, served as
controls. Buffer without RNase was added to one of the tubes, which served as a positive control, and buffer with RNase was added to the other tube,
which served as a negative control. *P < 0.005 vs. control. B: LacZ or Flag-tagged resistin in medium conditioned by COS-7 cells transfected with the
indicated adenoviral vector was probed using anti-Flag or antiresistin antibody, respectively. Immunoblot analysis with anti–�-actin antibody was
conducted for each cell lysates as a control. *P < 0.005 vs. 5 mmol/l. C and D: 3T3-L1 adipocytes were incubated for 24 h with the indicated
concentration of glucose, after which expression of resistin RNA (C) and protein (D) were assessed as in A and B. The mRNA and protein of �-actin
were measured as controls. The intensities of the bands were analyzed with a molecular imager. Bars depict means � SE from three independent
experiments and are shown as percent of control; representative blots are shown in the upper part of the graphs.
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digestion (Fig. 1A), and no proteins were recognized in
medium conditioned by cells overexpressing LacZ, con-
firming the specificity of our antiresistin antibody (Fig.
1B). In contrast, mRNA and protein levels of �-actin were
not affected by insulin treatments.

To assess the effect of glucose on resistin expression,
cells were analyzed after incubating them for 24 h with 5,
10, or 25 mmol/l D-glucose (Figs. 1C and D). At a concen-
tration of 25 mmol/l, D-glucose increased expression of
resistin mRNA and protein by 50 and 35%, respectively, as
compared with that seen at a concentration of 5 mmol/l
(P � 0.005). �-actin expression was not altered. Thus, in
3T3-L1 adipocytes, resistin gene expression is upregulated

and protein content is increased by a high concentration of
glucose and is downregulated by insulin.
Effect of dexamethasone on the expression of resis-

tin in 3T3-L1 adipocytes and mouse epididymal white

adipose tissue. When 3T3-L1 adipocytes were cultured in
the presence or absence of 1 �mol/l dexamethasone,
expression of resistin mRNA was found to be significantly
elevated only 1 h after initiating dexamethasone stimula-
tion (Fig. 2). This upregulation became maximal within
3 h, at which time expression of resistin mRNA was
3.3-fold greater than control (P � 0.005). Thereafter, levels
of resistin expression remained elevated for up to 24 h.
During the same period, resistin expression was un-

FIG. 2. Effect of dexamethasone on expression of resistin mRNA and protein in 3T3-L1 adipocytes. A and B: Cells were incubated with 1 �mol/l
dexamethasone for the indicated periods up to 24 h (A) or incubated with the indicated concentrations of dexamethasone for 24 h (B).
Thereafter, resistin mRNA was measured using an RNase protection assay. C: Cells were incubated for 24 h, with or without 1 �mol/l
dexamethasone, after which resistin protein expression was assessed by immunoblotting with antiresistin antibody. The mRNA and protein of
�-actin were assessed as controls. Bars indicate means � SE from three independent experiments and are shown as percent of control;
representative blots are shown in the upper part of the graphs. *P < 0.005 vs. control.

FIG. 3. Effect of dexamethasone on expression of resistin mRNA and protein in epididymal white adipose tissue from mice. After intramuscular
injection with 10 mg/kg dexamethasone once a day for 5 consecutive days, total RNA was prepared from epididymal white adipose tissue, and
expression of resistin mRNA (A) and protein (B) was assessed as in Fig. 1. The mRNA and protein of �-actin were assessed as controls. Bars
depict means � SE from three independent experiments and are shown as percent of control; representative blots are shown in the upper part
of the graphs. *P < 0.005 vs. control.
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changed in cells incubated without the added dexametha-
sone (data not shown). The effect of incubating cells with
dexamethasone for 24 h was concentration dependent,
with significant (P � 0.005) elevations in resistin expres-
sion obtained at concentrations as low as 10 nmol/l (Fig.
2B). Furthermore, expression of resistin protein in cells
incubated for 24 h with 1 �mol/l dexamethasone was 150%
higher (P � 0.005) than that seen in untreated cells (Fig.
2C), indicating that increased mRNA levels led to in-
creased expression of the protein. In contrast, the
amounts of mRNA and protein of �-actin were unchanged
by the treatment with dexamethasone.

To test whether dexamethasone also upregulates resis-
tin expression in vivo, mice were administered 10 mg/kg
dexamethasone once a day for 5 consecutive days. This

protocol resulted in a 3.8-fold increase in fasting serum
insulin levels over that seen in vehicle-treated animals
(dexamethasone 2.9 � 1.0 �U/dl and control 0.8 � 0.1
�U/dl), though there was no significant change in fasting
blood glucose level and a 26% decline in body weight
(dexamethasone 22.7 � 0.8 g and control 30.6 � 0.7 g).
Likewise, TNF-� levels were not significantly affected by
dexamethasone administration (dexamethasone 4.08–2.98
pg/ml and control 3.62–1.18 pg/ml). The elevated serum
insulin was considered to reflect the presence of insulin
resistance. At the same time, resistin mRNA and protein
expression in white adipose tissue was increased by �70
and 80%, respectively (P � 0.005) (Figs. 3A and B).
TNF-� and troglitazone suppress expression of resis-

tin. TNF-� strongly suppressed resistin expression in

FIG. 4. Effect of TNF-� on expression of resistin mRNA and protein in 3T3-L1 adipocytes. A and B: Cells were incubated with 100 ng/ml TNF-�
for the indicated periods up to 24 h (A) or incubated for 24 h with or without 1, 10, or 100 ng/ml TNF-� (B). Thereafter, resistin mRNA was
measured using an RNase protection assay. C: Cells were incubated for 24 h with or without 100 ng/ml TNF-�, after which resistin protein
expression was assessed by immunoblotting with antiresistin antibody. The mRNA and protein of �-actin were assessed as controls. Bars depict
means � SE from three independent experiments and are shown as percent of control; representative blots are shown in the upper part of the
graphs. *P < 0.005 vs. control.

FIG. 5. Effect of troglitazone on expression of resistin mRNA and protein in 3T3-L1 adipocytes. Cells were incubated with 10 �mol/l troglitazone
for 24 h, after which expression of resistin mRNA (A) and protein (B) was assessed as in Fig. 1. The mRNA and protein of �-actin were assessed
as controls. Bars depict means � SE from three independent experiments and are shown as percent of control; representative blots are shown
in the upper part of the graphs. *P < 0.005 vs. control.
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3T3-L1 adipocytes (Fig. 4). Treating cells with 100 ng/ml
TNF-� significantly (P � 0.005) diminished expression of
resistin mRNA within 3 h, and within 24 h, expression was
reduced by �77% (Fig. 4A). When cells were exposed for
24 h, as little as 1 ng/ml TNF-� significantly (P � 0.005)
diminished expression of resistin mRNA (Fig. 4B), with
both 10 and 100 ng/ml TNF-� reducing expression by
�80% compared with control. Similarly, expression of
resistin protein was decreased by �80% in cells incubated
with 100 ng/ml TNF-� for 24 h (Fig. 4C).

In a similar fashion, exposing 3T3-L1 adipocytes for 24 h
to 10 �mol/l troglitazone, a thiazolidinedione antihypergly-
cemic agent, diminished expression of both resistin mRNA
(Fig. 5A) and protein (Fig. 5B) by �80%, which is consis-
tent with earlier findings (1). In contrast, the amounts of
mRNA and protein of �-actin were unchanged by these
treatments.

The effect of epinephrine and somatropin on resistin

expression. Epinephrine had a moderately inhibitory
effect on resistin expression. Incubating 3T3-L1 adipocytes
with 0.1 or 1 �mol/l epinephrine for 24 h reduced expres-
sion of resistin mRNA by 19% (P � NS) and 48% (P � 0.05),
respectively (Fig. 6A). The higher concentration also re-
duced expression of resistin protein by 38% (P � 0.05)
(Fig. 6B). In addition, at a concentration of 200 ng/ml,
somatropin decreased expression of resistin mRNA and

protein by 42 and 29%, respectively (P � 0.05) (Figs. 6C

and D). The effect of somatropin on resistin expression
was dose dependent, reaching statistical significance at
200 ng/ml (Fig. 6C and D).
The effect of insulin and TNF-� on dexamethasone-

and glucose-induced resistin expression. Insulin par-
tially inhibited the stimulatory effect of dexamethasone on
resistin expression. Incubating 3T3-L1 adipocytes for 24 h
with 1 �mol/l dexamethasone increased expression of
resistin mRNA and protein by 186 and 152%, respectively
(Fig. 7A and B). Addition of 100 nmol/l insulin reduced the
dexamethasone-induced increase in expression to 102 and
98% over control, respectively (P � 0.005 vs. control).
TNF-� also inhibited the stimulatory effects of glucose and
dexamethasone. Incubating 3T3-L1 adipocytes with 100
ng/ml TNF-� for 24 h, before adding 25 mmol/l glucose or
1 �mol/l dexamethasone, decreased expression of resistin
mRNA by 68 and 67% (P � 0.005 vs. control), respectively
(Fig. 7C), and decreased expression of the protein by 73
and 69% (P � 0.005 vs. control), respectively (Fig. 7D).

DISCUSSION

A variety of factors contribute to the development of
insulin resistance, which is the hallmark of type 2 diabetes
(8). Among these, obesity is considered to be the most

FIG. 6. Effect of epinephrine and somatropin on expression of resistin mRNA and protein in 3T3-L1 adipocytes. Cells were incubated for 24 h with the
indicated concentrations of epinephrine or somatropin, after which expression of resistin mRNA (A and C, respectively) and protein (B and D,
respectively) were assessed as in Fig. 1. The mRNA and protein of �-actin were assessed as controls. Bars depict means � SE from three independent
experiments and are shown as percent of control; representative blots are shown in the upper part of the graphs. *P < 0.05 vs. control.
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common and most important (9). In addition, adipocytes
are known to secrete a variety of mediators, including
leptin (11,12), free fatty acid (13–15), and adiponectin (16),
all of which regulate glucose tolerance. Resistin, whose
serum levels are elevated in both genetic and diet-induced
models of obesity and insulin resistance (1), was recently
added to that list.

Thiazolidinediones are agents developed to reverse in-
sulin resistance. They act by binding to peroxisome pro-
liferator–activated receptor (PPAR)-	, a ligand-activated
transcription factor highly expressed in adipocytes (17–
20). The fact that thiazolidinediones act in this fashion
substantiates the idea that insulin resistance and its nor-
malization reflect changes in the activity of various intra-
cellular signaling pathways (21–24). Furthermore, the fact
that thiazolidinediones suppress expression of resistin and
normalize insulin resistance in obese rodents (1) suggests
that altered expression of resistin may be a key mecha-
nism underlying obesity-induced insulin resistance as well
as the improvement of insulin sensitivity by thiazo-
lidinediones.

We also considered the possibility that other factors

known to affect insulin sensitivity also affected the expres-
sion of resistin. High levels of glucose significantly en-
hanced resistin expression, whereas insulin suppressed its
expression. In human diabetes, the early prediabetic state
is often accompanied by hyperglycemia and hyperinsulin-
emia (8). Consequently, it is unclear whether resistin is up-
or downregulated at this stage, since hyperglycemia and
hyperinsulinemia oppositely regulate resistin expression.
Alternatively, it is also possible that insulin resistance, as
it occurs during the course of type 2 diabetes, reflects the
diminished ability of insulin to suppress resistin expres-
sion by adipocytes. At more advanced stages of the
disease, which are marked by hyperglycemia and hypoin-
sulinemia, resistin would be expected to be upregulated
and thus contribute to hyperglycemia-induced insulin re-
sistance.

We observed that dexamethasone increased resistin ex-
pression in both 3T3-L1 adipocytes and white adipose tissue.
Glucocorticoids are known to induce insulin resistance,
reportedly by affecting insulin binding, insulin receptor
substrate-1 phosphorylation, and glucose transporter trans-
location (25–30). The present findings suggest that glucocor-

FIG. 7. Effect of insulin and TNF-� on dexamethasone- and glucose-induced resistin expression in 3T3-L1 adipocytes. A and B: Cells were
incubated for 24 h with 100 nmol/l insulin, 1 �mol/l dexamethasone, or both in DMEM containing 5 mmol/l glucose, after which expression of
resistin mRNA (A) and protein (B) were assessed as in Fig. 1. C and D: Cells were incubated for 24 h with or without 100 ng/ml TNF-� and 40
mmol/l glucose or 25 mmol/l dexamethasone, after which expression of resistin mRNA (C) and protein (D) were assessed. The mRNA and protein
of �-actin were assessed as controls. Bars depict means � SE from three independent experiments and are shown as percent of control;
representative blots are shown in the upper part of the graphs. *P < 0.005 vs. control.
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ticoid-induced upregulation of resistin expression may also
contribute to insulin resistance.

It was of particular interest to us that both troglitazone
and TNF-� strongly suppressed resistin expression. This is
due to a report by Way et al. (31) showing that, compared
with their lean counterparts, resistin expression was sig-
nificantly lower in the white adipose tissue of several
mouse models of genetic and diet-induced obesity and
insulin resistance and that this suppression of resistin
expression was attenuated by a PPAR-	 agonist. These
results apparently contradict the findings of Steppan et al.
(1), who showed that serum resistin levels are elevated in
such models of obesity and insulin resistance. Our findings
may provide a clue that helps explain this apparent
discrepancy.

It is known that serum TNF-� levels are elevated in
obese rodent models (32,33), which may also contribute to
obesity-induced insulin resistance (34–38), and some evi-
dence suggests that thiazolidinediones improve insulin
sensitivity by suppressing production of TNF-� in enlarged
adipocytes (39). Our findings confirmed that, at least in
vitro, thiazolidinediones markedly suppress expression of
resistin; however, whether they act in vivo by diminishing
circulating TNF-� levels or via PPAR-	 remains unclear.
Indeed, thiazolidinediones may suppress or enhance the
expression of resistin, depending on TNF-� levels. In
mouse models of genetic obesity and insulin resistance,
treatment with thiazolidinediones may lower TNF-� levels,
which would tend to increase resistin expression. Con-
versely, expression would tend to be diminished in models
in which TNF-� levels were high. In light of our observa-
tions, these discussion points represent hypotheses that
can now be systematically tested in vivo.

We showed that both epinephrine and somatropin exert
a moderately inhibitory effect on resistin expression in
vitro. The effect of epinephrine is consistent with an
earlier finding that isoproterenol inhibits resistin gene
expression in 3T3-L1 adipocytes via a Gs protein–coupled
pathway (40). Insulin signal transduction is reportedly
modulated by sympathetic nervous system activity, which
is in turn modulated by stress, exercise, and fasting
(41–43). Nevertheless, whereas epinephrine and growth
hormone (44–47) are both known to induce insulin resis-
tance, our results suggest that in contrast to that induced
by glucocorticoids, resistin is unlikely to be involved in the
insulin resistance induced by epinephrine or somatropin.

The induction of resistin by dexamethasone was par-
tially inhibited by insulin in 3T3-L1 adipocytes. This obser-
vation is consistent with the fact that dexamethasone-
treated mice are hyperinsulinemic and exhibit upregulated
resistin expression. We further observed that TNF-� had a
more profound inhibitory effect on glucose- and dexa-
methasone-induced resistin expression than insulin, sug-
gesting that TNF-� may be a dominant regulator of resistin
expression.

It seems apparent from our results that resistin expres-
sion is greatly affected by a variety of hormones and
environmental factors. Upregulation of resistin expression
may be involved in dexamethasone- or hyperglycemia-
induced insulin resistance, for instance, although more
precise characterization of the physiological activities of

resistin will be required to fully understand these pro-
cesses.
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