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Measurement of glycated hemoglobin (HbA1c) has been the traditional method for
assessing glycemic control. However, it does not reflect intra- and interday glycemic
excursions that may lead to acute events (such as hypoglycemia) or postprandial
hyperglycemia, which have been linked to both microvascular and macrovascular com-
plications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or
intermittently viewed (iCGM), addresses many of the limitations inherent in HbA1c

testing and self-monitoring of blood glucose. Although both provide the means to move
beyond the HbA1c measurement as the sole marker of glycemic control, standardized
metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching
people with diabetes to the most appropriate glucose monitoring methodologies, as
well as standardized advice about how best to use the new information they provide,
have yet to be established. In February 2017, the Advanced Technologies & Treat-
ments for Diabetes (ATTD) Congress convened an international panel of physicians,
researchers, and individuals with diabetes who are expert in CGM technologies to
address these issues. This article summarizes the ATTD consensus recommendations
and represents the current understanding of how CGM results can affect outcomes.

Glucose measurements are critical to effective diabetes management. Although mea-
surement of glycated hemoglobin (HbA1c) has been the traditional method for assess-
ing glycemic control, it does not reflect intra- and interday glycemic excursions that
may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which
have been linked to both microvascular and macrovascular complications. Moreover,
although self-monitoring of blood glucose (SMBG) has been shown to improve glyce-
mic control and quality of life in both insulin-treated and noninsulin-treated diabetes
when used within a structured testing regimen (1–4) [C,C,C,C], it cannot predict im-
pending hypoglycemia or alert for hypoglycemia (5,6) [C,C] (7).

Real-time continuous glucose monitoring (rtCGM) and intermittently viewed CGM
(iCGM) address many of the limitations inherent in HbA1c testing and SMBG. rtCGM
uniformly tracks the glucose concentrations in the body’s interstitial fluid, providing
near real-time glucose data; iCGM uses similar methodology to show continuous
glucose measurements retrospectively at the time of checking. Both rtCGM and
iCGM facilitate monitoring of time spent in the target glucose range (“time in range”).
However, only rtCGM can warn users if glucose is trending toward hypoglycemia or
hyperglycemia. With iCGM, these trends can only be viewed after physically scanning
the sensor. It is often difficult to distinguish between technologies regarding issues
such as calibrations, alarms/alerts, human factors of applying and wearing sensors, and
the cost, which are device specific. As these technological details are subject to con-
stant change, the term CGM is used for all issues related to the device class unless
indicated otherwise.

In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD)
Congress convened an international panel of physicians, researchers, and individuals
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with diabetes who are expert in CGM to
address these issues. The purpose of the
conference was to provide guidance for
clinicians, patients, and researchers in uti-
lizing, interpreting, and reporting CGM
data in clinical care and research. The panel
was divided into subgroups to review the
literature and provide evidence-based rec-
ommendations for relevant aspects of
CGM utilization and reporting. Primary ci-
tations were identified for each topic,
assigned a level of evidence (7) (indicated
next to the corresponding citation in the
text), and verified by the expert panel.

This article summarizes the ATTD con-
sensus recommendations and represents
the current state of knowledge on CGM
results affecting outcomes. The content
represents the consensus of the panel
members’ comprehensive evaluation of
the issues. Supporting evidence is included
in the online Supplementary Data identi-
fied at the end of each section.

1. LIMITATIONS OF HbA1C

Key Findings
c The Diabetes Control and Complications

Trial (DCCT), followed by the Epidemi-
ology of Diabetes Interventions and
Complications (EDIC), demonstrated
how elevated HbA1c contributes to
complications in type 1 diabetes. The
UK Prospective Diabetes Study (UKPDS)
confirmed the importance of glycemic
control as well as other components of
metabolic control, namely blood pres-
sure, on health outcomes in individuals
with type 2 diabetes (8,9) [A,A].

c Most global organizations recommend
target HbA1c levels of ,7.0% (53
mmol/mol) for adults and ,7.5%
(58 mmol/mol) for children, although
several organizations suggest an HbA1c

target of #6.5% for adults (10) [E] and
children (11) [E]. However, all organi-
zations agree that HbA1c targets should
be individualized to each patient.

c Although HbA1c remains the reference
marker for assessing glycemic control
and predicting the risk of development
of long-term complications, it has sev-
eral limitations: HbA1c 1) provides only
an average of glucose levels over the
previous past 2–3 months; 2) does not
detect hypoglycemia or hyperglycemia
on a daily basis; 3) is an unreliable mea-
sure in patients with anemia (12) [B],
hemoglobinopathies (13) [B], or iron
deficiency (14) [B] and during preg-
nancy (15) [B]; 4) does not reflect rapid
changes in daily glucose control; and
5) does not provide data as to how to
adjust the treatment regimen when
HbA1c levels are elevated. In summary,
although HbA1c has proved extremely
valuable in patient management, is a
valuable measure of population health,
and remains a validated indicator of gly-
cation as a risk factor for complications,
it is not as helpful for personalized di-
abetes management.

c The literature suggests that ethnic and
racial differences exist in glycation
rates (16–18) [B,C,C], which affects
the accuracy of HbA1c measurements;
however, a racial difference was not
found in the relationship between
mean glucose and fructosamine or gly-
cated albumin levels. This suggests that
the racial discordance in glycation rates
is specific to red blood cells. The effects
of ethnic differences on average HbA1c

cannot be entirely explained by mea-
sured differences in glycemia, differ-
ences in sociodemographic or clinical

factors, or differences in access to
care or quality of care (19) [E].

c An estimated HbA1c (eA1C) can be cal-
culated if adequate rtCGM/iCGM data
(70% or 10 days of the 14 days of
CGM data) are available. The eA1C
and laboratory-measured HbA1c may
differ to some degree for a given indi-
vidual because there are many factors
that affect an HbA1c reading and tables
that convert HbA1c to a mean glucose
and vice versa are based on mean val-
ues for a population. Knowing how an
individual’s CGM-derived eA1C com-
pares to their laboratory-measured
HbA1c may be helpful for safe and ef-
fective clinical management (20) [E].

Recommendations
c HbA1c should be measured with a

device that is certified by the NGSP
(National Glycohemoglobin Standardi-
zation Program, www.ngsp.org) or the
IFCC (International Federation of Clini-
cal Chemistry and Laboratory Medi-
cine, www.ifcchba1c.net).

c Clinicians and patients should target an
HbA1c as close to normal as possible
without severe hypoglycemia or a signif-
icantamountofnonseverehypoglycemia
while at the same time individualizing
glycemic targets according to patient
age, duration of diabetes, comorbidities,
and expected life expectancy, with “less-
strict” HbA1c targets for those more
frail (21) [A].

c When there is a discrepancy between
actual HbA1c and the eA1C based on
mean glucose, other glucose measure-
ment methods such as fructosamine,
glycated albumin, SMBG, and in par-
ticular CGM should be used in con-
junction with HbA1c measurements
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when assessing glycemic control and
adjusting therapy.

c CGM data should be used to assess
hypoglycemia and glucose variability.

Additional discussion of these recom-
mendations and supporting evidence
is presented in Appendix 1 of the Supple-
mentary Data.

2. USE OF GLUCOSE MONITORING
METHODOLOGIES (SMBG AND CGM)
TO GUIDE MANAGEMENT AND
ASSESS OUTCOMES IN DIFFERENT
PATIENT POPULATIONS

Key Findings
c SMBG has been shown to be helpful or

to correlate with effective management
in insulin-treated and noninsulin-treated
diabetes (1–4,22,23) [C,C,C,C,A,C];
however, SMBG has notable limita-
tions. First, it requires a fingerstick
to obtain a blood sample. Moreover,
it only provides a single “point-in-time”

measurement, which provides no in-
dication of the direction or rate of
change of glucose levels. Thus, using
SMBG data alone may result in inap-
propriate therapy decisions (such as
administering correction insulin when
blood glucose levels are falling). Sec-
ond, obtaining glucose data via SMBG
is dependent upon the patient’s deci-
sion to self-monitor. Accordingly, SMBG
often fails to detect nocturnal and
asymptomatic hypoglycemia (5,6) [C,C].

c iCGM provides the current glucose
value plus retrospective glucose data
for a specified time period upon “scan-
ning.” At the time of this writing, only
one iCGM system, also known as
“flash” monitoring, was available. This
system utilizes two components: a glu-
cose sensor, which is inserted the
user’s upper arm, and a separate touch
screen reader device. When the reader
device is swiped close to the sensor,
the sensor transmits both an instanta-
neous glucose level and an 8-h trend
graph to the reader. The only currently
available iCGM device is factory cali-
brated, lasts up to 14 days, and does
not need to be calibrated by the user.
However, iCGM lacks alarms for low and
high glucose values, and, as with SMBG,
measurements are only visualized when
the user of the device chooses to make
a measurement. Two studies using
iCGM have demonstrated significant
improvements in hypoglycemia, time

in range, glycemic variability, and user
satisfaction (24,25) [B,B]. The flash de-
vice is also available without the need
for scanning in a blinded mode for clin-
ical research or retrospective glucose
pattern evaluation.

c rtCGM in unblinded mode provides
real-time numerical and graphical in-
formation about the current glucose
level, glucose trends, and the direction/
rate of change of glucose. Devices with
programmable alerts/alarms that warn
users of current and/or impending high
or low glucose offer additional safety
advantages. In Europe, a new type of
implantable rtCGM system is available
as an alternative for transcutaneous
CGM (26) [C].

c Numerous studies have shown that
use of rtCGM improves glycemic con-
trol and quality of life in both children
and adults with type 1 diabetes treated
with either continuous subcutaneous
insulin infusion or multiple daily insulin
injection therapy, improving HbA1c,
shortening the time spent in hypogly-
cemia and hyperglycemia, and reduc-
ing moderate-to-severe hypoglycemia
(27–38) [C,C,B,B,C,C,A,C,B,C,B]. The
benefit of rtCGM was seen primarily in
those patients who regularly used their
devices (27,29,36) [C,B,B]. In a lifetime
analysis, rtCGM reduced overall diabetes-
relatedcomplications (39) [B]. Similar re-
sults of the cost-effectiveness of rtCGM
versus SMBG were reported using a
larger, population-based model (40).

c Using data collected from a meta-
analysis of patient-level data (36)
[B], sensor-augmented pump therapy
was determined to be cost-effective
for the treatment of type 1 diabetes in
the Swedish health care system (41) [C].
Sensitivity analyses indicated further
cost-effectiveness benefit of increas-
ing the amount of rtCGM use from
5 to 7 days a week, and decreasing
the use of SMBG was incrementally cost-
effective at every level.

c Subsequent studies have determined
that sensor-augmented pump systems
with a low-glucose suspend feature are
also cost-effective relative to insulin
pump therapy alone, in the Australian
(42) [C], U.K. (43) [C], and French (44)
[C] health care systems, due to im-
proved glycemic control and reduction
in hypoglycemia.

c Benefits of rtCGM use have also been
reported in individuals with type 2

diabetes who are managed with or
without intensive insulin treatment
(45–47) [B,C,C]. There are limited
data regarding the benefit of rtCGM
as an outcome measure for individuals
with gestational diabetes mellitus and
type 2 diabetes, especially for those
who do not use insulin (48) [C].

c The benefit of rtCGM is directly corre-
lated to persistence and frequency of
use. A meta-analysis by Pickup et al.
(36) [B] found that every 1-day in-
crease of sensor usage per week in-
creased the effect of CGM; the effect
on HbA1c is more pronounced the
higher the initial HbA1c.

Recommendations
c CGM should be considered in conjunc-

tion with HbA1c for glycemic status as-
sessment and therapy adjustment in all
patients with type 1 diabetes and pa-
tients with type 2 diabetes treated
with intensive insulin therapy who
are not achieving glucose targets, espe-
cially if the patient is experiencing
problematic hypoglycemia.

c Structured testing regimens should be
defined for patients when SMBG is
prescribed.

c All patients should receive training in
how to interpret and respond to their
glucose data regardless of the monitor-
ing method used. Patient education and
training for CGM should utilize standard-
ized programs with follow-up to improve
adherence and facilitate appropriate use
of data and diabetes therapies.

Additional discussion of these recom-
mendations and supporting evidence is
presented in Appendix 2 of the Supple-
mentary Data.

3. MINIMUM REQUIREMENTS FOR
CGM PERFORMANCE

Key Findings
c No internationally accepted standard

exists for CGM system performance
comparable with the International
Organization for Standardization (ISO)
15197 standard for SMBG, which spec-
ifies design verification procedures and
the validation of performance by the
intended users. However, ISO/IEEE
FDIS 11073-10425 provides a norma-
tive definition of the communication
between CGM devices and managers
(suchas cell phones, personal computers,
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personal health appliances, and set-top
boxes) in a manner that enables plug-
and-play interoperability.

c In contrast to iCGM, the accuracy of
current rtCGM systems is dependent
on SMBG testing for calibration. There-
fore, it is important to have an accurate
glucose meter. Successful calibration
also requires several conditions; for ex-
ample, it is bestperformedwhenglucose
is not changing rapidly. Importantly,
users must be educated in the appropri-
ate techniques.

c The mean absolute relative difference
(MARD) is currently the most common
metric used to assess the performance
of CGM systems. MARD is the average
of the absolute error between all CGM
values and matched reference values.
A small percentage indicates that the
CGM readings are close to the refer-
ence glucose value, whereas a larger
MARD percentage indicates greater
discrepancies between the CGM and
reference glucose values.

c Comparing MARD values from differ-
ent clinical studies has several limita-
tions, and thus head-to-head studies
shouldbeperformed.Additionalmetrics,
such as precision absolute relative differ-
ence, can be used as well to obtain an
additional evaluation of the CGM perfor-
mance (49) [C].

c Although controversy exists regarding
the exact cut point for accuracy, in silico
testing has shown that a further lower-
ing of MARD #10% from reference
values has little additional benefit for
insulin dosing (50) [C].

Recommendation
c Only CGM systems that provide an ac-

ceptable level of sensor accuracy should
be used.

Additional discussion of this recom-
mendation and supporting evidence is
presented is presented in Appendix 3 of
the Supplementary Data.

4. DEFINITION AND ASSESSMENT
OF HYPOGLYCEMIA IN CLINICAL
STUDIES

Key Findings
c Hypoglycemia remains a major barrier

for glycemic control and a common
complication of diabetes treatment,
especially in type 1 diabetes (51) [E].

c In adults with type 1 diabetes, severe hy-
poglycemia is more related to duration of

diabetes and socioeconomic status than
HbA1c (35) [C]. Similarly, in childrenaged
6–17 years old with type 1 diabetes
(52) [C] or adults with type 2 diabetes
(mostly receiving insulin or sulfonyl-
ureas [53] [B]), severe hypoglycemia
was most common among those with
the lowest and highest HbA1c levels.

c Needing assistance is the usual concise
definition for severe hypoglycemia.
Most children require assistance with
all hypoglycemia, not just severe hypo-
glycemia (54) [C]. Therefore, severe hy-
poglycemia in children is often defined
as an event associated with a seizure or
loss of consciousness or requiring
emergency medical personnel, a visit
to the emergency department, or a
hospital admission. In adults, the defi-
nition of severe hypoglycemia often in-
cludes episodes associated with coma
or seizure, for which the patient, per-
haps being on their own, recovered
spontaneously.

c The degree of hypoglycemia that
causes clinical symptoms and counter-
regulatory response is specific to the
individual and depends on the personal
level of glycemic control (54) [C].

c Studies indicate that hypoglycemia for
two or more hours impairs hormonal
responses (55,56) [C,B].

c Gradation of hypoglycemic events may
be valuable: specifically, that of a pro-
longed hypoglycemic event, in which
the CGM levels indicate glucose
levels ,54 mg/dL (3.0 mmol/L) for
$120 min. While this metric is some-
what arbitrary, a study by Öz et al. (57)
[B] found that the glycogen signal de-
creases with a rate of ;10% per hour
in the human brain at blood glucose
levels of ,54 mg/dL (3.0 mmol/L),
indicating a mobilization rate commen-
suratewith the severity of hypoglycemia.

c The low blood glucose index (LBGI)
is a metric specifically designed to
calculate the risk for hypoglycemia
as reflected by SMBG data (58) [B].
However, LBGI calculations based on
CGM data tend to slightly underesti-
mate risk, particularly in the low-risk
range (59) [C].

Recommendations
c The definition of hypoglycemia should

take into consideration several param-
eters: the compartment of measure-
ment (arterial, venous, and capillary
blood or interstitial), the nadir level of

blood glucose measured, and the dura-
tion of the event and related symptoms.

c When assessing hypoglycemia using
CGM,theaccuracyof thedata inthe lower
glycemic range should be considered.

c The following classifications of hypo-
glycemia, based on clinical evaluation,
should be used in categorizing levels of
hypoglycemia.
○ Level 1: a hypoglycemia alert glucose

value of ,70–54 mg/dL (3.9–3.0
mmol/L) with or without symptoms.
This should be considered an alert
that the individual may be at risk
for developing hypoglycemia and
should work to minimize the time
spent in this range to reduce the
risk of developing more clinically sig-
nificant hypoglycemia. This need
not be reported routinely in clinical
studies, although that would de-
pend on the purpose of the study.
Nevertheless, most clinicians want
to know how often patients are
,70–54 mg/dL (3.9–3.0 mmol/L)
and would act to reduce the time
spent in this range to minimize the
risk of more clinically significant hy-
poglycemia occurring.

○ Level 2: a glucose level of ,54 mg/dL
(3.0 mmol/L) with our without
symptoms. This should be consid-
ered clinically significant hypoglyce-
mia requiring immediate attention.

○ Level 3: severe hypoglycemia. This
denotes cognitive impairment re-
quiring external assistance for recov-
ery (7) [E] but is not defined by a
specific glucose value.

c For clinical study CGM outcomes re-
ports, hypoglycemia values ,54 mg/dL
(3.0 mmol/L) should be given more
weight or importance than those
,70–54 mg/dL (3.9–3.0 mmol/L).

c When assessing hypoglycemia in clini-
cal care, other important consequences
or adverse patient-reported outcomes
should be considered.
○ Reduced awareness of subsequent

hypoglycemia.
○ Associated cardiac arrhythmia, con-

fusion, or abnormal or combative
behavior.

○ Weight gain.
○ Fear of hypoglycemia.

c Hypoglycemia should be quantified in
the following ways.
○ As the percentage of CGM values that

are below a given threshold (,70
mg/dL [3.9 mmol/L] or ,54 mg/dL
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[3.0 mmol/L]) or the number of
minutes or hours below these
thresholds.

○ As the number of hypoglycemic
events that occur over the given
CGM reporting period.

c A hypoglycemic event should be de-
fined as follows.
○ Beginning of a CGM event: readings

below the threshold for at least
15 min is considered an event. For
example, at least 15 min ,54 mg/dL
(3.0 mmol/L) to define a clinically
significant (level 2) hypoglycemic
event.

○ End of a CGM event: readings for 15
min at $70 mg/dL (3.9 mmol/L).

○ A second hypoglycemic event out-
come of prolonged hypoglycemia is
considered when CGM levels are
,54 mg/dL (3.0 mmol/L) for con-
secutive 120 min or more.

c LBGI should be reviewed when assess-
ing hypoglycemia risk.

Additional discussion of these recom-
mendations and supporting evidence is
presented in Appendix 4 of the Supple-
mentary Data.

5. ASSESSMENT OF GLYCEMIC
VARIABILITY

Key Findings
c Numerous studies have focused on

glycemic variability as an indepen-
dent risk factor for diabetes compli-
cations, particularly cardiovascular
disease (60–63) [C,E,C,C], and on the
effects of glycemic variability on cogni-
tive function and quality of life (64) [C].

c Acceptance of glycemic variability as a
clinically valuable marker of glycemic
control has greatly expanded the un-
derstanding of glycemic control be-
yond HbA1c alone (65–68) [E,E,E,E].

c The interpretation of average blood
glucose is relatively straightforward,
providing a direct relationship to
HbA1c. However, because glycemic
variability is a reflection of a dynamic
process, understanding and measuring
it is more complex (69,70) [E,C]. Be-
yond the setting of laboratory experi-
ments, the data sources available for
routine estimation of glycemic variabil-
ity include episodic SMBG records and
CGM traces (71) [B]. The density of the
available data determines what prop-
erties of glycemic variability can be in-
vestigated.

c Glycemic variability is a process charac-
terized by the amplitude, frequency,
and duration of the fluctuation.

c Both the amplitude and the timing of
blood glucose fluctuations contribute
to the risks for hypoglycemia and hy-
perglycemia associated with diabetes
(72) [C]. Increased glucose variability
is consistently associated with mortal-
ity in the intensive care unit (73,74)
[C,B] and is a consistent predictor of
hypoglycemia, both in prospective
studies and within the setting of ran-
domized clinical trials (64,75) [C,B].

c When quantifying glucose variability
from CGM data, the following physio-
logical and statistical factors should be
considered.
○ In healthy individuals, the metabolic

systemhasaphysiological equilibrium
range (e.g., fasting blood glucose) to
which it returns if left undisturbed;
with the progression of diabetes,
this equilibrium range moves up.

○ This physiological equilibrium range
is relatively universal (hence the di-
agnostic criteria for prediabetes
and diabetes). Therefore, the objec-
tive of diabetes control is to keep
blood glucose levels in the vicinity
of a commonly accepted range (not
the mean for a person, which is
individual).

○ Deviations from the range in both
directions carry risks. These risks
increase with the amplitude of the
deviations, nonlinearly and asym-
metrically, into the hypoglycemic
and hyperglycemic ranges.

○ The timing of the deviations is of
essence as it reflects system (per-
son) dynamics and system stability.
However, most of the traditional
glycemic variability metrics ignore
the time axis of CGM data.

○ Mathematical methods (e.g., risk
analysis, time series) are well devel-
oped and can be adapted to diabe-
tes, keeping in mind the objectives
of diabetes control.

c CGM data reflect the dynamics of glu-
cose fluctuations by including all of
these dimensions. A recent analysis of
CGM data in comparison with blood
glucose data obtained in a large study
with patients with type 1 diabetes
showed how glycemic variability indi-
ces are related and demonstrated the
impact of CGM use on glycemic vari-
ability (76) [C].

c SD, coefficient of variation (CV), and
mean amplitude of glucose excur-
sions are widely used to quantify gly-
cemic variability. The CV (which is the
SD divided by the mean) has the
advantage of being a metric relative
to the mean, which makes it more
descriptive of hypoglycemic excur-
sions than the SD alone. For example,
a population with a mean glucose of
150 mg/dL and an SD of 60 would
have a CV of 40%.

c Stable glucose levels are defined as a
CV ,36%, and unstable glucose levels
are defined as CV $36% (77) [E].

Recommendations
c Glycemic variability evaluated from

CGM data should be considered
among other factors of the overall clin-
ical representation of glycemic control.

c CV should be considered the primary
measure of variability; however, many
clinicians may want to see SD reported
as a key secondary glycemic variability
measure since it is a metric with which
they are familiar.

c The recommended metrics for glyce-
mic variability should be included in
summary statistics for data down-
loaded from CGM devices into reports.

Additional discussion of these recom-
mendations and supporting evidence is
presented in Appendix 5 of the Supple-
mentary Data.

6. TIME IN “RANGES”

c Time in range (TIR) generally refers to
the time spent in an individual’s target
glucose range (usually 70–180 mg/dL
[3.9–10 mmol/L] but occasionally 70–

140 mg/dL [3.9–7.8 mmol/L]). TIR mea-
surements add valuable information to
assess the level of current glycemic
control in addition to what is known
from the HbA1c. However, clinicians,
researchers, and regulators now
know that time in target range alone
is not an adequate description of over-
all glycemic control. It is also necessary
to quantitate the times below and
above target range, using a few sever-
ity thresholds for each level (78) [E].
Thus, time in “ranges” (TIRs) provides
a more illustrative metric for clinical
and research purposes.

c TIRs are useful for a research compar-
ison of interventions and can help pa-
tients understand whether the amount
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of clinically significant hypoglycemia or
hyperglycemia they are experiencing is
improving over time. Breaking out the
time in hypoglycemia and hyperglyce-
mia into level 1 (monitor and take ac-
tion if needed) and level 2 (immediate
action required due to the more poten-
tially clinically significant nature of the
glucose levels) can guide the urgency
and degree of clinical response.

Composite Measures
c Because the function of CGM use is to

monitor glucose levels with the ulti-
mate goal of improving glycemic con-
trol, it makes clinical sense to combine
TIRs data with other measures.
○ HbA1c level and time in level 2 (clin-

ically significant/immediate action
required) hypoglycemia is one such
combined measure.

○ Time in target range combined with
time in level 2 hypoglycemia is

another such combined measure.
This combined set of measures
could be set up as a coprimary out-
come for a clinical trial asking
whether one therapy is more ef-
fective than another in achieving
an increased time in target range
(70–180 mg/dL) while also being
noninferior for the level 2 hypogly-
cemia achieved. One then needs to
further define the parameters of
judging noninferior status. These
examples make clinical sense, since
one wants to improve glucose
control (HbA1c or TIR) while also re-
ducing or at least not increasing hy-
poglycemia.

○ Even broader combined measures
of diabetes management such as
targets for desired diabetes man-
agement are being explored (e.g.,
HbA1c 1 hypoglycemia 1 weight

gain or HbA1c 1 blood pressure 1
LDL or HbA1c 1 blood pressure 1
LDL 1 aspirin use if high-risk cardio-
vascular disease 1 no tobacco use).
These composites emphasize the
importance of taking a multifacto-
rial approach to reducing diabetes
complications, particularly cardio-
vascular disease.

Recommendations
c Percentages of time in ranges (target,

hypoglycemia, andhyperglycemia) should
be assessed and reported.

c Different TIRs in conjunction with a
measure of glycemic variability should
be reported as key diabetes control
metrics in clinical studies.

Additional discussion of these recom-
mendations and supporting evidence is
presented in Appendix 6 of the Supple-
mentary Data.

Table 1—Key metrics for CGM data analysis and reporting

CGM metric Measures ATTD consensus

1 Mean glucose ! (calculated)
Severe hypoglycemia* Clinical diagnosis: event requiring assistance (level 3)
Percentage of time in hypoglycemic ranges, mg/dL (mmol/L)

2 Clinically significant/very low/immediate action required ,54 (,3.0) (level 2)

3 Alert/low/monitor ,70–54 (,3.9–3.0) (level 1)
Percentage of time in target range, mg/dL (mmol/L)

4 Default 70–180 (3.9–10.0)
Secondary 70–140 (3.9–7.8)

Percentage of time in hyperglycemic ranges, mg/dL (mmol/L)

5 Alert/elevated/monitor .180 (.10) (level 1)

6 Clinically significant/very elevated/immediate action
required

.250 (.13.9) (level 2)

Diabetic ketoacidosis* Clinical diagnosis: ketones, acidosis, and usually hyperglycemia
(level 3)

Glycemic variability

7 Primary glycemic variability CV
Stable CV ,36%,
Unstable CV $36%

Secondary glycemic variability SD

8 eA1C ! (calculated)

9 Three time blocks: sleep, wake, 24 h 12:00 A.M.–6:00 A.M., 6:00 A.M.–12:00 A.M., 12 A.M.–12:00 A.M.

Recommended data sufficiency

10 Collection period (minimum no. of weeks) 2

11 Percentage of expected CGM readings (minimum
percentage)

70–80 (10 of 14 days)

12 Episodesofhypoglycemia/hyperglycemia (minimumno.of
minutes) (with beginning and end of episode
defined)

15 min

13 Area under the curve ! (calculated)

14 Risk of hypoglycemia and hyperglycemia LBGI/HBGI recommended

15 Standardized CGM visualization of data AGP recommended

*Severe hypoglycemia (level 3) and diabetic ketoacidosis (level 3) are not key CGM metrics per se. However, these conditions are included in the table
because they are important clinical categories that must be assessed and documented.

1636 Consensus Report Diabetes Care Volume 40, December 2017

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/40/12/1631/526107/dc171600.pdf by guest on 07 August 2022



7. VISUALIZATION, ANALYSIS, AND
DOCUMENTATION OF KEY CGM
METRICS

Key Findings
c Standardizing glucose reporting and

analysis similar to electrocardiogram
output is vital to optimizing clinical
decision-making in diabetes. Further
optimizing of such tools and expanding
them into shared decision-making
guides is needed.

c Reporting CGM data in a standardized
way, in conjunction with an HbA1c value
and other clinical conditions (e.g., se-
vere hypoglycemia, diabetic ketoacido-
sis) would foster a precise definition of
this composite goal. Using a standard-
ized composite goal, the medical com-
munity could establish with more
confidence whether a particular insulin
formulation, new technology for insu-
lin delivery, or an innovative patient-
centered approach to care was an
important factor in helping individuals
with diabetes reach optimal glycemic
control.

c Standardized tools such as the Ambula-
tory Glucose Profile (AGP [79]), Pattern
Snapshot (Medtronic) (80), Clarity
(Dexcom) (81), and others from various
device makers and data management
companies are now available. Use of
the AGP approach was previously en-
dorsed by an expert panel of clinicians
in a consensus conference held in
2012 (82) [E] and is recommended by
this consensus group as a standard for
visualization of CGM data.

c Integration of standardized metrics
into electronic health records is impor-
tant to maximize the clinical workflow
and facilitate remote communications
with patients.

c Patient responses to the current glu-
cose level, trend arrows indicating
rate of change of glucose, and qualita-
tive analysis of a graphical display of
glucose versus time do not require
stability of patterns. However, retro-
spective analysis of CGM is dependent
on stability of patterns from day to day
(83) [B].

c A minimum of 14 consecutive days
of data with approximately 70% of
possible CGM readings over those
14 days appears to generate a report
that enables optimal analysis and
decision-making; standard reporting
and visualization of CGM data are
important.

Recommendations
c Fourteen key metrics should be uti-

lized to assess glycemic control and
documented.

1. Mean glucose.
2. Percentage of time in level 2 hypoglyce-

mic range (,54 mg/dL [3.0 mmol/L]).
Urgency for action: clinically significant/
very low/immediate action required.

3. Percentage of time in level 1 hypogly-
cemic range (,70–54 mg/dL [3.9–

3.0 mmol/L]). Urgency for action: alert/
low/monitor.

4. Percentage of time in target range: 70–

180 mg/dL (3.9–10.0 mmol/L) (de-
fault); 70–140 mg/dL (3.9–7.8 mmol/L)
(secondary); individual targets closer to
the physiological range can be defined,
depending on age, comorbidities, and/
or patient adherence.

5. Percentage of time in level 1 hyper-
glycemic range (.180 mg/dL [10.0
mmol/L]). Urgency for action: alert/
elevated/monitor.

6. Percentage of time in level 2 hyperglyce-
mic range (.250 mg/dL [13.9 mmol/L]).
Urgency for action: clinically significant/
very elevated/immediate action.

7. Glycemic variability, reported as CV
(primary) and SD (secondary).

8. eA1C.
9. Data for glucose metrics (1–6,8) [C,C,C,

C,C,C,A] reported in three time blocks
(sleep, wake, 24 h) with the default times
for the sleep (12:00 A.M.–6:00 A.M.) and
wake (6:00 A.M.–12:00 A.M.) often writ-
ten as midnight to 6:00 A.M. and 6:00
A.M. to midnight, respectively.

10. Data sufficiency: minimum 2 weeks
of data.

11. Data sufficiency: 70–80% of possible
CGM readings over a 2-week period.

12. Episodes of hypoglycemia and hyper-
glycemia, using a standard definition of
episodes.

13. Area under the curve (recommended
for research purposes). This can be cal-
culated from CGM analysis software
and is recommended for research pur-
poses, as it is a measure that integrates
to some extent the severity of a high or
low glucose along with the duration of
the abnormality.

14. Risk of hypoglycemia and hyperglyce-
mia (LBGI and high blood glucose index
[HBGI] recommended).

Figure 1—The electronic AGP report visualizes the key CGM metrics: 1) mean glucose, 2) hypogly-
cemia: clinically significant/very low/immediate action required, 3) hypoglycemia: alert/low/
monitor, 4) target range, 5) hyperglycemia: alert/elevated/monitor, 6) hyperglycemia: clinically
significant/very elevated/immediate action required, 7) glycemic variability, 8) eA1C, 9) time blocks,
10) collection period, 11) percentage of expected readings, 12) hypoglycemia/hyperglycemia epi-
sodes, 13) area under the curve, 14) hypoglycemia/hyperglycemia risk, and 15) standardized rtCGM/
iCGM visualization. AUC, area under the curve; Avg; average; IQR, interquartile range; MAGE, mean
amplitude of glucose excursions; MODD, mean of daily differences.
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c Standardized software for visualization
and reporting of the 14 key CGM metrics
should be considered an additional com-
ponent (no. 15)of analysis anddocumen-
tation (use of the AGP is recommended).

c Although severe hypoglycemia (level
3 hypoglycemia) and diabetic ketoa-
cidosis (level 3 hyperglycemia) are
not CGM data–based determina-
tions, they should be reported and
documented.

c For research purposes, median and
interquartile range should be pre-
sented for all measurements.

c Conduct further studies in a variety
of patient groups (including the pe-
diatric population, pregnant individu-
als, those with renal insufficiency,
and the elderly) to determine accept-
able and achievable time in range and
the accompanying acceptable rates
of hypoglycemia.

The key metrics for CGM analysis and
reporting are presented in Table 1. Figure 1
illustrates how these metrics are pre-
sented in the AGP.

CONCLUSIONS

CGM is a robust research tool, and con-
tinuous glucose data should be recog-
nized by governing bodies as a valuable
and meaningful end point to be used in
clinical trials of new drugs and devices for
diabetes treatment. The identification of
hypoglycemia is as important as the mea-
surement of time in range in clinical trials.
Quantifying the duration and magnitude
of glycemic excursions provides another
means of assessing glucose control. The
unifying theme of trials investigating the
usefulness of CGM technologies is that
the device must be worn on a near-daily
basis to optimize its benefits.

The expert panel concludes that, in
clinical practice, the advanced metrics of
assessing continuous glucose data pre-
sented here are appropriate as outcome
parameters that complement HbA1c for a
wide range of patients with diabetes and
should be considered for use to help
them improve glycemic control provided
that appropriate educational and techni-
cal support is available.
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