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diminished in type 2 diabetes (T2D) (3–6). This has
prompted significant therapeutic interest in the agonism
of their respective receptors, GIPR and GLP1R, to enhance
their insulinotropic and extrapancreatic effects (7,8). More-
over, preclinical and clinical data demonstrate that dual
agonism of GIPR and GLP1R delivers superior glycemic
and weight control efficacy compared with selective GLP1R
agonism (9–12). Clinical proof for the superiority of tirze-
patide, a dual GIPR/GLP1R agonist, versus GLP1R agonism
was established in a 6-month dose-range-finding phase 2b
trial in subjects with T2D (11). Post hoc analysis reported
a beneficial effect on cardiovascular risk biomarkers com-
pared with the blinded GLP1R agonist included in the
trial (13,14).

Little direct preclinical experimental evidence exists for
GIPR agonism contributing to cardiovascular disease
(CVD) risk (15,16). GIP exhibits antiatherogenic effects
on vascular endothelial cells (17–20) with the exception
that it has been reported to stimulate expression of osteo-
pontin in the vasculature in an endothelin-1–dependent
manner (21). Additionally, GIP exerts anti-inflammatory
effects on monocytes/macrophages (17,22). These in vitro
findings are reflected by cardioprotective GIP pharmacol-
ogy in mouse models of atherosclerosis irrespective of
their diabetes condition (17,22,23). Further, GIP infusion
or overexpression is protective in mouse models of reste-
nosis and cardiac remodeling (17,24). While germline or
cardiomyocyte-selective knockout of GIPR protected
against ischemic injury, GIP itself was not deleterious
(25). Further, cardiac selective knockout of the GIPR was
not protective in experimental models of heart failure
(25). In contrast with these preclinical experimentalfind-
ings, recent evidence suggests that fasting GIP levels are
associated with increased carotid intimal thickening (26).
In addition, evidence from a recent meta-analysis (27) of
two large population-based cohort studies suggests that
higher fasting but not postchallenge GIP levels were asso-
ciated with increased risk of CVD mortality (hazard ratio
1.30; 95% CI 1.11, 1.52;P 5 0.001). GLP-1 was not asso-
ciated with CVD mortality, consistent with clinical trial
data (28–31) and genetic evidence (32) highlighting the
beneficial effects of GLP1R agonism.

Genetic evidence from two-sample Mendelian randomi-
zation (2SMR) has reinforced suggestions that higher GIP
levels raise CVD risk (27). A missense variant inGIPR,
rs1800437 (E354Q), encoding a substitution of glutamic
acid for glutamine at position 354 of the GIPR protein,
was used as an instrumental variable for fasting GIP levels
(27). The 354Q allele has been reported to reduce GIPR
signaling by increasing receptor desensitization and
downregulation (33). This variant has previously been
associated with higher 2-h glucose (34), BMI (35), and
fasting and 2-h GIP levels (36). In line with a predicted
causal direction from fasting GIP levels to coronary artery
disease (CAD) risk, estimates in the reverse direction
showed no significant effect of CAD on fasting GIP levels

(27). These estimates should be interpreted with caution,
however, as1) they represent the association of a single
variant with CAD risk and do not model the effects of
other variants in the region, which may dampen or modu-
late this effect, and2) they do not take into account that
the association between E354 and CAD may be entirely
synthetic due to linkage disequilibrium (LD) between this
variant and the true CAD causal variant.

Considering the pharmacological interest in modulating
this pathway as a potential T2D therapeutic, increases in
CVD risk would represent a major concern regarding the
safety and continued development of these therapies. We
aimed to quantitatively assess whether the association
between higherGIPR-mediated fasting GIP levels and
CAD risk is mediated viaGIPR or the result of LD
between variants inGIPR and other variants in the
region. Using 2SMR, we aimed to quantify the association
of higher fasting GIP levels with CAD and other metaboli-
cally relevant traits, including�6,000 omics biomarkers,
using E354 as an instrumental variable. Next, using
Bayesian colocalization, we aimed to partition the traits
associated with E354 into distinct clusters driven by
shared independent variants. Finally, using conditional
analysis we aimed to assess whether any of these associa-
tions are confounded by LD between E354 and other var-
iants in the GIPR region.

RESEARCH DESIGN AND METHODS

Study Design
Three sets of genetic analyses were used to investigate
the relationship between higher GIPR-mediated fasting
GIP levels and CVD risk. Firstly, using univariate 2SMR,
we explored the association of higher fasting GIP levels
with CAD and 23 different cardiometabolic diseases, along
with anthropometric, glycemic, and lipid traits and
�6,000 omics biomarkers from both in-house and pub-
licly available data, with E354 as a proxy (Supplementary
Table 1). Next, Bayesian multitrait colocalization was
used to partition the traits associated with E354 into dis-
tinct clusters driven by shared causal variants. Finally,
conditional analyses were used to assess whether any of
the associations with E354 are confounded by LD
between E354 and other variants in theGIPR region,
implying that their associations are mediated via not
GIPR but, rather, other genes in the region.

Study Participants
European Prospective Investigation into Cancer and
Nutrition (EPIC)-Norfolk (37) (Supplementary Table 2) is
a population-based prospective cohort of individuals aged
between 40 and 79 years living in Norfolk (a county of
the U.K.) at the time of recruitment from primary care
outpatient clinics in the city of Norwich and surrounding
areas. EPIC-Norfolk (37) consists of two subcohorts, a
T2D case-cohort and a quasi-random selection of partici-
pants from the larger EPIC (38,39) study. The study was
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approved by the Norfolk Research Ethics Committee (ref-
erence no. 05/Q0101/191), and all participants gave writ-
ten consent before entering the study.

Fenland (40) (Supplementary Table 2) is a popula-
tion-based cohort study of individuals without diabetes
who were born between the years of 1950 and 1975
and recruited through population-based general prac-
tice registers in Cambridge, Ely, and Wisbech (Cam-
bridgeshire County, U.K.). Ethics approval for the study
was given by the Cambridge local ethics committee (ref-
erence no. 04/Q0108/19), and all participants gave
written consent prior to entering the study.

UK Biobank (41) (Supplementary Table 2) is a popula-
tion-based cohort study of individuals recruited from 22
rural and urban recruitment centers in the U.K. European
ancestry participants with available genome-wide geno-
typing and phenotypic data were included in this study.
Ethics approval for the UK Biobank study was given by
the North West - Haydock Research Ethics Committee
(16/NW/0274). This research was conducted using appli-
cation 44448. Participants gave electronic consent for use
of their anonymized data and samples for health-related
research, to be recontacted for further substudies, and for
access to their health-related records.

Genotyping and Imputation
Genome-wide genotyping in the Fenland cohort was per-
formed in three subcohorts with use of the Affymetrix
Genome-Wide Human SNP Array 5.0, the Affymetrix UK
Biobank Axiom Array, or the Illumina CoreExome-24 v1
BeadChip, with imputation to the Haplotype Reference
Consortium v1.1 (42), the 1000 Genomes Project (43),
and the UK10K (44) reference panels. Samples from
EPIC-Norfolk and UK Biobank were genotyped with the
Affymetrix UK Biobank Axiom Array and imputed to the
same reference panels.

Profiling of the Plasma Proteome
Fasting EDTA plasma samples from 12,084 participants
from the Fenland (40) study were subjected to proteomic
profiling by SomaLogic (Boulder, CO) using an aptamer-
based technology (somascan v4). The relative abundances
of 4,775 human proteins were measured using 4,979
SOMAmers (45). For accounting for within-run hybridiza-
tion variability, control probes were used to generate a
scaling factor for each sample. Differences in total signal
between samples as a result of variation in overall protein
concentration or technical variability such as reagent con-
centration, pipetting, or assay timing were accounted for
using the ratio between each SOMAmer measured value
and a reference value. The median of these ratios was
computed for each dilution set (40%, 1%, and 0.005%)
and applied to each dilution set. Samples were removed if
they failed SomaLogic quality control measures or did not
meet the acceptance criteria of between 0.25 and 4.00 for
all scaling factors. A total of 10,078 samples had available

genotype data and were used in this study. Aptamer
target annotations and mapping to UniProt accession
numbers as well as gene identifiers were provided by
SomaLogic.

Plasma Metabolomic Profiling
Within EPIC-Norfolk (described previously) (37), the levels
of up to 1,504 metabolites were measured in three batches
using the Metabolon DiscoveryHD4 platform (46) (Metab-
olon, Durham, NC), in citrate plasma samples collected at
baseline. Measurements were made in�12,000 samples,
in two sets of �6,000 quasi–randomly selected samples,
which were preceded by measurements in an incident T2D
case-cohort (N 5 1,503; 857 in the subcohort).

Briefly, raw data were extracted and peaks were identi-
fied and assessed for quality by Metabolon. Metabolite
identification was done by comparing measures with a
curated library containing the retention time, mass-to-
charge ratio, and chromatographic data of known metabo-
lites. Each metabolite was then quantified with an area
under the curve method and the data were normalized to
correct for instrument tuning variations across run days.
For data normalization for each run day the median value
for each metabolite was set to 1, normalizing each mea-
surement proportionately. Metabolite annotations and
pathway classifications are as reported by Metabolon.

Statistical Analysis

Genome-Wide Association Study of Plasma Proteins and
Pairwise Colocalization of GIP Levels With Cardiometa-
bolic Traits
Genome-wide association study (GWAS) was performed as
described in Supplementary Table 3. Two SOMAmers tar-
geted circulating GIP, namely, 16292-288 and 5755-29.
SOMAmer 16292-288 was selected against amino acids 1–
93 of the precursor protein (UniProt identifier P09681),
whereas 5755-29 targeted amino acids 22–153. SOMAmers
are relative measures of GIP abundance; therefore, to ascer-
tain whether the underlying genetics atGIPR were compara-
ble with previous results (36), we performed pairwise
genetic colocalization analyses between GIP measures and
cardiometabolic traits.

T2D, coronary heart disease, BMI, and 2-h glucose
adjusted for BMI and LDL were included as cardiometa-
bolic traits of interest (Supplementary Table 1). Summary
statistics from a GWAS of 2-h glucose adjusted for BMI in
Fenland (Supplementary Table 3) were preferred over
those from previous efforts (34), due to denser variant
coverage. Using GWAS summary statistics for each trait,
the 1-Mb regions either side of E354 (chromosome 19:
45181392–47181392) were extracted. Insertions and
deletions as well as any variants with a standard error of
0 were removed. Effect estimates were aligned to the
GIP-raising alleles. Pairwise colocalization was conducted
using the COLOC (47) R package. Priors, p1 and p2, the
prior probabilities that a variant is associated with either
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trait, were set to 1� 10�4, and p12, the probability that
a single variant is associated with both traits, was set to
1 � 10�5. T2D and coronary heart disease were treated
as case-control traits and all other traits as quantitative.
Posterior probabilities for colocalization (PPcoloc) were
considered significant if they met the following criteria:
(H4 1 H3 $0.9 and H4 / H3 $3), where H3 is the PP
for two distinct genetic signals and H4 the PP for a
shared genetic signal.

GWAS of Plasma Metabolites
GWAS was performed in two sets, for all metabolites pre-
sent in at least 100 individuals in both sets. Thefirst set
consisted of up to 5,841 individuals from both the subco-
hort of the T2D case cohort and thefirst batch of quasi–
randomly selected samples. The second set consisted of up
to 5,698 individuals from the second batch of quasi–ran-
domly selected samples. GWAS was performed as described
in Supplementary Table 3.

Association Between E354 and Cardiometabolic and
Molecular Traits
This work leveraged regional GWAS summary statistics
from in-house studies and data from published studies in
the 1-Mb regions either side of E354. Details on all included
phenotypes can be found in Supplementary Table 1. GWAS
for phenotypes derived in-house were performed as
described in Supplementary Table 3. Only self-reported
White European participants were included for all outcomes,
except for plasma metabolite measures in EPIC-Norfolk
(37), where all participants were included. However, partici-
pants in EPIC-Norfolk (37) overwhelmingly self-reported as
White European.

We performed univariate 2SMR using the Wald ratio
method (48) to estimate the potential causal effect of fast-
ing GIP levels on various traits (Supplementary Table 1).
Genetically predicted fasting GIP levels were used as the
exposure with E354 as the instrumental variable (Human
Genome Organisation [HUGO] gene: GIPR; National Center
for Biotechnology Information [NCBI] transcript NM_00016
4.4 c.1060G>C; protein change, E354Q; E345 variant is
encoded by the G allele). All summary statistics were aligned
to the fasting GIP raising allele (G) of E354. Bonferroni-cor-
rected significance thresholds were used to ascertain statisti-
cal significance of E354 across all outcomes.

Partial Correlations Between X-12283 and Known
Metabolites
To estimate the metabolite class and putative functional
pathway of X-12283, we estimated partial correlations
between X-12283 levels and the levels of other metabo-
lites measured in 11,966 participants from EPIC-Norfolk.

First, missing metabolite measures were imputed within
each measurement set with use of multivariate imputation
by chained equations (MICE) (49) with the R package mice
v3.6.0. To ensure accurate imputation, we only considered
the 883 metabolites with<50% missingness within both

measurement sets. Imputation was repeated a total of 20
times, generating 20 sets of fully imputed results. Follow-
ing imputation, measures were standardized (mean5 0,
SD5 1). For each imputation, partial correlations between
metabolite pairs were calculated with the R package Gene-
Net v1.2.14. Partial correlation estimates were transformed
with Fisher Z transformation and the R package psych
v1.9.12.31, and then pooled across the 20 imputations for
each measurement set, with use of Rubin’s rules (50). Esti-
mates for the two measurement sets were then meta-ana-
lyzed, using afixed-effects, inverse variance–weighted
method in the R package meta v4.12–0, and finally
back-transformed to correlation estimates.P values were
calculated with the Fisher transformed partial correlations.

Partial correlation estimates with absolute values of
>0.1 were then used to draw a Gaussian graphical model
in Cytoscape v3.2.1. Partial correlations were considered
significant at a Bonferroni significance threshold ofP #
1.28� 10�7, accounting for the 389,403 metabolite pairs
tested.

Multitrait Colocalization Across Cardiometabolic Traits
Multitrait colocalization (HyPrColoc) (51) was used at the
GIPR locus to1) identify cardiometabolic traits that share
a common causal variant and2) partition clusters of car-
diometabolic traits driven by distinct causal variants.
HyPrColoc was run using the default variant-specific prior
configuration; priors 1 and 2 were set at 1� 10�4 and
0.02, respectively; and regional and alignment thresholds
of 0.5 were used (51).

Variants were extracted and excluded from GWAS sum-
mary statistics for 26 cardiometabolic traits of interest as in
the pairwise colocalizations above, and all variants in perfect
LD (R2 5 1) with E354 were removed. The GIP measures
considered were fasting GIP as measured by SOMAmers
16292-288 and 5755-29, as well as fasting and 2-h GIP
measures from the Malm o Diet and Cancer (MDC) subco-
hort of Almgren et al. (36) Both the MDC and Prevalence,
Prediction and Prevention of diabetes (PPP)-Botnia Study
cohorts were genotyped with exome-wide arrays, thereby
limiting the number of variants included in the analysis in
considering variants present across all traits. MDC measures
were preferred to those from either the PPP-Botnia Study
subcohort or the meta-analysis of the two subcohorts due
to denser variant coverage, despite the PPP-Botnia Study
having a larger sample size. The anthropometric traits
adjusted and unadjusted for BMI (where applicable) were
BMI, waist-to-hip ratio (WHR), and hip and waist circumfer-
ences. T2D and CAD were included as disease outcomes.
Glycemic measures included nonfasting glucose, HbA1c,
2-h glucose adjusted for BMI, fasting glucose adjusted
for BMI, and fasting insulin adjusted for BMI. GWAS
summary statistics from Fenland were used for fasting
and 2-h glucose as well as fasting insulin. Finally, lipid
traits included LDL, HDL, total cholesterol, triglycerides,
lipoprotein A, apolipoprotein (apo)A1, and apoB.
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To assess sensitivity in the number and size of clus-
ters identified, increasingly stringent prior and threshold
configurations were used. Prior 2 values of 0.02, 0.01,
and 0.001, and threshold values of 0.5, 0.6, 0.7, 0.8, and
0.9, were considered. T2D and CAD were considered as
binary case-control traits, and all others were considered
quantitative. To estimate the posterior probability (PP)
that the candidate variant is the causal variant (PPcausal),
we multiplied the PPcoloc by the PP explained by the can-
didate variant (PPexplained). Trait clusters were reported at
the recommended (51) thresholds of prior 25 0.02,
regional and alignment thresholds5 0.9.

To account for low variant coverage in the MDC cohort,
we ran a secondary analysis using the same populations,
configuration, and sensitivity assessments as above, while
we excluded the GIP traits measured in MDC.

Finally, heat maps based on similarity matrices esti-
mating how often trait pairs were clustered together
across all algorithm parameter choices were drawn. In
addition, regional association plots were drawn for each
cluster with the gassocplot R package and LD data from
EPIC-Norfolk. All data analysis was performed with R ver-
sion 3.6.3.

Conditional Analysis at the GIPR Locus
To determine whether the association between E354 and
CAD was due to LD between E354 and other CAD lead
variants in the GIPR region, we performed conditional
analysis using GCTA (52) v1.93.1. Using full GWAS sum-
mary statistics for CAD (53) on chromosome 19, we
implemented a stepwise selection to identify independent
variants associated with CAD. Selection was performed
with a threshold ofP < 1 � 10�5, a threshold for collin-
earity between variants of 0.05, and a minor allele fre-
quency threshold of 1%. An LD reference panel from
EPIC-Norfolk was used. The association between E354
and CAD was then conditioned on each independent vari-
ant to estimate whether the association was attenuated,
implying that the association was due to the residual LD
between E354 and an independent variant. This was
repeated for all traits associated with E354. If E354 (or a
proxy variant in complete LD with E354) was identified
as one of the independent variants, conditional analysis
was not performed. Following this, regional association
plots were generated using LocusZoom v1.2. To deter-
mine whether other variants previously found to be asso-
ciated with fasting GIP levels (36) were associated with
CAD, we extracted their estimates from the CAD sum-
mary statistics (53).

Data and Resource Availability
The data sets analyzed during the current study are pub-
licly available, and links are provided in Supplementary
Table 1. EPIC-Norfolk and Fenland data are available
upon reasonable request via the study websites (https://
www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk/ and

https://www.mrc-epid.cam.ac.uk/research/studies/fenland/in
formation-for-researchers/). GIP measures from Almgren
et al. (36) are available from the relevant corresponding
author upon reasonable request. All data from UK Biobank
are available to approved users upon application. No applica-
ble resources were generated or analyzed during the current
study.

RESULTS

Characterization of a Missense Variant E354
(rs1800437) in GIPR
Among the cardiometabolic disease outcomes examined,
higher E354-predicted fasting GIP levels were associated
with lower T2D risk (odds ratio [OR] per copy of E354,
0.97; 95% CI 0.96, 0.99;P 5 3 � 10�4) (Fig. 1A), an
effect that strengthened following BMI adjustment (0.93;
95% CI 0.91, 0.95;P 5 3 � 10�14). In line with this,
lower 2-h glucose levels were observed (2-h glucose in
mmol/L per copy of E354,�0.09; 95% CI�0.11,�0.07;
P 5 2 � 10�15) (Fig. 1B). Additionally, HbA1c levels were
shown to be 0.01 SD units lower per copy of E354. E354
showed a weak positive association with nonfasted glu-
cose levels. As this phenotype captures wide-ranging phys-
iological responses in both the fasted and postprandial
state, deconvoluting this association requires further
investigation. E354 was associated with higher CAD risk
(OR per copy of E354, 1.03; 95% CI 1.02, 1.05;P 5 2 �
10�6) (Fig. 1A) and higher levels of several lipid risk fac-
tors but lower triglyceride levels (Fig. 1B). E354 was not
significantly associated with other CVD subtypes in UK
Biobank (Supplementary Fig. 1).

Each copy of E354 was associated with 0.03 SD higher
BMI (95% CI 0.03, 0.04;P 5 3 � 10�59) (Fig. 1B). Similar
associations were observed between E354 and higher
regional anthropometric measures from bio-impedance
data (Supplementary Fig. 2) as well as hip and waist cir-
cumferences and waist-to-hip ratio. In addition, signifi-
cant associations were found with both higher lean and
fat mass from a large GWAS based on bio-impedance data
(Supplementary Fig. 2).

Of the 19 biomarkers investigated, E354 was signifi-
cantly associated with lower levels of only two, namely,
albumin and creatinine (albuminb in SD units per copy
of E354,�0.01; 95% CI�0.02, �0.01; P 5 6 � 10�6;
creatinine�0.02; 95% CI�0.02,�0.01;P 5 1 � 10�11)
(Fig. 1B).

Next, we estimated the association of E354 with the fast-
ing levels of 4,979 human proteins from the SomaScan v4
assay. Significant associations with the levels of three
proteins were found (Supplementary Fig. 3), one of these
being 0.08 SD higher fasting GIP levels (95% CI 0.05, 0.11;
P 5 4 � 10�6) as measured according to SOMAmer
16292-288. Interestingly, in our analysis we did notfind a
significant association between the other GIP SOMAmer,
5755-29, and E354. Lower levels of secretoglobin family
3A member 1 (SCGB3A1) and glutaminyl-peptide
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cyclotransferase-like protein (QPCTL) were also found to be
associated with E354. In contrast with a previous report
(21), no association between E354 and osteopontin was
found.

Lower levels of an unidentified metabolite, X-12283 (b in
SD units per copy of E354,�0.08; 95% CI�0.12, �0.05;
P 5 2 � 10�5) (Supplementary Fig. 4), analyzed in 8,278
participants, were found to be significantly associated with
E354. A total of 11 metabolites were significantly correlated
with X-12283; of these, 6 had a partial correlation estimate
with X-12283 with absolute values>0.1 (Supplementary

Fig. 5). In addition to significant correlations with unknown
metabolites, X-12283 was most significantly correlated with
indolepropionate (correlation estimate5 0.21; P 5 1 �
10�45) (Supplementary Fig. 5).

Multitrait Colocalization Across Cardiometabolic Traits
at GIPR
A total of 418 genetic variants were included in the
main analysis, which was limited due to the inclusion
of fasting and 2-h GIP measures from MDC (36),
whereas 4,996 were included in the secondary analysis
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452,088
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738,628

451,697
452,256
378,287
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377,025
450,487
348,236
413,834

453,443
5,318

51,750
41,888
414,042
51,750

N
participants

P-value

Glycemic traits
Cardiovascular risk factors and lipids
Anthropometric traits
Biomarkers

Disease endpoints

B

A

Figure 1 —Associations between E354 (rs1800437) and cardiometabolic disease end points, glycemic traits, cardiovascular risk factors
and lipids, anthropometric traits, and biomarkers estimated with 2SMR. A: Associations with cardiometabolic disease end points are
shown in blue and are represented as ORs (95% CI) for each disease per copy of rs1800437. B: Associations with glycemic traits are
shown in orange and cardiovascular and lipid traits in green, and anthropometric traits and biomarkers are shown in yellow and purple,
respectively. Estimates are represented as b (95% CI) for each outcome per copy of rs1800437. All traits are in SD units aside from fasting
and 2-h glucose, which are in mmol/L; fasting insulin, in log (pmol/L); and HbA 1c, in mmol/mol. Fold change insulin represents the fold
change in insulin levels between fasting and 2-h measures. A Bonferroni signi ficance threshold of P# 0.001 was used, accounting for the
number of traits tested. *HbA1c estimates are in SD units per copy of E354. The corresponding clinical units, % (mmol/mol), are as follows:
�2.15% (95% CI �2.15, �2.14) and�0.07 mmol/mol (95% CI �0.07, �0.06). adj., adjustment.
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(Table 1). Using the recommended prior and threshold
configuration, we identified five distinct trait clusters,
three of which were shared by both analyses (Table 1).
Cluster similarity across all prior and threshold

permutations for the two analyses is summarized in
heat maps (Fig. 2). Results for all permutations for
both analyses can be found in Supplementary Tables 4
and 5, respectively.
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Figure 2 —Similarity heat map for each cluster at the GIPR locus across prior and threshold permutations. Traits that were estimated to
colocalize are clustered together. Darker colors represent traits that were estimated to colocalize more often across prior and threshold
permutations (prior 2: 0.02, 0.01, and 0.001; thresholds: 0.5, 0.6, 0.7, 0.8, and 0.9). A: Main analysis. B: Secondary analysis. 2hr, 2-hour;
adj, adjusted for; circumf., circumference; Glucose, nonfasting glucose; HC, hip circumference; WC, waist circumference.
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Of the clusters identified, two distinct clusters were of
interest. Thefirst, driven by rs7412, a missense variant in
the apoE gene (APOE), contained CAD and lipid traits—
many of which are established CVD risk factors. Both
PPcoloc and PPcausal were estimated to be 1 in the two
analyses, demonstrating robust evidence for colocalization
(Table 1 and Supplementary Fig. 6). This robustness is
further emphasized as the same cluster of traits was iden-
tified in using more stringent prior configurations (Fig. 2
and Supplementary Tables 4 and 5). A second cluster of
GIP, anthropometric, and glycemic traits was driven by
rs1800437 (E354) (Table 1 and Supplementary Fig. 7).
The PPcoloc for both analyses showed robust evidence for
colocalization (main analysis, PPcoloc5 0.97, PPexplained5 1,
PPcausal 5 0.97; secondary analysis, PPcoloc 5 0.91,
PPexplained 5 0.68, PPcausal5 0.62). A second cluster
of BMI and waist circumference driven by E354 was
observed in the secondary analysis (Table 1). Sensitivity
analyses showed that this split was an artifact of the
branch and bound clustering algorithm in HyPrColoc and
the single causal variant assumption (Supplementary Fig.
7). Removal of the clustering algorithm showed that BMI
and waist circumference were part of the larger cluster of
GIP, anthropometric, and glycemic traits driven by E354
(PPcoloc5 0.95, PPexplained5 1, PPcausal5 0.95).

Critically, these results replicate ourfindings using
pairwise-trait colocalization at this locus, showing that
fasting GIP levels and CVD risk are driven by independent
variants (R2 between E354 and rs74125 0.004) (Table 1,
Supplementary Figs 6–8, and Fig. 2). Additionally, both
colocalization analyses demonstrate that the underlying
genetics atGIPR are comparable between GIP levels mea-
sured by SOMAmer 16292-288 and the ELISA of previous
analyses (36). Together these results robustly demon-
strate that the GIP-raising and CVD risk–increasing
effects at this locus are distinct (Supplementary Tables 4
and 5).

The traits of a third cluster, including a mixture of gly-
cemic and anthropometric traits and apoA1 levels, were
estimated to colocalize at rs4420638, which was in LD
with rs429358 (R2 5 0.69), a missense variant inAPOE
identified as the candidate variant in the secondary analy-
sis (R2 with E354 5 0.001). In the secondary analysis,

HDL was also included as part of the cluster. As the sec-
ondary analysis included more variants and therefore had
greater genomic context, rs429358 is likely to be the can-
didate variant at which these traits colocalize. The high
PPcoloc demonstrated robust evidence for colocalization
between these traits at rs429358.

Finally, a cluster between T2D and T2D adjusted for
BMI was identified in the main analysis but was not repli-
cated in the secondary analysis (Table 1). Instead, a clus-
ter between triglycerides and hip circumference adjusted
for BMI was identified, driven by an independent variant,
rs5117 (R2 with rs8108269< 0.001) (Table 1). This dis-
crepancy is likely to be a result of the number of variants
present in the main analysis.

Conditional Analysis at the GIPR Locus
Our univariate two-sample MR results showed that E354
was associated with a total of 20 traits at a nominal sig-
nificance threshold (Fig. 1). Independent signal selection
showed that E354 or proxy variants in high LD (R2 >
0.9) with E354 were identified as independent signals for
fasting GIP, 2-h glucose, total cholesterol levels, BMI, and
X-12283 levels. A total of 24 variants were independently
associated with CAD on chromosome 19, four of which
were in the 1-Mb regions either side of E354 at theGIPR
locus (Table 2). Conditioning the association between
E354 and CAD on the residual LD between E354 and
rs7412, the variant estimated to drive the cluster with
CAD, resulted in a slight attenuation of this association
but remained significant (OR per copy of E354 after
adjustment 1.03; 95% CI 1.02, 1.04;P 5 0.003). Of the
independent variants identified, rs1964272, an intronic
variant in small nuclear ribonucleoprotein D2 polypeptide
(SNRPD2), was estimated to be in the strongest LD with
E354 (R2 5 0.27) (Fig. 3 and Supplementary Fig. 9). The
association between E354 and CAD risk was attenuated
when conditioned on rs1964272 (OR per copy of E354
after adjustment 1.01; 95% CI 0.99, 1.03;P 5 0.06)
(Table 3). In line with this, the association between
rs1964272 and CAD risk was attenuated but remained
significant with conditioning on E354 (b per copy of
rs1964272 after adjustment 0.02; 95% CI 0.01, 0.03;P 5
7 � 10�4) (Supplementary Table 6). In addition, the

Table 2—Independent CAD variants identi � ed using approximate conditional analysis

Variant* Chr: pos
Closest

gene EA EAF
Marginal
b (SE)†

Marginal
P†

Conditional
b (SE)‡

Conditional
P‡ N

R2 with
rs1800437

rs429358 19: 45411941 APOE T 0.85 �0.09 (0.008) 2.86� 10�27 �0.08 (0.008) 5.87� 10�23 286,423 0.001

rs7412 19: 45412079 APOE T 0.08 �0.14 (0.011) 1.66� 10�35 �0.12 (0.011) 1.58� 10�28 275,803 0.004

rs11673093 19: 45742094 EXOC3L2 A 0.26 0.04 (0.007) 4.11� 10�11 0.04 (0.007) 3.09� 10�10 300,789 0

rs1964272 19: 46190268 SNRPD2 A 0.48 �0.03 (0.006) 9.65� 10�9 �0.03 (0.006) 1.87� 10�7 299,519 0.27

Chr, chromosome; EA, effect allele; EAF, effect allele frequency; pos, position; N, number of participants; R2, LD estimate. *The
independent CAD variants in the 1-Mb region on either side of E354 are shown. †Log ORs from the original GWAS summary sta-
tistics. ‡Log ORs from the joint model fitted by GCTA.
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Figure 3 —Regional association plots depicting CAD lead variants in the GIPR region. A: The independent CAD lead variants in the GIPR
region are labeled, and their respective associations with CAD are shown before conditional analysis. The region around rs1800437 (E354)
is expanded in the red insert to show the LD and proximity of rs1964272 to rs1800437. B: The associations of variants in the GIPR region
after conditioning on rs1964272. The region around rs1800437 (E354) is expanded in the red insert to show the attenuation of the E354
signal when conditioned on rs1964272.
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association between E354 and small vessel stroke was
also attenuated when conditioned on rs1964272 (Table
3). None of the other loci previously shown to be associ-
ated with fasting GIP levels were found to be associated
with CAD (Supplementary Table 7). Interestingly,
rs1964272 was also associated with levels of QPCTL and
SCGB3A1, indicating confounding by LD for the proteo-
mics data as well (Supplementary Fig. 10). Conditioning
the association between E354 and QPCTL levels on
rs1964272 attenuated the association to nonsignificance
(b QPCTL per copy of E354 after adjustment 0.01; 95%
CI�0.02, 0.04;P 5 0.48) (Table 3).

Conditioning the association of E354 with LDL, apoB,
and triglycerides on independent variants for each trait
showed that these remained statistically significant
despite being attenuated (Table 3), suggesting that E354
may have independent effects on lipid metabolism.

DISCUSSION

In this study, we applied Bayesian multitrait colocalization
and conditional analysis to gain greater understanding of
the underlying genetic architecture of CAD and its relation
to fasting GIP levels at theGIPR locus. Multitrait colocali-
zation robustly identified a cluster of CAD and lipid traits
at APOE that was independent from a cluster of fasting
and 2-h GIP, glycemic and anthropometric traits driven by

E354. Further, conditional analysis robustly attenuated
E354’s association with CAD, small vessel stroke, and
QPCTL levels with adjustment for rs1964272 inSNRPD2,
an established CAD risk locus (53). Together these results
show that association signals for CAD atGIPR are not
mediated by an independent effect ofGIPR variants on
CAD risk but are instead the result of LD confounding
between E354 and rs1964272.

Taken together, thesefindings highlight the specificity
of E354’s effects on fasting GIP levels and robustly demon-
strate that higher E354-mediated fasting GIP levels are not
associated with CVD risk. These results contradict recent
genetic evidence linking higher fasting GIP levels with
increased CVD risk (21,27), which led to concerns that
chronic pharmacological GIPR agonism could have detri-
mental effects on cardiovascular health (27) and represent
safety concerns for pharmacological agonism of this path-
way (54). We therefore provide evidence that the inclusion
of GIPR agonism in dual GIPR/GLP1R agonists could
potentiate the protective effect of GLP-1 agonists on diabe-
tes without undue CVD risk, an aspect not yet assessed in
clinical trials. Many studies have shown that GLP1R ago-
nism achieved through chronic pharmacologic therapy, or
genetic gain of function, is associated with improved car-
diovascular outcomes (28–32). Hence, the available evi-
dence suggests that dual agonism of these receptors may

Table 3—Conditioning each of the traits associated with E354 at nominal signi � cance from the 2SMR analysis on independent
SNPs for each trait

2SMR result Conditional result Independent variant

Trait b (SE) P b (SE) P‡ Conditioned on* LD with rs1800437†

T2D �0.03 (0.007) 7� 10�5 �0.03 (0.008) 4� 10�4 rs3810291 0.001

T2DadjBMI �0.07 (0.009) 2� 10�14 �0.02 (0.009) 0.04 rs2238689 0.363

CAD 0.03 (0.007) 2� 10�6 0.01 (0.007) 0.06 rs1964272 0.269

SVS �0.08 (0.029) 0.009 �0.04 (0.029) 0.12 rs1964272 0.269

Nonfasted plasma glucose 0.02 (0.003) 3 � 10�8 0.01 (0.003) 0.05 rs1964272 0.269

HbA1c �0.01 (0.003) 1� 10�7 �0.0003 (0.003) 0.92 rs9676912 0.356

ApoA1 0.01 (0.003) 3 � 10�6 0.002 (0.003) 0.37 rs2238689 0.363

HDL 0.01 (0.003) 5� 10�7 0.003 (0.003) 0.25 rs2238689 0.363

ApoB 0.02 (0.002) 5 � 10�13 0.01 (0.002) 2� 10�5 rs7412 0.004

LDL 0.02 (0.003) 2� 10�16 0.016 (0.003) 1� 10�8 rs7412 0.004

Triglycerides �0.01 (0.003) 2� 10�5 �0.01 (0.003) 5� 10�5 rs4803936 0.001

CRP �0.01 (0.002) 0.02 �0.004 (0.002) 0.07 rs7412 0.004

Albumin �0.01 (0.003) 6� 10�6 �0.01 (0.003) 0.001 rs35114617 0.061

Creatinine �0.02 (0.002) 1� 10�11 �0.02 (0.002) 3� 10�11 rs7412 0.004

QPCTL �0.07 (0.016) 9� 10�6 0.01 (0.016) 0.48 rs1964272 0.269

Secretoglobin family 3A member 1 �0.08 (0.017) 6� 10�7 �0.04 (0.017) 0.01 rs61703905 0.1

Estimates of 2-h glucose, total cholesterol, and BMI were not included in this table, as the independent signal selection showed
that E354 was one of the independent variants. adj, adjusted for; CRP, C-reactive protein; QPCTL, glutaminyl-peptide cyclotrans-
ferase like; SVS, small vessel stroke. *The independent variant showing the greatest attenuation of the E354 association estimate
with the respective trait. †LD estimates are in R2 and are quoted from five European populations in the LDlink database v4.1.0. ‡A
nominal significance threshold of P # 0.05 was used to ascertain significance for the conditional results.
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exploit the metabolically favorable combined pharmacology
of these incretins without undue CVD risk. However, this
proposition requires formal assessment in clinical trials
such as the recently initiated cardiovascular outcomes trial
SURPASS-CVOT (cardiovascular outcomes trial) of the GIP/
GLP1R dual agonist tirzepatide (clinical trial reg. no.
NCT04255433, ClinicalTrials.gov).

This study has potential limitations. Firstly, our analy-
sis focuses on a single locus associated with both fasting
GIP levels and CAD. This assumes that theGIPR locus is a
suitable proxy for fasting GIP levels within which to parti-
tion the associations of these two complex traits. Consid-
ering that the association at this locus with 2-h glucose is
statistically robust and in line with the established func-
tion of GIP, this is a reasonable assumption. In addition,
no other locus has been reported to be associated with
both fasting GIP and CAD, and examining the association
of other variants associated with fasting GIP levels (36) in
genes other thanGIPR showed no association of any of
these variants with CAD. However, this does not preclude
the existence of other variants that have not yet been
associated with GIP levels and may contribute to CVD
risk. Patients with T2D are the target of GIPR/GLP1R
agonist treatment. We investigate the genetic association
of E354 on CAD using the largest publicly available
genome-wide summary statistics (53). Therefore, analyses
stratified by T2D status are not possible, since such
results were not generated and are, hence, not available.
Indeed, pursuing this in individual studies would vastly
lower sample sizes and therefore be underpowered to
detect whether associations with CAD differ significantly
by T2D status. Specifically, to affect our results and con-
clusions about the E354-CAD association being the result
of confounding by LD, the genetic architecture at GIPR
would have to differ between European-descent individu-
als with and without prevalent T2D, such that the resid-
ual confounding by LD differs by T2D status. As LD is
generally preserved between individuals from the same
ethnic group, this is a very unlikely scenario.
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