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This study tested the hypothesis that estrogen is the
mechanism responsible for the sexual dimorphism
present in the neuroendocrine and metabolic responses
to hypoglycemia. Postmenopausal women receiving (E2;
n � 8) or not receiving (NO E2; n � 9) estrogen
replacement were compared with age- and BMI-matched
male subjects (n � 8) during a single-step 2-h hyperin-
sulinemic-hypoglycemic clamp. Plasma insulin (599 � 28
pmol/l) and glucose (2.9 � 0.03 mmol/l) levels were
similar among all groups during the glucose clamp. In
response to hypoglycemia, epinephrine (2.8 � 0.6 vs.
5.8 � 0.8 and 4.4 � 0.5 nmol/l), glucagon (57 � 8 vs. 77 �
8 and 126 � 18 ng/l), and endogenous glucose produc-
tion (2 � 2 vs. 10 � 2 and 6 � 3 �mol � kg�1 � min�1) were
significantly lower in E2 vs. both NO E2 and male
subjects (P < 0.05). These reduced counterregulatory
responses resulted in significantly greater glucose infu-
sion rates (16 � 2 vs. 6 � 2 and 6 � 3 �mol � kg�1 � min�1;
P < 0.01) in E2 vs. both NO E2 and male subjects.
Pancreatic polypeptide was significantly lower (P <
0.05) in both the E2 and NO E2 groups compared with
the male subjects (136 � 20 and 136 � 23 vs. 194 � 16
pmol/l). Last, glycerol (36 � 3 vs. 47 � 5 �mol/l; P <
0.05), lactate (1.4 � 0.1 vs. 1.8 � 0.2 mmol/l; P < 0.05),
and muscle sympathetic nerve activity (19 � 4 to 27 � 4
vs. 27 � 5 to 42 � 6 bursts/min; P < 0.05) responses to
hypoglycemia were all significantly lower in E2 vs. NO
E2 subjects. We conclude that estrogen appears to play
a major role in the sexual dimorphism present in coun-
terregulatory responses to hypoglycemia in healthy hu-
mans. Diabetes 52:1749–1755, 2003

M
en and women respond differently to an acute
bout of hypoglycemia. We have previously
shown that healthy and type 1 diabetic
women, compared with men, have lower cat-

echolamine, glucagon, cortisol, growth hormone, endoge-
nous glucose production (EGP), and lactate responses,
and they have increased glycerol responses to hypoglyce-
mia (1,2). This sexual dimorphism also appears to be
present in a wide variety of physiological stresses. For

example, women have been found to have reduced neu-
roendocrine and increased lipolytic responses to exercise
(3–5) and reduced sympathetic nervous system responses
to cognitive stress (6).

The physiological mechanism(s) responsible for sexu-
ally dimorphic responses to stress in humans remains
unknown, although it seems likely that one or more of the
reproductive hormones may be responsible. Animal stud-
ies suggest that estrogen may play an important role.
Estrogen administration has been shown to independently
reduce catecholamine levels, either by increasing norepi-
nephrine degradation in the brain (and thereby reducing
sympathetic system drive) (7) or by decreasing secretion
from the adrenal medulla (8,9). Metabolically, estrogen
has been found to increase lipolysis (10), glycogen depo-
sition (11), and glucose uptake during exercise in rats (10).
Recent studies in mice even suggest that estrogen, specif-
ically estrone sulfate, may have a direct effect on reducing
hepatic glucose production by inhibiting hepatic glucose-
6-phosphatase activity (12). In contrast to estrogen, pro-
gesterone increases fat synthesis (13) and has been found
to have no effect on catecholamine secretion from the
adrenal medulla (8). In fact, progesterone antagonizes
estrogen’s effect on glycogen deposition (11), glucose
uptake (14), and the ability to increase lipolytic enzyme
activity (10). Thus, it is unlikely that progesterone is
responsible for the sexual dimorphism. Although testos-
terone, like estrogen, can also increase lipolysis (13), little
information exists regarding testosterone’s direct effects
on glucose metabolism. Taken together, work from animal
studies support the hypothesis that estrogen can exert,
either directly or indirectly, profound effects on neuroen-
docrine systems and intermediary metabolism. Therefore,
the aim of this study was to determine whether estrogen is
a major in vivo mechanism responsible for the sexual
dimorphism present in counterregulatory responses to
hypoglycemia found in healthy humans.

RESEARCH DESIGN AND METHODS

Subjects. We studied eight postmenopausal women who were taking estro-
gen-only replacement (E2 group; age 50 � 2 years, BMI 25 � 2 kg/m2), nine
postmenopausal women who were not taking any hormone replacement
therapy (NO E2 group; age 51 � 1 years, BMI 25 � 2 kg/m2), and seven male
subjects of similar age (47 � 2 years) and BMI (28 � 2 kg/m2). Subjects were
nonsmokers and were not taking any medications other than estrogen
replacement in the E2 group. All subjects had normal electrocardiogram stress
tests responses, normal liver, and normal renal and hematological parameters.
The duration of postmenopausal status for the E2 and NO E2 group was 4 �
2 and 8 � 5 years, respectively. Duration of estrogen replacement in the E2
group was 4 � 2 years. Two women in the E2 group had previous total
hysterectomies 8 and 10 years before the study. The type of estrogen
replacement was Premarin (n � 3, conjugated estrogens), Estrace (n � 3,
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estradiol), or the Vivil Patch (n � 2, estradiol). Studies were approved by the
Vanderbilt University human subjects institutional review board, and all
subjects gave informed written and verbal consent.
Experimental design. Subjects did not exercise and consumed their usual
weight-maintaining diet for 3 days before each study. Each subject was
admitted to the Vanderbilt University Clinical Research Center the evening
before an experiment. The next morning, subjects had one intravenous
cannula placed into each hand under local 1% lidocaine anesthesia. One
cannula was placed in a retrograde fashion into a vein in the back of the hand.
This hand was placed in a heated box (55–60°C) so that arterialized blood
could be obtained (15). The other cannula was placed in the contralateral arm
for infusions of dextrose, insulin, and labeled glucose during the experiment.

Each study consisted of a tracer equilibration period (0–90 min), a basal
period (90–120 min), and an experimental period (120–240 min). A primed (18
�Ci) infusion (0.18 �Ci/min) of high-pressure liquid chromatography (HPLC)-
purified [3-3H]glucose (11.5 mCi � mmol�1 � l�1; Perkin Elmer Life Sciences,
Boston, MA) was administered via a precalibrated infusion pump (Harvard
Apparatus, South Natick, MA) starting at 0 min. Also at this time, isolation of
the peroneal nerve for microneurography (technique described below) was
started. An insulin infusion solution was prepared with normal saline contain-
ing 3% (vol/vol) of the subject’s own plasma. At time 120 min, a primed
constant (9.0 pmol � kg�1 � min�1) infusion of insulin (Eli Lilly, Indianapolis,
IN) was started via a precalibrated infusion pump (Harvard Apparatus) and
continued until 240 min. The rate of fall of glucose was controlled (0.06
mmol/min) and the hypoglycemic nadir (2.9 mmol/l) achieved using a modi-
fication of the glucose clamp technique (16). During the clamp periods, plasma
glucose was measured every 5 min, and a 20% dextrose infusion was adjusted
so that plasma glucose levels were held constant (2.9 � 0.1 mmol/l).
Potassium chloride (20 mmol/l) was infused during the clamp to reduce
insulin-induced hypokalemia.
Tracer calculations. The rate of glucose appearance (Ra), EGP, and glucose
utilization were calculated according to the methods of Wall et al. (17). EGP
was calculated by determining the total Ra (this comprises both EGP and any
exogenous glucose infused to maintain the desired hypoglycemia) and sub-
tracting it from the amount of exogenous glucose infused. It is now recognized
that this approach is not fully quantitative, since underestimates of total Ra

and rate of glucose disposal (Rd) can be obtained. The use of a highly purified
tracer and taking measurements under steady-state conditions (i.e., constant
specific activity) in the presence of low glucose flux eliminates most, if not all,
of the problems. In addition, to maintain a constant specific activity, isotope
delivery was increased commensurate with increases in exogenous glucose
infusion. During this study, only glucose flux results from the basal and the
final 30-min periods of the hypoglycemic clamps are reported.
Direct measurement of muscle sympathetic nerve activity. Muscle
sympathetic nerve activity (MSNA) was recorded in the present study because
this has been demonstrated to reflect increased sympathetic activity during
insulin-induced hypoglycemia (2,18–21). MSNA was measured in the peroneal
nerve at the level of the fibular head or popliteal fossa. A recording of MSNA
was considered adequate when 1) there was spontaneous appearance of
pulse-linked bursts, 2) nerve activity increased during phase II (hypotensive
phase) and was suppressed during phase IV (blood pressure overshoot) of the
Valsalva maneuver, 3) nerve activity increased in response to held expiration
(apnea), 4) there was insensitivity to emotional stimuli (loud yell or clap),
and/or 5) stretching of the tendons in the foot or tapping the muscle belly
evoked proprioceptive afferent signals, whereas cutaneous stimulation by
stroking the skin did not.

Sympathetic nerve activity is expressed as bursts per minute. Measure-
ments of MSNA were made from original tracings or on-line recordings
(DI-220; Dataq Instruments, Akron, OH) by an operator blinded to the
sequence of experiments. Bursts were selected if the signal-to-noise ratio was
greater than 2:1.
Analytical methods. The collection and processing of blood samples have
been previously described (22). Plasma glucose concentrations were mea-
sured in triplicate using the glucose oxidase method with a glucose analyzer
(Beckman, Fullerton, CA). Blood for hormones and intermediary metabolites
were drawn twice during the control period and every 15 min during the
experimental period. Glucagon was measured according to the method of
Aguilar-Parada et al. (23), with an interassay coefficient of variation (CV) of
15%. Insulin was measured as previously described (24), with an interassay CV
of 11%. Catecholamines were determined by HPLC (25), with an interassay CV
of 12% for both epinephrine and norepinephrine. We made two modifications
to the procedure for catecholamine determination: 1) we used a five-point
rather than a one-point standard calibration curve, and 2) we spiked the initial
and final samples of plasma with known amounts of epinephrine and
norepinephrine so that accurate identification of the relevant catecholamine
peaks could be made. Cortisol (Clinical Assays Gamma Coat radioimmuno-

assay kit, interassay CV � 6%), growth hormone (26) (interassay CV � 8%),
pancreatic polypeptide (interassay CV � 8%) (27), glucagon (interassay CV �
15%; Linco Research, St. Louis, MO), and leptin (interassay CV � 8%) (28)
were all measured using radioimmunoassay techniques. Lactate, glycerol,
alanine, and 3-hydroxybutyrate were measured on deproteinized whole blood,
using the method of Lloyd et al. (29). Nonesterified fatty acids (NEFAs) were
measured using a Wako kit adapted for use on a centrifugal analyzer (30).

Cardiovascular parameters (heart rate and systolic, diastolic, and mean
arterial pressure) were measured noninvasively by a Dinamap (Critikon,
Tampa, FL) every 10 min throughout each 240-min study. Symptoms of
hypoglycemia were assessed every 15 min (31) during the hypoglycemic
clamps, using a previously validated semiquantitative questionnaire. Each
subject was asked to rate symptoms of tiredness, confusion, hunger, dizziness,
difficulty in thinking, blurred vision, sweatiness, tremors, agitation, feeling
hot/thirsty, and palpitations. The scores for the first six symptoms were
summed for the neuroglycopenic score, and the scores for the last five
symptoms were summed for the autonomic symptom score.
Statistical analysis. Data are expressed as means � SE and were analyzed
using standard parametric one-way ANOVA and with repeated measures
where appropriate. A Tukey’s post hoc analysis was used delineate statistical
significance. A P value �0.05 was accepted as statistically significant.

RESULTS

Basal E2 levels. Estradiol levels were significantly
greater in the E2 group (141 � 21 pg/ml) compared with
both NO E2 (31 � 7 pg/ml) and male subjects (48 � 7
pg/ml, P � 0.05).
Glucose and insulin levels. Steady-state plasma glucose
(2.9 � 0.1, 2.9 � 0.1, and 2.9 � 0.1 mmol/l for E2, NO E2,
and male subjects, respectively) and insulin (552 � 65,
587 � 30, and 660 � 60 pmol/l for E2, NO E2, and male
subjects, respectively) levels were similar between the
three groups (Fig. 1).
Counterregulatory hormone levels. In response to hy-
poglycemia, steady-state epinephrine, glucagon (Fig. 2),
norepinephrine, growth hormone, cortisol (Table 1), and
pancreatic polypeptide (Fig. 3) levels were significantly
greater than baseline values in all groups (P � 0.01).

FIG. 1. Glucose and insulin levels during the 2-h hyperinsulinemic (1.5
mU � kg�1 � min�1) hypoglycemic clamp in women taking estrogen (E2),
women not taking estrogen (NO E2), and male subjects. Levels were
similar during the clamp between all three groups. Values are means �
SE.
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However, the rise in epinephrine and glucagon (Fig. 2) was
significantly lower in E2 vs. both NO E2 and male subjects,
and glucagon levels were significantly lower in NO E2 vs.
male subjects (P � 0.01). Pancreatic polypeptide was
significantly lower in both E2 and NO E2 groups vs. the
male subjects (P � 0.05) (Fig. 3). Leptin levels did not
change during hypoglycemia in E2 subjects as compared
with the significant reductions seen in NO E2 and male
subjects (P � 0.05) (Fig. 3).
MSNA. MSNA significantly increased with hypoglycemia
in all groups (E2 group 19 � 4 to 27 � 4 bursts/min, NO E2
group 27 � 5 to 42 � 6 bursts/min, and male subjects 25 �
5 to 38 � 6 bursts/min). The increase of MSNA in E2

subjects was significantly reduced (P � 0.05) compared
with NO E2 subjects (Fig. 2).
Glucose kinetics. Glucose specific activity (disintegra-
tions � min�1 � mmol�1) did not significantly change during
both the control period and the final 30 min of the
hypoglycemic clamp (CV � 4%) (Table 2). EGP was
significantly decreased during hyperinsulinemic hypogly-
cemia in the E2 vs. both NO E2 and male subjects (Fig. 4).
Glucose utilization increased with hypoglycemia but was
similar between the three groups. As a consequence of the
reduced EGP, the exogenous glucose infusion rate was
twice as great in E2 vs. NO E2 or the male subjects (16 �
2 vs. 7 � 2 and 7 � 3 �mol � kg�1 � min�1, P � 0.01) (Fig.
4).
Intermediary metabolism. �-Hydroxybutyrate and
NEFA levels both decreased with hyperinsulinemic hypo-
glycemia (P � 0.01) (Table 3). However, despite this
decrease, NEFA levels were significantly greater in male
subjects versus both E2 and NO E2 subjects. Glycerol and
lactate levels increased with hypoglycemia, and this in-
crease was significantly lower in E2 vs. NO E2 subjects
(P � 0.05) (Table 3).
Cardiovascular responses. Heart rate increased with
hypoglycemia in all groups compared with the control
period (P � 0.05) (Table 4). During the final 20 min of the
clamp, systolic blood pressure was significantly lower in
E2 vs. male subjects (P � 0.05) (Table 4), whereas
diastolic blood pressure fell with hypoglycemia in all
groups (P � 0.05) (Table 4). Mean arterial pressure fell
with hypoglycemia in both the E2 and NO E2 groups (P �
0.05) (Table 4), but there was no significant change in
mean arterial pressure in the male subjects.
Symptom responses. Total symptom scores increased
with hypoglycemia from 15 � 1 to 28 � 4 in E2 subjects,
from 15 � 1 to 24 � 2 in NO E2 subjects, and from 19 �
2 to 32 � 5 in male subjects. Neurogenic and neuroglyco-
penic symptom scores contributed evenly to the total
symptom score and were not different between the three
groups.

DISCUSSION

This study examined the role of estrogen in the sexual
dimorphism present in counterregulatory responses to
hypoglycemia in healthy humans. The main findings were
that postmenopausal women taking estrogen replacement
had reduced epinephrine, glucagon, MSNA, pancreatic

FIG. 2. Epinephrine and glucagon levels and MSNA during the 2-h
hyperinsulinemic (9 pmol � kg�1 � min�1) hypoglycemic clamp in women
taking estrogen (E2), women not taking estrogen (NO E2), and male
subjects. *Significantly lower in E2 versus both NO E2 and male
subjects (P < 0.01); †significantly lower in NO E2 versus male subjects;
‡significantly lower in E2 versus NO E2 subjects (P < 0.05). Values are
means � SE.

TABLE 1
Effects of estrogen replacement therapy on norepinephrine,
cortisol, and growth hormone responses to hypoglycemia

E2
subjects

NO E2
subjects

Male
subjects

Norepinephrine (nmol/l)
Basal 1.5 � 0.3 1.2 � 0.2 1.4 � 0.3
Final 30 min 2.3 � 0.3 2.1 � 0.2 2.6 � 0.3

Cortisol (nmol/l)
Basal 340 � 30 245 � 38 260 � 30
Final 30 min 705 � 79 774 � 37 715 � 37

Growth hormone (�g/ml)
Basal 2.5 � 1.4 0.2 � 0.04 0.7 � 0.3
Final 30 min 12 � 5 11 � 5 15 � 4

Data are means � SE.

D.A. SANDOVAL AND ASSOCIATES

DIABETES, VOL. 52, JULY 2003 1751

D
ow

nloaded from
 http://diabetesjournals.org/diabetes/article-pdf/52/7/1749/649006/db0703001749.pdf by guest on 14 August 2022



polypeptide, leptin, EGP, NEFA, lactate, glycerol, and
mean arterial blood pressure responses to hypoglycemia
compared with age- and weight-matched postmenopausal
women not taking estrogen replacement and/or compared
with male subjects. Thus, estrogen appears to be a major
in vivo mechanism responsible for the reduced neuroen-
docrine and metabolic responses to hypoglycemia occur-
ring in healthy women as compared with men.

The pattern of sexually dimorphic results observed in
the present study is similar to previous studies in pre-
menopausal women. We have observed reduced epineph-
rine, MSNA, pancreatic polypeptide, glucagon, EGP, and
lactate responses to hypoglycemia (1,2,32) in premeno-
pausal women compared with age-matched men. Other
laboratories have also shown reduced epinephrine (33–35)
and glucagon (35) responses to hypoglycemia in women
compared with men. In the current study, the E2 group
had significantly reduced epinephrine, glucagon, and EGP
compared with both NO E2 and male subjects. However,
interestingly, there were also differences between NO E2
and male subjects (glucagon and pancreatic polypeptide).

Thus, for the majority of counterregulatory variables,
estrogen plays an important role in sexually dimorphic
responses to hypoglycemia, but the contribution of other
factors to regulating differences in glucagon and pancre-
atic polypeptide cannot be ruled out.

Estrogen’s regulation of epinephrine and MSNA re-
sponses to hypoglycemia may be of central (i.e., brain)
and/or peripheral origin. This is illustrated by in vitro data
showing estrogen administration reduced catecholamine
secretion directly from the adrenal gland (9). Other studies
have also demonstrated reduced norepinephrine release
from the hypothalamus after estrogen administration (7).
Estrogen may also act indirectly by altering brain glucose
transport. Rats given estrogen and then exposed to isch-
emic injury have been found to have increased GLUT1
receptors in the brain (36), thereby increasing brain glu-
cose transport. If estrogen could increase glucose trans-
port within the brain during hypoglycemia, the stimulus to
activate the sympathetic drive would be reduced, and thus
the resulting sympathetic counterregulatory responses
would be lowered.

FIG. 3. The change in leptin levels and absolute
pancreatic polypeptide levels during the 2-h hy-
perinsulinemic (9 pmol � kg�1 � min�1) hypoglyce-
mic clamp in women taking estrogen (E2), women
not taking estrogen (NO E2), and male subjects.
*The change in leptin was significantly less in E2
versus both NO E2 and male subjects (P < 0.01).
†Pancreatic polypeptide levels were significantly
lower in E2 and NO E2 versus male subjects (P <
0.01). Values are means � SE.

TABLE 2
Specific activity during the basal and final 30-min periods of the hyperinsulinemic-hypoglycemic clamps

Specific activity
(dpm/mmol) �30 �20 �10 0 90 105 120

E2 subjects 614 � 54 627 � 58 604 � 50 604 � 50 381 � 34 351 � 33 351 � 35
NO E2 subjects 536 � 26 530 � 22 537 � 23 502 � 26 363 � 31 364 � 31 358 � 31
Male subjects 423 � 61 418 � 63 413 � 52 402 � 58 294 � 26 301 � 28 301 � 25

Data are means � SE.
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Besides the impact on the sympathetic nervous system,
other endocrine responses were also altered in the E2
group. First, the fall in leptin levels was significantly less in
E2 subjects compared with both NO E2 and male subjects.
In vitro studies suggest that estradiol administration can
increase leptin expression in adipose tissue (37). In con-
trast, epinephrine has been shown to reduce leptin levels
(38). Thus, the presence of estrogen plus the lack of
epinephrine may have prevented a fall in leptin levels
during hypoglycemia in the E2 group. Second, although
there is a possibility that estrogen could directly inhibit
glucagon secretion during hypoglycemia, it is also possible
that the lack of epinephrine contributed to the reduced
glucagon levels in the E2 group. Finally, estrogen has been
suggested to increase baseline growth hormone levels
(39), and we did see this trend between E2 and NO E2
subjects in baseline growth hormone levels when the men

were removed from the analysis (P � 0.07). However, we
have previously reported that women have a decreased,
rather than an increased, growth hormone response to
hypoglycemia (2). Because aging decreases growth hor-
mone levels (39), the growth hormone responses to hypo-
glycemia in this study were significantly truncated
compared with our earlier work. This reduced the exper-
imental signal and possibly prevented the detection of any
differences in response to hypoglycemia among the groups.

Because epinephrine is a key counterregulatory hor-
mone, estrogen-induced changes in epinephrine could
have major consequences for glucose and fat metabolism
in response to hypoglycemia. The lack of a rise in epineph-

FIG. 4. EGP, glucose utilization, and glucose infusion rate during the
2-h hyperinsulinemic (9 pmol � kg�1 � min�1) hypoglycemic clamp in
women taking estrogen (E2), women not taking estrogen (NO E2), and
male subjects. *The EGP and glucose infusion rates were significantly
lower and higher, respectively, in E2 versus both NO E2 and male
subjects (P < 0.01). Values are means � SE.

TABLE 3
Effects of estrogen replacement therapy on metabolite responses
to hypoglycemia

E2
subjects

NO E2
subjects

Male
subjects

Alanine (�mol/l)
Basal 278 � 26 269 � 17 307 � 35
Final 30 min 268 � 15 286 � 18 295 � 20

�-Hydroxybutyrate (�mol/l)
Basal 175 � 59 159 � 41 75 � 19
Final 30 min 10 � 2 13 � 2 13 � 2

Glycerol (mmol/l)
Basal 53 � 4 60 � 6 49 � 7
Final 30 min 36 � 3* 48 � 4 43 � 6

Lactate (mmol)
Basal 0.9 � 0.1 0.7 � 0.1 0.7 � 0.1
Final 30 min 1.4 � 0.1* 1.7 � 0.2 1.6 � 0.1

Nonesterified free fatty acids
(�mol/l)

Basal 574 � 71 535 � 32 558 � 57
Final 30 min 153 � 47 117 � 14 244 � 40†

Data are means � SE. *Significantly lower in E2 versus NO E2
subjects (P � 0.05); †significantly greater than E2 and NO E2
subjects.

TABLE 4
Effects of estrogen on cardiovascular responses to hypoglycemia

Basal
period

Duration of hypoglycemia
(min)

80 100 120

Heart rate (bpm)
E2 67 � 3 75 � 4* 71 � 5* 73 � 5*
NO E2 66 � 4 71 � 4* 70 � 3* 74 � 6*
Men 62 � 3 72 � 4* 70 � 4* 74 � 4*

Systolic BP (mmHg)
E2 116 � 6 105 � 7 107 � 7 106 � 8
NO E2 124 � 8 113 � 6 112 � 7 112 � 7
Men 120 � 6 128 � 7† 123 � 6† 124 � 8†

Diastolic BP (mmHg)
E2 69 � 4 58 � 4‡ 61 � 3‡ 60 � 4‡
NO E2 73 � 4 60 � 4‡ 57 � 3‡ 57 � 3‡
Men 70 � 3 62 � 3‡ 62 � 3‡ 60 � 4‡

Mean arterial BP
(mmHg)

E2 84 � 5 74 � 6‡ 75 � 3‡ 75 � 4‡
NO E2 90 � 6 77 � 5‡ 75 � 4‡ 76 � 4‡
Men 87 � 4 84 � 4 82 � 4 81 � 5

Data are means � SE. *Significantly greater than basal period (P �
0.05); †significantly greater than E2 (P � 0.05); ‡significantly lower
than basal period (P � 0.05). BP, blood pressure.
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rine could explain the reduced EGP and lactate responses
in E2 vs. NO E2 and male subjects. However, glucagon is
also an important regulator of EGP. Thus, the lack of a rise
in both of these hormones with hypoglycemia most likely
contributed to the substantial reduction in EGP. Addition-
ally, a direct effect of estrogen cannot be ruled out because
the hormone has been shown to reduce hepatic glucose
production by decreasing glucose-6-phosphatase and thus
gluconeogenesis (12).

Regarding fat metabolism, epinephrine is also a major
lipolytic activator during hypoglycemia. Glycerol levels, an
index of whole-body lipolysis, were reduced in E2 vs. NO
E2 subjects. In contrast, NEFA levels were reduced in both
E2 and NO E2 subjects compared with male subjects.
NEFA levels also rise with lipolysis, but unlike glycerol
levels, they are subject to insulin-induced reesterification.
Although estrogen has been shown to increase basal
lipolysis in rats (10), the fact that glycerol and NEFA levels
were reduced in the E2 group suggest that the blunted
epinephrine and sympathetic nervous system responses to
hypoglycemia overrode any stimulatory effect of estrogen
on lipolysis. Whole-body lipolysis has been shown to be
similar between men and women after epinephrine infu-
sion (40,41). Thus, it appears to be that differences in the
level of epinephrine, rather than a sexual dimorphism in
tissue sensitivity to the hormone, caused the increased
lipolysis in the male subjects.

Although estrogen’s impact on epinephrine and, conse-
quently, metabolism appears straightforward, it’s overall
influence on the autonomic nervous system as a whole is
not so clear. This may be because estrogen is just one of
many factors that may influence the autonomic response
to hypoglycemia. For example, if estrogen replacement
caused a generalized blunting or blunted the sympathetic
nervous system, one would expect the E2 group to have
lower catecholamines, MSNA, heart rate, blood pressure,
and neurogenic (autonomic) symptoms vs. NO E2 and
male subjects. Although the E2 group did, in fact, have
reduced epinephrine versus both NO E2 and male sub-
jects, lower MSNA versus NO E2 subjects, and lower
systolic blood pressure versus the male subjects, we also
observed similar norepinephrine, heart rate, and neuro-
genic symptom responses to hypoglycemia between the
three groups. There are many factors that could lead to
these results. First, changes in norepinephrine are subject
to changes in spillover from the sympathetic nervous
system and clearance by the periphery. Differential im-
pacts of sex and/or estrogen on either spillover or clear-
ance could create difficulty in detecting differences in
plasma levels between groups. Second, pancreatic
polypeptide, a partial marker for the parasympathetic
drive, was increased in male subjects in response to
hypoglycemia. Regulation of heart rate and blood pressure
are controlled through a balance between sympathetic and
parasympathetic drives. Therefore, increased parasympa-
thetic drive could offset some of the increased sympathetic
drive, leading to similar cardiovascular responses to hypo-
glycemia. Regulation of blood pressure responses is com-
plex and multifactorial. Systolic blood pressure was lower
in the E2 group versus the male subjects, and mean arterial
pressure responses were lower in both groups of women
compared with the male subjects. The baroreflex is reset

with hypoglycemia (42), and although unknown, it is
possible that sex further impacts the normal baroreflex
response to hypoglycemia. Alternatively, men have been
found to have greater responsiveness to epinephrine-
induced changes in blood pressure (41) and norepineph-
rine-induced vasoconstriction (43), suggesting that men
may simply be more sensitive to catecholamine-induced
changes in blood pressure. We have previously reported
dissociation between plasma catecholamines, MSNA, and
neurogenic symptom responses to hypoglycemia (18).
Therefore, the finding that epinephrine and MSNA but not
neurogenic symptom responses were reduced during hy-
poglycemia is consistent with our previous data. Thus,
although the E2 group had some reduced markers of both
sympathetic (i.e., epinephrine and MSNA) and parasympa-
thetic (i.e., pancreatic polypeptide) branches of the auto-
nomic nervous system, other more complexly controlled
functions (i.e., norepinephrine, cardiovascular, and symp-
tom responses) were similar among the groups.

It is interesting to note that despite the older age group
in this versus our previous studies (1,2,32), we saw similar
sex differences. It is also important to note that these
groups had similar BMI levels. This suggests that body fat
and age, per se, do not appear to be major mechanisms
responsible for the sex differences seen in response to
hypoglycemia.

In summary, the present results show that postmeno-
pausal women taking estrogen replacement have reduced
counterregulatory responses to hypoglycemia compared
with both women not taking estrogen replacement and
men. Women taking estrogen replacement had reduced
epinephrine, MSNA, pancreatic polypeptide, glucagon,
EGP, lactate, and glycerol responses to hypoglycemia
compared with women not taking estrogen replacement
and/or compared with men. In conclusion, these results
support the hypothesis that estrogen is a major mecha-
nism responsible for the sexual dimorphism present in
neuroendocrine and metabolic counterregulatory re-
sponses to hypoglycemia in healthy humans.
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