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Over the past decades, hypomagnesemia (serum Mg2+

<0.7 mmol/L) has been strongly associated with type 2
diabetes mellitus (T2DM). Patients with hypomagnese-
mia show a more rapid disease progression and have an
increased risk for diabetes complications. Clinical studies
demonstrate that T2DM patients with hypomagnesemia
have reduced pancreatic b-cell activity and are more
insulin resistant. Moreover, dietary Mg2+ supplementa-
tion for patients with T2DM improves glucose metabo-
lism and insulin sensitivity. Intracellular Mg2+ regulates
glucokinase, KATP channels, and L-type Ca2+ channels in
pancreatic b-cells, preceding insulin secretion. More-
over, insulin receptor autophosphorylation is dependent
on intracellular Mg2+ concentrations, making Mg2+ a di-
rect factor in the development of insulin resistance.
Conversely, insulin is an important regulator of Mg2+

homeostasis. In the kidney, insulin activates the renal
Mg2+ channel transient receptor potential melastatin
type 6 that determines the final urinary Mg2+ excretion.
Consequently, patients with T2DM and hypomagnese-
mia enter a vicious circle in which hypomagnesemia
causes insulin resistance and insulin resistance reduces
serum Mg2+ concentrations. This Perspective provides a
systematic overview of the molecular mechanisms un-
derlying the effects of Mg2+ on insulin secretion and in-
sulin signaling. In addition to providing a review of current
knowledge, we provide novel directions for future re-
search and identify previously neglected contributors to
hypomagnesemia in T2DM.

Globally, over 300 million people suffer from type 2 diabetes
mellitus (T2DM), and the prevalence is predicted to rise to
over 600 million over the next decades (1). T2DM is char-
acterized by a combination of insulin deficiency and insulin
resistance. The general pathophysiological concept is that
hyperglycemia emerges when endogenous insulin secretion

can no longer match the increased demand owing to insulin
resistance (2).

Since the 1940s, it has been reported that T2DM is
associated with hypomagnesemia (3,4). Low serum magne-
sium (Mg2+) levels have been reported in large cohorts of
patients with T2DM (5). In T2DM, the prevalence of hypo-
magnesemia ranges between 14 and 48% compared with
between 2.5 and 15% in healthy control subjects (4). Hypo-
magnesemia is associated with a more rapid, and perma-
nent, decline in renal function in patients with T2DM (6).
In addition, epidemiological studies consistently show an
inverse relationship between dietary Mg2+ intake and risk
of developing T2DM (7). Several patient studies have shown
beneficial effects of Mg2+ supplementation on glucose me-
tabolism and insulin sensitivity (8–10). Recently, Rodríguez-
Morán et al. (11) published an excellent overview of the
clinical studies addressing the role of Mg2+ in T2DM. In
our review, we will focus on the molecular mechanisms
underlying these clinical observations.

Mg2+ is an essential ion for human health, as it is involved
in virtually every mechanism in the cell, including energy
homeostasis, protein synthesis, and DNA stability (12). Con-
sidering these divergent functions, it can be appreciated that
serum Mg2+ levels are tightly regulated between 0.7 and 1.05
mmol/L in healthy individuals. However, impaired intestinal
Mg2+ absorption or renal Mg2+ wasting can lead to hypomag-
nesemia. A wide range of genetic and environmental factors
can affect the Mg2+-deficient state, which have previously
been extensively reviewed (12).

In this review, we address the following questions that
are central to the role of hypomagnesemia in T2DM: 1)
Does Mg2+ regulate insulin secretion? 2) How does Mg2+

affect insulin resistance? 3) How does insulin regulate
Mg2+ homeostasis? Taken together, these questions will
aid the understanding of whether hypomagnesemia is a
causative factor for or a consequence of T2DM.
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INSULIN RESISTANCE

Insulin Sensitivity in Normal Cell Physiology
Increased insulin resistance is the major pathophysiological
cause for the development of T2DM. In healthy subjects,
insulin increases glycogen production in the liver, lipid
synthesis by adipose tissue, and glucose uptake in muscle
(5,13–18). Insulin resistance is often the consequence of
reduced sensitivity of the insulin receptor that is composed
of two insulin-binding a-subunits and two b-subunits. Spe-
cifically, upon insulin binding, the tyrosine residues of the
b-subunits become autophosphorylated, activating a wide
signaling network in the cell (Fig. 1). Depending on the
target tissue, direct substrates of the insulin receptor may
be recruited to the receptor, of which insulin receptor sub-
strates (IRSs)-1–4 are the most studied. These IRSs, in turn,
phosphorylate downstream signaling pathways leading to
glucose uptake, glycogenesis, lipid synthesis, and other in-
sulin-dependent actions. Alternatively, the insulin receptor
can activate IRS-independent pathways via Src homology 2
domain containing transforming protein causing the acti-
vation of mitogen-activated protein kinase signaling and
regulation of cell proliferation (16,19). An overview of the
main insulin signaling pathways is provided in Fig. 1.

Role of Mg2+ in Insulin Sensitivity
Many clinical studies have shown that hypomagnesemia
is associated with increased insulin resistance in T2DM

patients (4,20–22). In a cross-sectional study of patients
with metabolic syndrome, it was shown that insulin resis-
tance associates with reduced serum Mg2+ levels (21). Fur-
thermore, a cohort study of adult black Americans showed
that Mg2+ deficiency contributes to an insulin-resistant state
(20). Similar results were found in healthy human subjects,
where induced Mg2+ deficiency reduced insulin action and
secretion (22). In this segment of the review, we will clarify
the association between hypomagnesemia and insulin resis-
tance by focusing on the effects of Mg2+ on the insulin
receptor activity and downstream signaling events.

Insulin Receptor Phosphorylation
It is widely accepted that Mg2+ is essential for autophos-
phorylation of the b-subunits of the insulin receptor. The
crystal structure of the insulin receptor tyrosine kinase
shows that two Mg2+ ions can bind to the tyrosine kinase
domain (23). The role of this Mg2+ binding has been
shown by in vitro studies using isolated insulin receptors.
Here, Mg2+ enhances tyrosine kinase activity by increas-
ing the receptor’s affinity for ATP (24,25). Indeed, rats
with hypomagnesemia have reduced levels of insulin re-
ceptor phosphorylation, mimicking a state of insulin re-
sistance (26,27). In contrast, increased insulin receptor
phosphorylation was shown in liver tissue of rats fed
Mg2+-deficient diets for 11 weeks (28). However, the
value of this study can be questioned because insulin

Figure 1—Mg2+ affects insulin sensitivity. Mg2+ regulates the insulin signaling pathway by increasing the affinity of the insulin receptor tyrosine
kinase for ATP. Consequently, hypomagnesemia is associated with a reduced activity of all downstream pathways. In the muscle, Mg2+ therefore
regulates the membrane trafficking of GLUT4. In the liver, Mg2+ is an important regulator of enzymes in gluconeogenesis, including G6Pase and
PEPCK. In adipose tissue, Mg2+ acts as an anti-inflammatory factor reducing IL-1 and TNF-a secretion. FOXO1, forkhead box class O1; Grb2,
growth factor receptor-bound protein 2; GSK3, glycogen synthase kinase 3; MEK/MAPK, mitogen-activated protein kinase kinase; P, phosphor-
ylation; PIP3, phosphatidylinositol 3,4,5 trisphosphate; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; ROS, reactive oxygen species;
Shc, Src homology 2 domain containing transforming protein.
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phosphorylation was normal in rats with the same serum
Mg2+ levels at 6 weeks or in muscle tissue. Altogether,
Mg2+ seems to be an important factor in insulin receptor
autophosphorylation. Defective insulin receptor phos-
phorylation is therefore regarded as the main mechanism
by which hypomagnesemia contributes to insulin resis-
tance in T2DM patients.

Glucose Metabolism in the Muscle
Glucose uptake in skeletal muscle accounts for the disposal
of ;80% of the dietary glucose load via insulin-dependent
glucose uptake using GLUT4 glucose transporters (29). In a
recent study in rats with streptozotocin (STZ)-induced di-
abetes, oral Mg2+ supplementation increased GLUT4 ex-
pression in the rat muscle and thereby lowered serum
glucose levels to the normal range (30). Similar results
were obtained in STZ mice treated with Mg2+-rich sea water,
showing increased GLUT1 and GLUT4 expression in muscle
(31). Although the molecular mechanism is still unknown,
these findings suggest that Mg2+ regulates glucose uptake
in muscle.

Glycogen Synthesis in the Liver
Although many enzymes in the liver require Mg2+ for their
activity, the role of Mg2+ in gluconeogenesis and glycogen-
esis is poorly studied. The activity of several enzymes in-
volved in gluconeogenesis including glucose-6-phosphatase
(G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK)
were measured in Mg2+-deficient rats, but only PEPCK ac-
tivity was increased (32). In the same vein, mice with STZ-
induced diabetes showed decreased PEPCK and G6Pase
mRNA expression when supplemented with Mg2+-rich
deep sea water (31). However, it cannot be excluded that
other molecules that are present in the sea water mediate
these effects. In contrast, mRNA expression of PEPCK was
decreased in Mg2+-deficient rats (33).

Obesity and Inflammatory Aspects
Obesity is a major risk factor for the development of T2DM
(16,34). In obese patients with T2DM, adipocytes produce
proinflammatory mediators, such as interleukin 1 (IL-1)
and tumor necrosis factor-a (TNF-a), and stimulate the
production of reactive oxygen species. The inflammatory
environment is regarded as an important contributor to
insulin resistance and is one of the main reasons that obe-
sity is associated with T2DM (15,16). Among others, chronic
inflammation may induce insulin resistance by reducing
GLUT4 activity and inhibiting IRS-1 action (reviewed in 35).

Mg2+ is an important anti-inflammatory molecule, and
therefore hypomagnesemia increases the inflammatory
environment in obesity. IL-1 and TNF-a are significantly
increased in Mg2+-deficient hamsters and rats (36). More-
over, low serum Mg2+ levels are associated with increased
levels of TNF-a in obese people without diabetes (37).
Additionally, Mg2+ deficiency contributes to neutrophil
activation and oxidative stress (38). In a community-
based cross-sectional study of 488 healthy children, an
inverse correlation between serum Mg2+ levels and hs-CRP

was demonstrated (39). A recent clinical randomized
double-blind placebo-controlled trial of healthy subjects
with prediabetes and hypomagnesemia showed reduced
hs-CRP levels after Mg2+ supplementation for 3 months
(40). Given that inflammation and oxidative stress are
important factors in the development of insulin resistance
(35,41), hypomagnesemia may cause increased insulin
resistance.

Novel Perspectives
Although there is extensive evidence that hypomagnesemia
reduces insulin receptor phosphorylation and increases
chronic inflammation in T2DM patients, the consequences
of these signaling events in affected tissues, such as muscle,
liver, and adipocytes, have barely been studied. For in-
stance, Ca2+ has been shown to increase glucose uptake via
GLUT4 in the skeletal muscle (42). Given that Mg2+ is an
antagonist of Ca2+, GLUT4 membrane trafficking may be
reduced in hypomagnesemia. Additionally, some early stud-
ies suggest that Mg2+ may affect adipokine levels (43).
Therefore, future research should be aimed at identifying
the effects of hypomagnesemia in target tissues, taking
into account the intrinsic effects of Mg2+ on gene expres-
sion and Ca2+ antagonism.

INSULIN SECRETION

Insulin Secretion in Normal Cell Physiology
Acute insulin secretion from pancreatic b-cells is essential to
the control of blood glucose homeostasis. Increased blood
glucose levels stimulate the influx of glucose in pancreatic
b-cells via GLUT2, where it is converted to glucose-6-
phosphate (G6P) by glucokinase (44). This enzymatic reac-
tion functions as a glucose sensor to determine the required
amount of insulin secretion. G6P is further metabolized by
glycolysis to generate ATP, which directly induces closure of
KATP channel Kir6.2 (45). Closure of these channels induces
depolarization of the plasma membrane and, consequently,
opening of voltage-dependent Ca2+ channels (46). The influx
of extracellular Ca2+ triggers the release of insulin via exo-
cytosis (19) (Fig. 2).

In the early phases of T2DM, insulin release meets the
increasing demands by expanding the pancreatic b-cell mass
(47). For decades, insulin resistance was thought to be the
major cause for T2DM. However, supported by genome-
wide association studies studies, evidence has accumu-
lated that impaired insulin secretion in the pancreatic
b-cells is a major contributor to the development of
T2DM (48,49).

Role of Mg2+ in Insulin Secretion
The clinical evidence for a role of Mg2+ in insulin secretion
is limited and less well studied than the effects of Mg2+ on
insulin sensitivity, but several recent clinical studies sug-
gest that T2DM patients with hypomagnesemia display
reduced insulin secretion. In individuals without diabetes,
decreased serum Mg2+ concentrations are associated with
a diminished insulin secretion (15). Conversely, HOMA of
b-cell activity was negatively correlated with the serum
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Mg2+ concentration in a Canadian cohort of patients with
T2DM (50). However, this study focused mainly on the
lipid metabolism and did not fully explore the effects on
insulin secretion. Supplementation of individuals without
diabetes with MgCl2 significantly increased b-cell function
in a small randomized clinical trial (51). Here, we will
examine the molecular mechanisms by which Mg2+ im-
proves insulin secretion by showing how Mg2+ acts on
the main actors involved in insulin secretion.

Glucokinase
After entering the pancreatic b-cells via GLUT2, glucose
is converted to G6P by glucokinase. The action of gluco-
kinase depends on MgATP22. Recent studies show that
the activity of glucokinase is regulated by MgATP22 at sub-
physiological concentrations (reported KM ;0.15 mmol/L),
suggesting that there is always sufficient MgATP22 avail-
able in the cell for glucokinase activity (52). However,
there may exist a small cooperative effect of MgATP22

on glucose binding (52,53). Mg2+ deficiency may, there-
fore, reduce glucose binding to glucokinase by slowing down
metabolism and indirectly reducing insulin secretion.

Glycolysis
G6P is further metabolized via glycolysis and the Krebs
cycle, resulting in increased ATP levels. Although many
enzymes in this metabolic process use MgATP as a
cofactor (54), studies in erythrocytes have shown that gly-
colysis depends on intracellular Mg2+ with a half-maximal

glycolysis flux at 0.03 mmol/L Mg2+. This is well below
physiological intracellular Mg2+ values, even in Mg2+ de-
ficient conditions (55).

KATP Channel
First described in 1984, KATP channels are the main regula-
tors of the membrane potential in pancreatic b-cells (56).
The KATP channel in b-cells consists of four Kir6.2 subunits
and four regulatory sulfonylurea receptor (SUR)1 subunits,
whose activity is controlled by the intracellular ATP-to-ADP
ratio. In the presence of Mg2+, it is the balance between
MgATP, physiologically ranging between 1 and 5 mmol/L,
and MgADP levels that determines channel activity. Binding
of both MgATP and MgADP to the nucleotide-binding sites
of SUR1 subunits results in opening of the channel. By
contrast, in the absence of Mg2+, ATP induces closure of
the KATP channel by directly binding to Kir6.2 subunits
(57). In high-glucose conditions, increased glycolysis shifts
the balance toward ATP, concomitantly leading to reduced
MgADP levels inducing channel closure and increased insu-
lin secretion (58). This balance is the therapeutic target of
sulfonylurea drugs, which induce channel closure by antag-
onizing the binding of Mg nucleotides on SUR1 (59). Thus,
reduced intracellular Mg2+ concentrations, as a result of
hypomagnesemia in T2DM, may reduce the MgATP and
MgADP levels, favoring inhibition of the KATP channel and
thereby indirectly stimulating insulin secretion. However,
the exact effect of hypomagnesemia on intracellular MgATP
levels remains to be examined.

Figure 2—Mg2+ regulates insulin secretion in pancreatic b-cells. In pancreatic b-cells, Mg2+ directly influences the rate of glucokinase
activity by acting as a cofactor for adenine nucleotides. The product of this enzymatic reaction, G6P, is further processed in glycolysis
producing ATP. Closure of the KATP channel is dependent on ATP by its binding to the Kir6.2 subunits. Conversely, MgATP initiates channel
opening by binding to the SUR1 subunits of the channel. Importantly, the physiological consequence of channel closure is the depolar-
ization of the membrane, which triggers the influx of Ca2+ via the L-type Ca2+ channels. This final step initiates insulin vesicle release, which
is negatively controlled by Mg2+ acting on both Ca2+ influx and the L-type Ca2+ channels.
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L-Type Ca2+ Channel
Inhibition of KATP channels by increased ATP levels re-
sults in depolarization of the membrane, activating Ca2+

influx via the voltage-dependent L-type Ca2+ channel. In
the pancreatic b-cell, the main L-type channels are of the
Cav1.2 and Cav1.3 subtypes, of which Cav1.2 channels are
the main contributors to insulin secretion (60,61). There
is a wide range of literature showing that both intracel-
lular and extracellular Mg2+ inhibits L-type Ca2+ channels
(62–64). Although these findings suggest that hypomag-
nesemia would increase L-type channel activity in the
short-term, in the long-term it has been indicated that
hypomagnesemia reduces the expression of L-type Ca2+

channels and, thus, indirectly diminishes insulin secretion
(65). However, it should be noted that these findings rely
on measurements performed with cardiomyocytes and
have not been confirmed in pancreatic b-cells.

Insulin Vesicle Release
Insulin vesicle release depends on Ca2+ binding that initiates
exocytosis (45). Mg2+ fulfills an essential role in antagoniz-
ing Ca2+ and thus regulates insulin secretion by pancreatic
b-cells. Atwater et al. (66) studied the importance of the
Ca2+-to-Mg2+ ratio in glucose-induced insulin release in per-
fused rat pancreas and mouse islets. The results indicated
that only a reduction of the physiological Mg2+ concen-
trations stimulated insulin secretion. Conversely, insulin
secretion was inhibited only by diminished Ca2+ levels. In-
terestingly, a simultaneous reduction in Ca2+ and Mg2+,
while maintaining their ratio constant, did not change the
insulin release. Mg2+ deficiency inevitably changes the Ca2+-to-
Mg2+ ratio and may therefore affect insulin secretion.

Novel Perspectives
Altogether, the regulation of KATP channels, L-type Ca2+

channels, and vesicle release points toward an inhibitory
effect of Mg2+ on insulin secretion. These studies suggest
that Mg2+ deficiency stimulates insulin release by the
b-cells. However, a recent clinical study showed a positive
correlation between Mg2+ concentration and first-phase
insulin secretion (15). Why do hypomagnesemic T2DM
patients suffer from reduced insulin secretion then?
There may be multiple factors contributing to this para-
dox: 1) many of the studies of KATP channels and L-type
Ca2+ channels are executed in cardiac cells and may there-
fore not be a good representation of the effects of Mg2+ in
the pancreas; 2) most studies investigate short-term ef-
fects of Mg2+ on channel activity and may not represent
long-term Mg2+ deficiency; 3) it has been shown that Mg2+

increases insulin synthesis at the transcriptional level
(67); 4) all studies have focused on the effects of intra-
cellular Mg2+, leaving the role of extracellular Mg2+ un-
known; 5) Mg2+ is an important regulator of protein
synthesis and cell proliferation (68) and may therefore
regulate b-cell viability; and 6) Mg2+ deficiency may also
regulate other factors, including serum K+ and Ca2+, and
thereby indirectly affect insulin signaling. However, it

should be emphasized that the role of Mg2+ in insulin
secretion has only been examined by a small number of
clinical studies. The current clinical evidence on the effect
of Mg2+ on insulin secretion is too limited to draw firm
conclusions on the physiological implications of Mg2+ in
the pancreatic b-cell. Future clinical and experimental
studies are necessary to resolve this question.

Mg2+ Homeostasis

Cellular Mg2+ Homeostasis
Since protein and DNA synthesis is highly dependent on
intracellular Mg2+ availability, intracellular Mg2+ concen-
trations are tightly regulated (12). Intracellular Mg2+ con-
centrations are determined by the uptake via dedicated
Mg2+ channels and transporters, including solute carrier
family 41 member 1 (SLC41A1), magnesium transporter 1
(MagT1), and transient receptor potential melastatin type
6 and 7 (TRPM6 and TRPM7). The role of these Mg2+

transporters in the establishment of Mg2+ homeostasis
has been reviewed in detail (12). Several groups have in-
vestigated the association between genetic variations in
these Mg2+ transporters and risk for T2DM (69–71). Until
now, a link between T2DM and TRPM7 or MagT1 has not
been found. However, single nucleotide polymorphisms
(SNPs) in TRPM6 or SLC41A1 have been associated with
increased risk for T2DM (69,71). Interestingly, insulin may
be an important regulator of cellular Mg2+ uptake. Studies
in erythrocytes showed that insulin reduces serum Mg2+

levels and increases cytosolic Mg2+ concentrations (72).
Indeed, insulin increases both glucose and Mg2+ uptake
in pancreatic b-cells and cardiomyocytes, suggesting that
glucose and Mg2+ homeostasis are linked (73,74). How-
ever, the molecular identity of the Mg2+ transporters
involved in this mechanism has not been identified to
date.

Body Mg2+ Homeostasis
Mg2+ homeostasis in the body is facilitated by the inter-
play of intestinal absorption, bone Mg2+ storage, and renal
Mg2+ excretion (12). In the kidney, the bulk of filtered Mg2+

is reabsorbed passively in the proximal tubule (10–25%)
and thick ascending limb of Henle loop (TAL) (60–80%).
However, fine-tuning takes place in the distal convoluted
tubule (DCT) (5–15%) where transcellular reabsorption deter-
mines the final urinary Mg2+ excretion, since no reabsorption
takes place beyond the DCT (12).

In the DCT, Mg2+ is reabsorbed from the pro-urine by
TRPM6 channels (12). Patients with TRPM6 mutations
suffer from hypomagnesemia with secondary hypocalce-
mia (Mendelian Inheritance in Man: 602014) due to renal
Mg2+ wasting (75,76). TRPM6 is highly regulated by di-
etary Mg2+ availability, epidermal growth factor, estrogen,
pH, and ATP (77–81). Conversely, vitamin D and para-
thyroid hormone do not regulate Mg2+ reabsorption in
the DCT (77). The transepithelial movement of Mg2+ is
dependent on the electrochemical gradient that is set by
Na+-K+-ATPase activity and depends on the local recycling
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of K+ transport via Kv1.1 at the apical membrane and
Kir4.1 at the basolateral membrane (82–84). Although
the basolateral Mg2+ extrusion mechanism in the DCT is
still under debate, recent publications suggest that this
might be facilitated by the SLC41A1 Na+-Mg2+ exchanger
and is regulated by cyclin M2 (85–87).

Insulin Regulates Mg2+ Reabsorption in the Kidney
Hypomagnesemia in T2DM is primarily due to renal Mg2+

wasting (88). Insulin extracts from animal pancreas
were introduced in medicine in the early 1920s saving
the lives of many T2DM patients (89). The first article
reporting increased blood Mg2+ and Na+ levels during
treatment with impure insulin extracts was published in
1933 (90). However, it was not until the 1960s, when
synthetic insulin was available and Mg2+ measurements
were improved, that it became apparent that insulin
regulates Mg2+ reabsorption in the kidney (91). Indeed,
microperfusion experiments in mouse TAL segments
show increased Mg2+ permeability after insulin stimula-
tion (92). Moreover, in mouse DCT cells insulin stimu-
lates Mg2+ uptake (93). Therefore, we will present an
overview of the molecular targets of insulin in the reg-
ulation of renal Mg2+ transport.

TRPM6
TRPM6 was identified as the molecular target of insulin
signaling in 2012 (94) (Fig. 3). Upon insulin binding to the
receptor, an intracellular signaling cascade including phos-
phatidylinositol 3-kinase, Akt, and Rac1 is activated resulting

in increased insertion of TRPM6 in the plasma membrane.
Two SNPs in TRPM6 (p.Val1393Ile [rs3750425] and
p.Lys1584Glu [rs2274924]) are associated with increased
susceptibility for gestational diabetes mellitus (71). Patch
clamp analysis showed that these mutations render the
channel insensitive to insulin stimulation (94). Follow-up
studies could not confirm associations between serum
Mg2+ values and these two SNPs (69,95). However, these
differences may be explained by the dietary Mg2+ intake
of the subjects, since patients in the original study showed
reduced Mg2+ intake (,250 mg/day) (71). The mRNA
expression of TRPM6 is changed in diabetic rats, although
results are contradictory and may depend on the experi-
mental model used (96,97). Whereas some report increased
TRPM6 expression (96), others show that TRPM6 is
downregulated (97). Given that hypomagnesemia itself
also stimulates TRPM6 expression (77,98), it is difficult
to distinguish between the effect of hypomagnesemia and
T2DM in these studies.

Na+-Cl2 Cotransporter
In addition to its actions on TRPM6, insulin signaling
in DCT increases Na+ reabsorption via the thiazide-
sensitive Na+-Cl2 cotransporter (NCC) (99–103). Insulin
activates an intracellular signaling cascade that includes
mTOR complex 2 (mTORC2) and stress-activated pro-
tein kinase/oxidative stress responsive kinase (SAPK/
OSR1) to increase NCC phosphorylation and activity
(99,101,102) (Fig. 3). It has been hypothesized that

Figure 3—Insulin regulates electrolyte reabsorption in the distal convoluted tubule. Upon binding of insulin to its receptor, an intracellular
signaling cascade including phosphatidylinositol 3-kinase (PI3K) and Akt increases the plasma membrane expression of the TRPM6 Mg2+

channel and the thiazide-sensitive NCC. Additionally, insulin may stimulate the activity of other channels, such as K+ channel Kir4.1 and the
Na+-K+-ATPase. SPAK, STE20/SPS1-related, proline-alanine-rich kinase; WNK, with-no-lysine [K] kinases.
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hyperinsulinemia in T2DM causes increased NCC activa-
tion and thus renal Na+ reabsorption, contributing to
hypertension that is present in 75% of T2DM patients
(104). This hypothesis is supported by studies in Zucker
obese rats and db/db mice showing hyperinsulinemia,
hypertension, and increased NCC activity (100,101).

Diabetes-DCT Paradox
Central in the theory of insulin-induced hypertension is
that the hyperinsulinemic state causes overactivation of
the insulin pathway resulting in increased NCC activity
(99,101). In contrast, insulin resistance has been pro-
posed to explain the reduced TRPM6 activity and hypo-
magnesemia in T2DM (94). Until now, it has been widely
accepted that Na+ and Mg2+ transport in the DCT go hand
in hand, since reduced NCC activity causes hypomagnese-
mia as shown in patients with Gitelman syndrome and in
users of thiazide diuretics (105,106). However, in T2DM,
Na+ and Mg2+ reabsorption in DCT may be uncoupled,
resulting in increased Na+ reabsorption and decreased
Mg2+ reabsorption. Elucidation of the molecular mecha-
nisms of Na+ and Mg2+ cross talk and studies of the in-
sulin resistance of DCT cells in T2DM may contribute to
better understanding of the diabetes-DCT paradox.

Kir4.1 and Na+-K+-ATPase
Reports on diabetic retinopathy suggest that insulin
regulates the potassium channel Kir4.1 in the retina
(107,108). Given that Kir4.1 is also an important regula-
tor of Na+ and Mg2+ transport in DCT, and patients with
mutations in Kir4.1 develop hypomagnesemia and hypo-
kalemia, future studies should include regulation of Kir4.1
in T2DM patients (109,110).

Additionally, insulin has been shown to increase
Na+-K+-ATPase activity in several tissues including heart
and muscle (111,112). Na+-K+-ATPase activity is decreased
in animal models of T2DM (reviewed in 113,114). Within
the DCT, the membrane expression of the Na+-K+-ATPase
is regulated by TBC1 domain family, member 4 (TBC1D4),
which is a substrate of Akt in the insulin pathway (115). Given
that the expression of TBC1D4 in the DCT is regulated by
dietary Mg2+ intake (98), the regulation of the Na+-K+-ATPase
may be changed in hypomagnesemia via TBC1D4.

Other Factors Regulating Mg2+ Transport in T2DM
In the complex context of T2DM, many factors may play a
role in the development of hypomagnesemia. In contrast
to the well-described effects of insulin on renal electrolyte
handling, other contributing factors are poorly studied.
Therefore, rather than providing a definitive overview of
impaired renal regulation of Mg2+ transport in T2DM,
this part of the article aims to highlight contributors to
hypomagnesemia that are underappreciated in current
literature and should be subject for further examinations.

Glucose
Initial experiments in 1970s and 1980s showed that
glucose increases urinary Mg2+ excretion (116,117). However,

the molecular mechanism by which glucose regulates renal
Mg2+ handling is unknown, and these early experiments do
not take into account the action of insulin or diuresis. Re-
cently, the Na+-GLUT2 sodium–glucose cotransporter 2
(sglt2) KO mouse, which is characterized by a marked
glucosuria, was shown to have increased urinary Mg2+

excretion (118). These findings raise clinical concerns for
the use of SGLT2 inhibitors. However, clinical trials with
SGLT2 inhibitors have not provided any evidence that Mg2+

excretion is changed by SGLT2 inhibitor intake (119,120).
Given the substantial glucosuria in T2DM, the physiological
role of glucose in Mg2+ reabsorption can be questioned.

Hyperfiltration
Increased blood glucose values in T2DM result in hyper-
filtration and increased renal urinary flow (121,122). Ap-
proximately 10–25% of the filtered Mg2+ is reabsorbed by
the proximal tubules where water reabsorption precedes
Mg2+ reabsorption, creating a favorable electrochemical
gradient for Mg2+ reabsorption. Micropuncture studies have
shown that a 1.9 ratio between the concentrations of Mg2+

in the tubular fluid and the interstitial fluid is necessary for
passive Mg2+ reabsorption (123). Consequently, increased
urinary volume in T2DM patients will dilute the Mg2+

concentration in the pro-urine reducing the transepithelial
chemical Mg2+ gradient in the proximal tubule. Mg2+

reabsorption in TAL and DCT is inversely correlated to
urinary flow. Given that increased glomerular filtration
results in high urinary flow rates, hyperfiltration may
reduce Mg2+ reabsorption in T2DM patients.

Oxidative Stress
One of the main contributors to diabetic nephropathy is
the oxidative stress in the kidney (124). Interestingly,
oxidative stress has been shown to reduce TRPM6 activ-
ity (125), and as a result, Mg2+ uptake may be dimin-
ished in people with diabetes. Previously, methionine
sulfoxide reductase B1 (MSRB1) was shown to prevent
the effects of oxidative stress on TRPM6 by reducing
oxidation of the channel. However, studies of rats with
STZ-induced diabetes showed reduced Msrb1 expression
(126). Thus, oxidative stress may contribute to hypo-
magnesemia in T2DM.

CONCLUSIONS AND PERSPECTIVES

Over the past two decades, there has been a staggering
amount of clinical evidence showing a tight association
between hypomagnesemia and T2DM. A recent cross-
sectional study has shown that hypomagnesemia is asso-
ciated with an increased risk for complications, including
retinopathy, nephropathy, and foot ulcers (127). Impor-
tantly, Mg2+ supplementation improved insulin sensitivity
and metabolic control in a double-blind randomized trial,
suggesting that Mg2+ is an important factor in the etiology
and management of T2DM (9,10). So far, the clinical trials
that have been performed using Mg2+ supplementation
to improve T2DM have mainly focused on general param-
eters such as blood glucose or HbA1c levels. Therefore,

diabetes.diabetesjournals.org Gommers and Associates 9

D
ow

nloaded from
 http://diabetesjournals.org/diabetes/article-pdf/65/1/3/580505/db151028.pdf by guest on 18 April 2025



well-designed, double-blind randomized trials in T2DM
patients with hypomagnesemia studying the long-term
effects of Mg2+ supplementation on T2DM pathophysiology
and disease progression are now warranted.

The prevalence of hypomagnesemia in T2DM has been
reported to range between 14 and 48%, meaning that
millions of people worldwide are affected (4). Nevertheless,
serum Mg2+ levels are not routinely determined in T2DM
patients. Provided that hypomagnesemia is associated with
conditions that are often present in T2DM, including hyper-
tension, hypokalemia, and muscle cramps, more clinical at-
tention is necessary to address this problem (12). Patients
using widely prescribed drugs such as thiazide diuretics, pro-
ton pump inhibitors, and calcineurin inhibitors are especially
at risk for developing hypomagnesemia and should be closely
monitored (128,129). Additionally, patients with diabetic
neuropathy who have episodes of diarrhea may suffer from
intestinal malabsorption of Mg2+, which is another risk factor
for hypomagnesemia.

Despite the widespread clinical evidence of the associ-
ation of hypomagnesemia and T2DM, the molecular
mechanisms of Mg2+ on insulin secretion and insulin resis-
tance are still far from understood. Currently, the strongest
line of evidence supports an effect of Mg2+ on insulin sensi-
tivity (24–27). Small-scale fundamental studies have shown
that Mg2+ is essential for insulin receptor phosphorylation,
but the effect of Mg2+ on downstream targets in the mus-
cle, liver, and adipocytes is largely unknown. The role of
Mg2+ in the regulation of insulin secretion is more con-
troversial and hampered by the limited number of clinical
and experimental studies. In contrast, there have been
significant advances demonstrating the important role
of insulin in the regulation of Mg2+ reabsorption via
TRPM6 in the kidney. Insulin resistance reduces renal
Mg2+ reabsorption resulting in urinary Mg2+ wasting. As
a consequence, people with diabetes may end up in a vi-
cious circle in which hypomagnesemia enhances insulin re-
sistance and insulin resistance causes hypomagnesemia.
However, the picture is still far from complete, and more
studies are required to fully understand the complex and
dynamic role of Mg2+ in T2DM.
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