The American Diabetes Association (ADA) “Standards of Care in Diabetes” includes the ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Diabetes technology is the term used to describe the hardware, devices, and software that people with diabetes use to assist with self-management, ranging from lifestyle modifications to glucose monitoring and therapy adjustments. Historically, diabetes technology has been divided into two main categories: insulin administered by syringe, pen, patch devices, or pump (also called continuous subcutaneous insulin infusion [CSII]) and glucose as assessed by blood glucose monitoring (BGM) or continuous glucose monitoring (CGM). Diabetes technology has expanded to include automated insulin delivery (AID) systems, where CGM-informed algorithms modulate insulin delivery, connected insulin pens, as well as diabetes self-management support software serving as medical devices. Diabetes technology, when coupled with education, follow-up, and support, can improve the lives and health of people with diabetes; however, the complexity and rapid evolution of the diabetes technology landscape can also be a barrier to implementation for people with diabetes, their care partners, and the health care team.

GENERAL DEVICE PRINCIPLES

Recommendations

7.1 Diabetes devices should be offered to people with diabetes. A

7.2 Initiation of continuous glucose monitoring (CGM) should be offered to people with type 1 diabetes early in the disease, even at time of diagnosis. A

7.3 Consider establishing competencies based on role in practice setting for health care professionals working with diabetes technology. E

7.4 The type(s) and selection of devices should be individualized based on a person’s specific needs, preferences, and skill level. In the setting of an individual whose diabetes is partially or wholly managed by someone else (e.g., a young child or a person with cognitive impairment or dexterity, psychosocial, and/or physical limitations), the caregiver’s skills and preferences are integral to the decision-making process. E

American Diabetes Association Professional Practice Committee

© 2023 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/journals/pages/license.
7.5 When prescribing a device, ensure that people with diabetes and caregivers receive initial and ongoing education and training, either in person or remotely, and ongoing evaluation of technique, results, and the ability to utilize data, including uploading/sharing data (if applicable), to monitor and adjust therapy. C

7.6 People with diabetes who have been using CGM, continuous subcutaneous insulin infusion (CSII), and/or automated insulin delivery (AID) for diabetes management should have continued access across third-party payers, regardless of age or A1C levels. E

7.7 Students should be supported at school in the use of diabetes technology, such as CGM systems, CSII, connected insulin pens, and AID systems, as recommended or prescribed by their healthcare team. E

7.8 Initiation of CSII and/or AID early, even at diagnosis, in the treatment of diabetes can be beneficial depending on a person’s or caregiver’s needs and preferences. C

Technology is rapidly changing, but there is no one-size-fits-all approach to technology use in people with diabetes. Insurance coverage can lag behind device availability, people’s interest in devices and willingness for adoption can vary, and healthcare teams may have challenges in keeping up with newly released technology. An American Diabetes Association resource, which can be accessed at consumerguide.diabetes.org, can help healthcare professionals and people with diabetes make decisions as to the initial choice of devices. Other sources, including health care professionals and device manufacturers, can help people troubleshoot when difficulties arise (1–10).

Education and Training
In general, no device used in diabetes management works optimally without education, training, and ongoing support. There are multiple resources for online tutorials and training videos as well as written material on the use of devices. People with diabetes vary in comfort level with technology, and some prefer in-person training and support. Those with more education regarding device use have better outcomes (1,2); therefore, the need for additional education should be periodically assessed, particularly if outcomes are not being met. Better outcomes cannot be achieved, however, without the training and education of healthcare professionals. The assessment of competencies in diabetes technology is crucial for prescribers, certified diabetes and education specialists, pharmacists, nurses, and anyone involved in the care of people with diabetes. These competencies are described as basic, fundamental, intermediate, and advanced and are specific to the role of each healthcare team member (11). In addition, the health care team’s knowledge and competency are even more relevant when people with diabetes are started on advanced diabetes technologies, such as AID systems. In such situations, training is vital and should include a discussion about realistic expectations for the ability of the initiated system to achieve glucose goals, the system’s features and limitations, and the best way to utilize the new system to maximize the benefits it can offer (12).

Use in Schools
Instructions for device use should be outlined in the student’s diabetes management plan (DMMP). A backup plan should be included in the DMMP for potential device failure (e.g., BGM, CGM, and/or insulin delivery devices). School nurses and designees should complete training to stay up to date on diabetes technologies prescribed for use in the school setting. Updated resources to support diabetes care at school, including training materials and a DMMP template, can be found online at diabetes.org/safeschool.

Initiation of Device Use
The use of CGM devices should be considered from the outset of the diagnosis of diabetes that requires insulin management (3,4). This allows for close tracking of glucose levels with adjustments of insulin dosing and lifestyle modifications and removes the burden of frequent BGM. In addition, early CGM initiation after diagnosis of type 1 diabetes in youth has been shown to decrease A1C levels and is associated with high parental satisfaction and reliance on this technology for diabetes management (5,6). Training on alarm/alert settings when initiating CGM is crucial to avoid alarm overload. In appropriate individuals, early use of AID systems or insulin pumps may be considered.

 Interruption of access to CGM is associated with a worsening of outcomes (7,13); therefore, it is important for individuals on CGM to have consistent access to devices.

BLOOD GLUCOSE MONITORING

Recommendations
7.9 People with diabetes should be provided with blood glucose monitoring (BGM) devices as indicated by their circumstances, preferences, and treatment. People using CGM devices must also have access to BGM at all times. A

7.10 People who are taking insulin and using BGM should be encouraged to check their blood glucose levels when appropriate based on their insulin therapy. This may include checking when fasting, prior to meals and snacks, after meals, at bedtime, in the middle of the night, prior to, during, and after exercise, when hypoglycemia is suspected, after treating low blood glucose levels until they are normoglycemic, when hyperglycemia is suspected, and prior to and while performing critical tasks such as driving. B

7.11 Health care professionals should be aware of the differences in accuracy among blood glucose meters. Only meters approved by the U.S. Food and Drug Administration (FDA) (or comparable regulatory agencies for other geographical locations) with proven accuracy should be used, with unexpired test strips purchased from a pharmacy or licensed distributor and properly stored. E

7.12 Although BGM in people on non-insulin therapies has not consistently shown clinically significant reductions in A1C levels, it may be helpful when altering meal plans, physical activity plans, and/or medications (particularly medications that can cause hypoglycemia) in conjunction with a treatment adjustment program. E

7.13 Health care professionals should be aware of medications and other factors that can interfere with glucose
Major clinical trials of insulin-treated people with diabetes have included BGM as part of multifactorial interventions to demonstrate the benefit of intensive glycemic management on diabetes complications (14). BGM is thus an integral component of effective therapy for individuals using insulin. In recent years, CGM has emerged as a method for the assessment of glucose levels (discussed below). Glucose monitoring allows people with diabetes to evaluate their individual responses to therapy and assess whether glycemic goals are being safely achieved. Integrating results into diabetes management can be a useful tool for guiding medical nutrition therapy and physical activity, preventing hypoglycemia, or adjusting medications (particularly prandial insulin doses or correction bolus doses). The specific needs and goals of the person with diabetes should dictate BGM frequency and timing or the consideration of CGM use. As recommended by the device manufacturers and the U.S. Food and Drug Administration (FDA), people with diabetes using CMG must have access to BGM for multiple reasons, including whenever there is suspicion that the CGM is inaccurate, while waiting for warm-up, when there is a disruption in CGM transmission, for calibration (if needed) or if a warning message appears, when CGM supplies are delayed, and in any clinical setting where glucose levels are changing rapidly (>2 mg/dL/min), which could cause a discrepancy between CGM and blood glucose values.

Meter Standards

Glucose meters meeting FDA guidance for meter accuracy provide the most reliable data for diabetes management. There are several current standards for the accuracy of blood glucose meters, but the two most used are those of the International Organization for Standardization (ISO) (ISO 15197:2013) and the FDA. The current ISO and FDA standards are compared in Table 7.1. In Europe, currently marketed meters must meet current ISO standards. In the U.S., currently marketed meters must meet the standard under which they were approved, which may not be the current standard. Moreover, the monitoring of current accuracy postmarketing is left to the manufacturer and not routinely checked by an independent source.

People with diabetes assume their glucose meter is accurate because it is FDA cleared, but that may not be the case. There is substantial variation in the accuracy of widely used BGM systems (15,16). The Diabetes Technology Society Blood Glucose Monitoring System Surveillance Program provides information on the performance of devices used for BGM (diabetetechnology.org/surveillance/). In one analysis, 6 of the top 18 best-selling glucose meters met the accuracy standard (17). In a subsequent analysis with updated glucose meters, 14 of 18 glucose meters met the minimum accuracy requirements (18). There are single-meter studies in which benefits have been found with individual meter systems, but few studies have compared meters head-to-head. Certain meter system characteristics, such as the use of lancing devices that are less painful (19) and the ability to reapply blood to a strip with an insufficient initial sample, or meters with integrated speech that can read aloud glucose levels for visually impaired individuals (20), may also be beneficial to people with diabetes (21) and may make BGM less burdensome to perform.

Counterfeit Strips

People with diabetes should be advised against purchasing or reselling preowned or secondhand test strips, as these may give incorrect results. Only unopened and unexpired vials of glucose test strips should be used to ensure BGM accuracy.

Optimizing Blood Glucose Monitoring Device Use

Optimal use of BGM devices requires proper review and interpretation of data by both the person with diabetes and the health care professional to ensure that data are used in an effective and timely manner. In people with type 1 diabetes, there is a correlation between greater BGM frequency and lower A1C levels (22). Among those who check their blood glucose at least once daily, many report taking no action when results are high or low (23). Some meters now provide advice to the user in real time when monitoring glucose levels (24), whereas others can be used as a part of integrated health platforms (25). People with diabetes should be taught how to use BGM data to adjust food intake, physical activity, or pharmacologic therapy to achieve specific goals. The ongoing need for and frequency of BGM should be reevaluated at each routine visit to ensure its effective use (22,26,27).

People With Diabetes on Intensive Insulin Therapies

BGM is especially important for people with diabetes treated with insulin to monitor for and prevent hypoglycemia and hyperglycemia. Most individuals on intensive insulin therapies (multiple daily injections [MDI] or insulin pump therapy) should be encouraged to assess glucose levels using BGM (and/or CGM) prior to meals and snacks, at bedtime, occasionally postprandially, prior to, during, and

Table 7.1—Comparison of ISO 15197:2013 and FDA BG meter accuracy standards

<table>
<thead>
<tr>
<th>Setting</th>
<th>FDA (287,299)</th>
<th>ISO 15197:2013 (300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital use</td>
<td>95% within 12% for BG ≥75 mg/dL</td>
<td>95% within 15% for BG ≥100 mg/dL</td>
</tr>
<tr>
<td></td>
<td>95% within 12 mg/dL for BG <75 mg/dL</td>
<td>95% within 15 mg/dL for BG <100 mg/dL</td>
</tr>
<tr>
<td></td>
<td>98% within 15% for BG ≥75 mg/dL</td>
<td>99% in A or B region of consensus error grid†</td>
</tr>
<tr>
<td></td>
<td>98% within 15 mg/dL for BG <75 mg/dL</td>
<td></td>
</tr>
<tr>
<td>Home use</td>
<td>95% within 15% for all BG in the usable BG range†</td>
<td>95% within 20% for all BG in the usable BG range†</td>
</tr>
<tr>
<td></td>
<td>99% within 20% for all BG in the usable BG range†</td>
<td></td>
</tr>
</tbody>
</table>

BG, blood glucose; FDA, U.S. Food and Drug Administration; ISO, International Organization for Standardization. To convert mg/dL to mmol/L, see endmemo.com/medical/unitconvert/Glucose.php. †The range of blood glucose values for which the meter has been proven accurate and will provide readings (other than low, high, or error). ‡Values outside of the “clinically acceptable” A and B regions are considered “outlier” readings and may be dangerous to use for therapeutic decisions (301).
after physical activity, when they suspect hypoglycemia or hyperglycemia, after treating hypoglycemia until they are normoglycemic, and prior to and while performing critical tasks such as driving. For many individuals using BGM, this requires checking up to 6–10 times daily, although individual needs may vary. A database study of almost 27,000 children and adolescents with type 1 diabetes showed that, after adjusting for multiple confounders, increased daily frequency of BGM was significantly associated with lower A1C levels (–0.2% per additional check per day) and with fewer acute complications (28).

People With Diabetes Using Basal Insulin and/or Oral Agents and Noninsulin Injectables

The evidence is insufficient regarding when to prescribe BGM and how often monitoring is needed for insulin-treated people with diabetes who do not use intensive insulin therapy, such as those with type 2 diabetes taking basal insulin with or without oral agents and/or noninsulin injectables. However, for those taking basal insulin, assessing fasting glucose with BGM to inform dose adjustments to achieve blood glucose targets results in lower A1C levels (29,30).

In people with type 2 diabetes not taking insulin, routine glucose monitoring may be of limited additional clinical benefit. By itself, even when combined with education, this practice has shown limited improvement in outcomes (31–34). However, for some individuals, glucose monitoring can provide insight into the impact of nutrition, physical activity, and medication management on glucose levels. Glucose monitoring may also be useful in assessing hypoglycemia, glucose levels during intercurrent illness, or discrepancies between measured A1C and glucose levels when there is concern an A1C result may not be reliable in specific individuals (for more details, see Section 2, “Diagnosis and Classification of Diabetes”). It may be useful when coupled with a treatment adjustment program. In a year-long study of insulin-naive people with diabetes with suboptimal initial glycemic outcomes, a group trained in structured BGM (a paper tool was used at least quarterly to collect and interpret seven-point BGM profiles taken on three consecutive days) reduced their A1C levels by 0.3% more than that of the control group (35). A trial of once-daily BGM that included enhanced feedback from people with diabetes through messaging found no clinically or statistically significant change in A1C levels at 1 year (34). Meta-analyses have suggested that BGM can reduce A1C levels by 0.25–0.3% at 6 months (36–38), but the effect was attenuated at 12 months in one analysis (36). Reductions in A1C levels were greater (–0.3%) in trials where structured BGM data were used to adjust medications, but A1C levels were not changed significantly without such structured diabetes therapy adjustment (38). A key consideration is that performing BGM alone does not lower blood glucose levels. To be useful, the information must be integrated into clinical and self-management treatment plans.

Glucose Meter Inaccuracy

Although many meters function well under various circumstances, health care professionals and people with diabetes must be aware of factors that impair meter accuracy. A meter reading that seems discordant with the clinical picture needs to be retested or tested in a laboratory. Health care professionals in intensive care unit settings need to be particularly aware of the potential for incorrect meter readings during critical illness, and laboratory-based values should be used if there is any doubt. Some meters give error messages if meter readings are likely to be false (39).

Oxygen. Currently available glucose monitors use an enzymatic reaction linked to an electrochemical reaction, either glucose oxidase or glucose dehydrogenase (40). Glucose oxidase monitors are sensitive to the oxygen available and should only be used with capillary blood in people with normal oxygen saturation. Higher oxygen tensions (i.e., arterial blood or oxygen therapy) may result in false low-glucose readings, and low oxygen tensions (i.e., high altitude, hypoxia, or venous blood readings) may lead to falsely elevated glucose readings. Glucose dehydrogenase–based monitors are generally not sensitive to oxygen.

Temperature. Because the reaction is sensitive to temperature, all monitors have an acceptable temperature range (40). Most will show an error if the temperature is unacceptable, but a few will provide a reading and a message indicating that the value may be incorrect. Humidity and altitude may also alter glucose readings.

Interfering Substances. There are a few physiologic and pharmacologic factors that interfere with glucose readings. Most interfere only with glucose oxidase systems (40). They are listed in Table 7.2.

CONTINUOUS GLUCOSE MONITORING DEVICES

See Table 7.3 for definitions of types of CGM devices.

Recommendations

7.14 Real-time CGM (rtCGM) A or intermittently scanned CGM (isCGM) B should be offered for diabetes management in adults with diabetes on multiple daily injections (MDI) or CSII who are capable of using the devices safely (either by themselves or with a caregiver). The choice of device should be made based on the individual’s circumstances, preferences, and needs.

7.15 rtCGM A or isCGM B should be offered for diabetes management in adults with diabetes on basal insulin who are capable of using the devices safely (either by themselves or with a caregiver). The choice of device should be made based on the individual’s circumstances, preferences, and needs.

7.16 rtCGM A or isCGM E should be offered for diabetes management in youth with type 1 diabetes on MDI or CSII who are capable of using the devices safely (either by themselves or with a caregiver). The choice of device should be made based on the individual’s circumstances, preferences, and needs.

7.17 rtCGM or isCGM should be offered for diabetes management in youth with type 2 diabetes on MDI or CSII who are capable of using the devices safely (either by themselves or with a caregiver).
The choice of device should be made based on the individual's circumstances, preferences, and needs. E 7.18 In people with diabetes on MDI or CSII, rtCGM devices should be used as close to daily as possible for maximal benefit. A isCGM devices should be scanned frequently, at a minimum once every 8 h to avoid gaps in data. A People with diabetes should have uninterrupted access to their supplies to minimize gaps in CGM. A 7.19 When used as an adjunct to preprandial and postprandial BGM, CGM can help to achieve A1C targets in diabetes and pregnancy. B 7.20 Periodic use of rtCGM or isCGM or use of professional CGM can be helpful for diabetes management in circumstances where consistent use of CGM is not desired or available. C 7.21 Skin reactions, either due to irritation or allergy, should be assessed and addressed to aid in successful use of devices. E 7.22 People who wear CGM devices should be educated on potential interfering substances and other factors that may affect accuracy. C

CGM measures interstitial glucose (which correlates well with plasma glucose, although at times, it can lag if glucose levels are rising or falling rapidly). There are two basic types of CGM devices. The first type includes those that are owned by the user, unblinded, and intended for frequent or continuous use, including real-time CGM (rtCGM) and intermittently scanned CGM (isCGM). The second type is professional CGM devices that are owned by practices and applied in the clinic, which provide data that are blinded or unblinded for a discrete period of time. The types of sensors currently available are either disposable (rtCGM and isCGM) or implantable (rtCGM). Table 7.3 provides the definitions for the types of CGM devices. For people with type 1 diabetes using CGM, frequency of sensor use is an important predictor of A1C lowering for all age-groups (41,42). The frequency of scanning with isCGM devices is also correlated with improved outcomes (43–46).

Some real-time systems require calibration by the user, which varies in frequency depending on the device. Additionally, some CGM systems are called adjunctive, meaning the user should perform BGM for making treatment decisions such as dosing insulin or treating hypoglycemia. Devices that do not have this requirement outside of certain clinical situations (see BLOOD GLUCOSE MONITORING, above) are called nonadjunctive (47–49).

One specific isCGM device (Freestyle Libre 2 [no generic form available]) and three specific rtCGM devices (Dexcom G6 [no generic form available], Dexcom G7 [no generic form available], and FreeStyle Libre 3 [no generic form available]) have been designated integrated CGM (iCGM) devices (50). This is a higher standard set by the FDA so that these devices can be integrated with other digitally connected devices. Dexcom G6 rtCGM, Dexcom G7 rtCGM, and a modified version of Libre 2 and Libre 3 are FDA approved for use with AID systems. At this time, Dexcom G6 is integrated with four AID systems (t:slim x2 with control IQ, Omnipod 5, ilet, and Mobi). Similarly, the Medtronic Guardian 3 rtCGM (no generic available) and the Medtronic Guardian 4 rtCGM are FDA approved for use with the 670/770G and 780G AID systems, respectively. Benefits of Continuous Glucose Monitoring

Data From Randomized Controlled Trials

Multiple randomized controlled trials (RCTs) have been performed using rtCGM devices, and the results have largely been positive in terms of reducing A1C levels and/or episodes of hypoglycemia, as long as participants regularly wore the devices (41,42,51–73). The initial studies were done primarily in adults and youth with type 1 diabetes on insulin pump therapy and/or MDI (41,42,51–54,57–67). The primary outcome was met and showed benefit in adults of all ages (41,51,52,57, 58,60,62,63,74–77), including seniors (59, 78,79). Data in children show that rtCGM use in young children with type 1 diabetes reduced hypoglycemia; in addition, behavioral support of parents of young children with diabetes using rtCGM showed the benefits of reducing hypoglycemia concerns and diabetes distress (41,66,80). Similarly, A1C level reduction was seen in adolescents and young adults with type 1 diabetes using rtCGM (65). RCT data on rtCGM use in individuals with type 2 diabetes on MDI (69), mixed therapies (70,71), and basal insulin (72,81) have consistently shown reductions in A1C levels and increases in time in range (TIR) (70–180 mg/dL [3.9–10 mmol/L]) but not a reduction in rates of hypoglycemia. The improvements in type 2 diabetes have largely occurred without changes in insulin doses or other diabetes medications. CGM discontinuation in individuals with type 2 diabetes on basal insulin caused partial reversal of A1C reduction and TIR improvements, suggesting that continued CGM use achieves the greatest benefits (13). In addition, rtCGM benefits were reported in a mixed population (including people not using insulin) of adults with

Table 7.3—Continuous glucose monitoring devices

<table>
<thead>
<tr>
<th>Type of CGM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtCGM</td>
<td>CGM systems that measure and display glucose levels continuously</td>
</tr>
<tr>
<td>isCGM with and without alarms</td>
<td>CGM systems that measure glucose levels continuously but require scanning for visualization and storage of glucose values</td>
</tr>
<tr>
<td>Professional CGM</td>
<td>CGM devices that are placed on the person with diabetes in the health care professional’s office and worn for a discrete period of time (generally 7–14 days). Data may be blinded or visible to the person wearing the device. The data are used to assess glycemic patterns and trends. Unlike rtCGM and isCGM devices, these devices are clinic-based and not owned by the person with diabetes.</td>
</tr>
</tbody>
</table>

CGM, continuous glucose monitoring; isCGM, intermittently scanned CGM; rtCGM, real-time CGM.
type 2 diabetes with reduction in A1C levels, increase in TIR, and reduction of time in hyperglycemia (>180 mg/dL [>10 mmol/L] and >250 mg/dL [>13.8 mmol/L]) (10).

RCT data for isCGM are fewer but increasing. One study was performed in adults with type 1 diabetes and met its primary outcome of a reduction in rates of hypoglycemia (55). In adults with type 2 diabetes using insulin, two studies were done: one study did not meet its primary end point of A1C levels reduction (82) but achieved a secondary end point of a reduction in hyperglycemia, and the other study met its primary end point of an improvement in the Diabetes Treatment Satisfaction Questionnaire score as well as a secondary end point of A1C level reduction (83). In a study of individuals with type 1 or type 2 diabetes taking insulin, the primary outcome of a reduction in severe hypoglycemia was not met and the incidence of severe hypoglycemia was not significantly different between isCGM users and the BGM group (84). One study in youth with type 1 diabetes did not show a reduction in A1C levels (85); however, the device was well received and was associated with an increased frequency of testing and improved diabetes treatment satisfaction (85). A randomized trial of adults with type 1 diabetes showed that the use of isCGM with optional alerts and alarms resulted in reduction of A1C levels compared with BGM use (9). The benefits of isCGM for adults with type 2 diabetes not using insulin were recently reported in an RCT. In this study, the use of isCGM plus diabetes education versus diabetes education alone showed decreased A1C levels and increased TIR as well as increased time in tight target range (70–140 mg/dL [3.9–7.8 mmol/L]) in the isCGM-plus-education group (8).

Observational and Real-world Studies

isCGM has been widely available in many countries for people with diabetes, and this allows for the collection of large amounts of data across groups of people with diabetes. In adults with diabetes, these data include results from observational studies, retrospective studies, and analyses of registry and population data (86,87). In individuals with type 1 diabetes wearing isCGM devices, most (46,86,88), but not all (89), studies have shown improvement in A1C levels. Reductions in acute diabetes complications, such as diabetic ketoacidosis (DKA), episodes of severe hypoglycemia or diabetes-related coma, and hospitalizations for hypoglycemia and hyperglycemia, have been observed (46,89,90), with persistent effects observed even after 2 years of CGM initiation (91). Some retrospective/observational data have shown an improvement in A1C levels for adults with type 2 diabetes on MDI (92), basal insulin (93), and basal insulin or noninsulin therapies (94). In a retrospective study of adults with type 2 diabetes taking insulin, a reduction in acute diabetes-related events and all-cause hospitalizations was seen (95). Results of self-reported outcomes varied, but where measured, people with diabetes had an increase in treatment satisfaction with isCGM compared with BGM.

In an observational study in youth with type 1 diabetes, a slight increase in A1C levels and weight was seen, but the device was associated with a high user satisfaction rate (87).

Retrospective data from rtCGM use in a Veterans Affairs population (96) with type 1 and type 2 diabetes treated with insulin showed that the use of rtCGM significantly lowered A1C levels and reduced rates of emergency department visits or hospitalizations for hypoglycemia but did not significantly lower overall rates of emergency department visits, hospitalizations, or hyperglycemia.

Real-time Continuous Glucose Monitoring Compared With Intermittently Scanned Continuous Glucose Monitoring

In adults with type 1 diabetes, three RCTs have been conducted comparing isCGM and rtCGM (97–99). In two of the studies, the primary outcome was a reduction in time spent in hypoglycemia, and rtCGM showed greater benefits compared with isCGM (97,98). In the other study, the primary outcome was improved TIR, and rtCGM also showed greater benefits compared with isCGM (99). A retrospective analysis also showed improvement in TIR with rtCGM compared with isCGM (100). A more recent 12-month real-world randomized study compared rtCGM with isCGM in adults with type 1 diabetes. At 12 months, A1C levels, time in level 1 hypoglycemia (≤70 mg/dL [<3.9 mmol/L]), and time in level 2 hypoglycemia (≤54 mg/dL [<3.0 mmol/L]) were all lower in the rtCGM group than in the isCGM group; similarly, the TIR was higher in the rtCGM group than in the isCGM group (101).

Data Analysis

The abundance of data provided by CGM offers opportunities to analyze data for people with diabetes more granularly than previously possible, providing additional information to aid in achieving glycemic goals. A variety of metrics have been proposed (102) and are discussed in Section 6, “Glycemic Goals and Hypoglycemia.” CGM is essential for creating an ambulatory glucose profile and providing data on TIR, percentage of time spent above and below range, and glycemic variability (103). Data analysis can be burdensome without a systematic approach to its review. Several efforts have been made to streamline the interpretation of CGM reports to assist health care professionals in their daily practice. These have various, but overall similar, approaches. The initial steps are focused on assessing the sufficiency and quality of data; subsequent recommendations include reviewing the presence and trends or patterns of hypoglycemia, followed by hyperglycemia patterns and trends. Some authors also suggest approaches to changing therapy plans based on the data reviewed that enable health care professionals to make a simple yet comprehensive review and plan of care even within the time constraints of office visits (104–108).

Real-time Continuous Glucose Monitoring Device Use in Pregnancy

Recently, CGM indication has been expanded to include pregnancy for Dexcom G7, FreeStyle Libre 2, and FreeStyle Libre 3, which will enhance care in this population (109,110). Prior data from one well-designed RCT showed a reduction in A1C levels in pregnant adults with type 1 diabetes on MDI or insulin pump therapy and using rtCGM in addition to standard care; CGM users experienced more pregnancy-specific TIR (63–140 mg/dL [3.5–7.8 mmol/L]) and less time in hyperglycemia (111). This study demonstrated the value of rtCGM in pregnancy complicated by type 1 diabetes by showing a mild improvement in A1C levels and a significant improvement in the maternal glucose TIR for pregnancy (63–140 mg/dL [3.5–7.8 mmol/L]), without an increase in hypoglycemia, as well as reductions in large-for-gestational-age births, infant hospital length of stay, and severe neonatal hypoglycemia (111). An observational cohort study that evaluated...
the glycemic variables reported using rtCGM and isCGM found that lower mean glucose, lower standard deviation, and a higher percentage of TIR were associated with lower risks of large-for-gestational-age births and other adverse neonatal outcomes (112). Data from one study suggested that the use of rtCGM-reported mean glucose is superior to use of the glucose management indicator and other calculations to estimate A1C levels given the changes to A1C levels that occur in pregnancy (113). Two studies employing intermittent use of rtCGM showed no difference in neonatal outcomes in individuals with type 1 diabetes (114) or gestational diabetes mellitus (115). At this time, data are insufficient for recommending the use of CGM in all pregnant people with type 2 diabetes or GDM (116,117). The decision of whether to use CGM in pregnant individuals with type 2 diabetes or GDM should be individualized based on treatment plan, circumstances, preferences, and needs. Although CGM systems for use in pregnancy do not require calibrations and are approved for nonadjunctive use, when using CGM in diabetes and pregnancy, determination of glucose levels by finger stick may be necessary in certain circumstances, such as in the setting of hypoglycemia or hyperglycemia outside the recommended CGM targets (63–140 mg/dL [3.5–7.8 mmol/L]) during pregnancy.

Use of Professional and Intermittent Continuous Glucose Monitoring
Professional CGM devices, which provide retrospective data, either blinded or unblinded, for analysis can be used to identify patterns of hypoglycemia and hyperglycemia (118,119). Professional CGM can be helpful to evaluate an individual’s glucose levels when either rtCGM or isCGM is not available to the individual or they prefer a blinded analysis or a shorter experience with unblinded data. It can be particularly useful in individuals using agents that can cause hypoglycemia, as the data can be used to evaluate periods of hypoglycemia and make medication dose adjustments if needed. It can also be useful to evaluate periods of hyperglycemia.

Some data have shown the benefit of intermittent use of CGM (rtCGM or isCGM) in individuals with type 2 diabetes on noninsulin and/or basal insulin therapies (70,120). In these RCTs, people with type 2 diabetes not on intensive insulin therapy used CGM intermittently compared with those randomized to BGM. Both early (70) and late improvements in A1C levels were found (70,120). Use of professional or intermittent CGM should always be coupled with analysis and interpretation for people with diabetes, along with education as needed to adjust medication and change lifestyle behaviors (121–123).

Side Effects of Continuous Glucose Monitoring Devices
Contact dermatitis (both irritant and allergic) has been reported with all devices that attach to the skin (18,124,125). In some cases, this has been linked to the presence of isobornyl acrylate, a skin sensitizer that can cause additional spreading allergic reaction (126–128). It is important to ask CGM users periodically about adhesive reactions, as tape formulations may change over time. Patch testing can sometimes identify the cause of contact dermatitis (129). Identifying and eliminating tape allergens is important to ensure the comfortable use of devices and promote self-care (130–133). The Panther Program offers resources in English and Spanish at pantherprogram.org/skin-solutions. In some instances, using an implanted sensor can help avoid skin reactions in those sensitive to tape (134,135).

Substances and Factors Affecting Continuous Glucose Monitoring Accuracy
Sensor interference due to several medications/substances is a known source of CGM sensor measurement errors (Table 7.4). While several of these substances have been reported in the various CGM brands’ user manuals, additional interferences have been discovered after the market release of these products. Hydroxyurea, used for myeloproliferative disorders and hematologic conditions, is one of the most recently identified interfering substances that cause a temporary increase in sensor glucose values discrepant from actual glucose values (136–141). Similarly, substances such as mannitol and sorbitol, when administered intravenously or as a component of peritoneal dialysis solution, may increase blood mannitol or sorbitol concentrations and cause falsely elevated readings of sensor glucose (142). Therefore, it is crucial to routinely review the medications and supplements used by the person with diabetes to identify possible interfering substances and advise them accordingly on the need to use additional BGM if sensor values are unreliable due to these substances.

INSULIN DELIVERY

Insulin Syringes and Pens Recommendations

7.23 For people with insulin-requiring diabetes on MDI, insulin pens are preferred in most cases. Still, insulin syringes may be used for insulin delivery considering individual and caregiver preference, insulin type, availability in vials, closing

<table>
<thead>
<tr>
<th>Medication</th>
<th>Systems affected</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen >4 g/day Any dose</td>
<td>Dexcom G6, Dexcom G7 Medtronic Guardian</td>
<td>Higher sensor readings than actual glucose Higher sensor readings than actual glucose</td>
</tr>
<tr>
<td>Ascorbic acid (vitamin C), >500 mg/day</td>
<td>FreeStyle Libre 14 day, FreeStyle Libre 2, FreeStyle Libre 3</td>
<td>Higher sensor readings than actual glucose</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td>Dexcom G6, Dexcom G7, Medtronic Guardian</td>
<td>Higher sensor readings than actual glucose</td>
</tr>
<tr>
<td>Mannitol (intravenously or as peritoneal dialysis solution)</td>
<td>Senseonics Eversense</td>
<td>Higher sensor readings than actual glucose</td>
</tr>
<tr>
<td>Sorbitol (intravenously or as peritoneal dialysis solution)</td>
<td>Senseonics Eversense</td>
<td>Higher sensor readings than actual glucose</td>
</tr>
</tbody>
</table>
Injecting insulin with a syringe or pen (143–159) is the insulin delivery method used by most people with diabetes (149,160), although inhaled insulin is also available. Others use insulin pumps or AID devices (see INSULIN PUMPS AND AUTOMATED INSULIN DELIVERY SYSTEMS, below). For people with diabetes who use insulin, insulin syringes and pens are both able to deliver insulin safely and effectively for the achievement of glycemic targets. Individual preferences, cost, insulin type, dosing therapy, and self-management capabilities should be considered when choosing among delivery systems. Trials with insulin pens generally show equivalence or small improvements in glycemic outcomes compared with using a vial and syringe. Many individuals with diabetes prefer using a pen because of its simplicity and convenience. It is important to note that while many insulin types are available for purchase as either pens or vials, others may be available in only one form or the other, and there may be significant cost differences between pens and vials (see Table 9.4 for a list of insulin product costs with dosage forms). Insulin pens may allow people with vision impairment or dexterity issues to dose insulin accurately (161–163), and insulin injection aids are also available to help with these issues. (For a helpful list of injection aids, see consumerguide.diabetes.org/collections/injection- aids). Inhaled insulin can be useful in people who have an aversion to injection.

The most common syringe sizes are 1 mL, 0.5 mL, and 0.3 mL, allowing doses of up to 100 units, 50 units, and 30 units, respectively, of U-100 insulin. Some 0.3-mL syringes have half-unit markings, whereas other syringes have 1- to 2-unit increment markings. In a few parts of the world, insulin syringes still have U-80 and U-40 markings for older insulin concentrations and veterinary insulin, and U-500 syringes are available for the use of U-500 insulin. Syringes are generally used once but may be reused by the same individual in resource-limited settings with appropriate storage and cleansing (163).

Insulin pens offer added convenience by combining the vial and syringe into a single device. Insulin pens, allowing push-button injections, come as disposable pens with prefilled cartridges or reusable insulin pens with replaceable insulin cartridges. Pens vary with respect to dosing increment and minimal dose, ranging from half-unit doses to 2-unit dose increments, with the latter available in U-200 insulin pens. U-500 pens come in 5-unit dose increments. Some reusable pens include a memory function, which can recall dose amounts and timing. Connected insulin pens are insulin pens with the capacity to record and/or transmit insulin dose data. Insulin pen caps are also available and are placed on existing insulin pens and may assist with calculating insulin doses and by providing a memory function. Some connected insulin pens and pen caps can be programmed to calculate insulin doses, can be synced with select CGM systems, and can provide downloadable data reports. These pens and pen caps are useful to people with diabetes for real-time insulin dosing and allow clinicians to retrospectively review the insulin delivery times and in some cases doses and glucose data in order to make informed insulin dose adjustments (164). A quantitative study showed that people with diabetes preferred connected pens because of their ability to log insulin doses and glucose levels automatically (164).

Needle thickness (gauge) and length are other considerations. Needle gauges range from 22 to 34, with a higher gauge indicating a thinner needle. A thicker needle can give a dose of insulin more quickly, while a thinner needle may cause less pain. Needle length ranges from 4 to 12.7 mm, with some evidence suggesting that shorter needles (4–5 mm) lower the risk of intramuscular injection with erratic absorption and possibly the development of lipohypertrophy. When reused, needles may be duller and thus injections may be more painful. Proper insulin injection technique is a requisite for receiving the full dose of insulin with each injection. Concerns with technique and use of the proper technique are outlined in Section 9, “Pharmacologic Approaches to Glycemic Treatment.”

Bolus calculators have been developed to aid dosing decisions (165–170). These systems are subject to FDA approval to ensure safety and efficacy in terms of algorithms used and subsequent dosing recommendations. People interested in using these systems should be encouraged to use those that are FDA approved. Health care professional input and education can be helpful for setting the initial dosing calculations with ongoing follow-up for adjustments as needed.

Insulin Pumps and Automated Insulin Delivery Systems

Recommendations

7.27 AID systems should be offered for diabetes management to youth and adults with type 1 diabetes A and other types of insulin-deficient diabetes E who are capable of using the device safely (either by themselves or with a caregiver). The choice of device should be made based on the individual’s circumstances, preferences, and needs. A

7.28 Insulin pump therapy alone with or without a sensor-augmented pump low-glucose suspend feature should be offered for diabetes management to youth and adults on MDI with type 1 diabetes A or other types of insulin-deficient diabetes E who are capable of using the device safely (either by themselves or with a caregiver) and are not able to use or do not choose an AID system. The choice of device should be made based on the individual’s circumstances, preferences, and needs. A

7.29 Insulin pump therapy can be offered for diabetes management to youth and adults on MDI with type 2 diabetes who are capable of using the device safely (either by themselves or with a caregiver). The choice of device should be made based on the individual’s circumstances, preferences, and needs. A

7.30 Individuals with diabetes who have been using CSII should have continued access across third-party payers. E
Insulin Pumps

Insulin pumps have been available in the U.S. for over 40 years. These devices deliver rapid-acting insulin throughout the day to help manage glucose levels. Most insulin pumps use tubing to deliver insulin through a cannula, while a few attach directly to the skin without tubing. AID systems, which can adjust insulin delivery rates based on sensor glucose values, are preferred over nonautomated pumps and MDI in people with type 1 diabetes.

Most studies that compare MDI with insulin pump therapy have been relatively small and of short duration. However, a systematic review and meta-analysis concluded that pump therapy has modest advantages for lowering A1C levels (−0.30% [95% CI −0.58 to −0.02]) and for reducing severe hypoglycemia rates in children and adults (171). Real-world data on insulin pump use in individuals with type 1 diabetes show benefits in A1C levels and hypoglycemia reductions as well as total daily insulin dose reduction (172). There is no consensus to guide choosing which form of insulin administration is best for a given individual, and research to guide this decision-making process is needed (171). Thus, the choice of MDI or an insulin pump is often based upon the characteristics of the person with diabetes and which method is most likely to benefit them. DiabetesWise (diabeteswise.org/) and DiabetesWise Pro (pro.diabeteswise.org/), for health care professionals, and the PANTHER Program (pantherprogram.org/device-comparison-chart) have helpful websites to assist health care professionals and people with diabetes in choosing diabetes devices based on their individual needs and the features of the devices. Newer systems, such as sensor-augmented pumps and AID systems, are discussed below.

Adoption of pump therapy in the U.S. shows geographical variations, which may be related to health care professional preference or center characteristics (173,174) and socioeconomic status, as pump therapy is more common in individuals of higher socioeconomic status, as reflected by private health insurance, family income, and education (173,174). Given the additional barriers to optimal diabetes care observed in disadvantaged groups (175), addressing the differences in access to insulin pumps and other diabetes technologies may contribute to fewer health disparities.

Pump therapy can be successfully started at the time of diagnosis (176,177). Practical aspects of pump therapy initiation include assessment of readiness of the person with diabetes and their family, if applicable (although there is no consensus on which factors to consider in adults [178] or children and adolescents with diabetes), selection of pump type and initial pump settings, individual/family education on potential pump complications (e.g., DKA with infusion set failure), transition from MDI, and introduction of advanced pump settings (e.g., temporary basal rates and extended/square/dual-wave bolus).

Older individuals with type 1 diabetes benefit from ongoing insulin pump therapy. There are no data to suggest that measurement of C-peptide levels or antibodies predicts success with insulin pump therapy (179,180). Additionally, the frequency of follow-up does not influence outcomes. Access to insulin pump therapy, including AID systems, should be allowed or continued in older adults as it is in younger people.

Complications of the pump can be caused by issues with infusion sets (dislodgement and occlusion), which place individuals at risk for ketosis and DKA and thus must be recognized and managed early (181). Other pump skin issues include lipohypertrophy or, less frequently, lipatrophy (182,183) and pump site infection (184). Discontinuation of pump therapy is relatively uncommon today, the frequency has decreased over the past few decades, and its causes have changed (184,185). Current reasons for attrition are problems with cost or wearability, loss of insurance, dislike for the pump, suboptimal glycemic outcomes, or mood disorders (e.g., anxiety or depression) (186).

Insulin Pumps in Youth

The safety of insulin pumps in youth has been established for over 15 years (187). Studying the effectiveness of insulin pump therapy in lowering A1C levels has been challenging because of the potential selection bias of observational studies. Participants on insulin pump therapy may have a higher socioeconomic status that may facilitate better glycemic outcomes (188) versus MDI. In addition, the fast pace of development of new insulins and technologies quickly renders comparisons obsolete. However, RCTs that compared insulin pumps and MDI with rapid-acting insulin analogs demonstrated a modest improvement in A1C levels in participants on insulin pump therapy (189,190). Observational studies, registry data, and meta-analyses have also suggested an improvement in glycemic outcomes in participants on insulin pump therapy (191–193). Data suggest that insulin pumps reduce the rates of severe hypoglycemia compared with MDI (193–196).

There is also evidence that insulin pump therapy may reduce DKA risk (193,197) and diabetes complications, particularly retinopathy and peripheral neuropathy in youth, compared with MDI (178). In addition, treatment satisfaction and quality-of-life measures improved on insulin pump therapy compared with MDI (198,199). Therefore, insulin pumps can be used safely and effectively in youth with type 1 diabetes to assist with achieving targeted glycemic outcomes while reducing the risk of hypoglycemia and DKA, improving quality of life, and preventing long-term complications. Based on shared decision-making by people with diabetes and health care professionals, insulin pumps may be considered in all children and adolescents with type 1 diabetes. In particular, pump therapy may be the preferred mode of insulin delivery for children under 7 years of age (200). Because of a paucity of data in adolescents and youth with type 2 diabetes, there is insufficient evidence to make recommendations.

Common barriers to pump therapy adoption in children and adolescents are concerns regarding the physical interference of the device, discomfort with the idea of having a device on the body, therapeutic effectiveness, and financial burden (191,201).

Sensor-Augmented Pumps

Sensor-augmented pumps (or partial closed-loop systems) consist of three components: an insulin pump, a CGM system, and an algorithm that automates insulin suspension when glucose is low or is predicted to go low within the next 30 min, and these systems have been approved by the FDA. The Automation to Simulate Pancreatic Insulin Response (ASPIRE) trial of 247 people with type 1 diabetes showed that sensor-augmented insulin pump therapy with a low-glucose suspend function significantly reduced nocturnal
hypoglycemia over 3 months without increasing A1C levels (61). In a different sensor-augmented pump, predictive low-glucose suspend reduced time spent with glucose <70 mg/dL from 3.6% at baseline to 2.6% (3.2% with sensor-augmented pump therapy without predictive low-glucose suspend) without rebound hyperglycemia during a 6-week randomized crossover trial (202). These devices may offer the opportunity to reduce hypoglycemia for those with a history of nocturnal hypoglycemia. Additional studies have been performed in adults and children that show the benefits of this technology (203–205).

Automated Insulin Delivery Systems

AID systems increase and decrease insulin delivery based on sensor-derived glucose levels to mimic physiologic insulin delivery. These systems consist of three components: an insulin pump, a CGM system, and an algorithm that determines insulin delivery. All AID systems on the market today adjust basal delivery in real time, and some deliver correction doses automatically. While insulin delivery in closed-loop systems eventually may be truly automated, currently used AID systems require the manual entry of carbohydrates consumed or qualitative meal estimation announcements to calculate prandial doses, and adjustments for physical activity must be announced in most systems. Multiple studies using various systems with varying algorithms, pumps, and sensors have been performed in adults and children (206–218). Evidence suggests AID systems reduce A1C levels and improve TIR (219–231). They may also lower the risk of exercise-related hypoglycemia (231) and may have psychosocial benefits (232–236). The use of AID systems depends on the preference of the person with diabetes and the selection of individuals (and/or caregivers) who are capable of safely using the devices.

The data from real-world studies on AID systems have substantiated the results observed in RCTs and have confirmed the clinical benefits of AID systems in people with type 1 diabetes. Benefits include improvement in A1C levels, TIR, and other glucometrics as well as psychosocial benefits (237–242).

Finally, real-world data showed that AID systems provide the same glycemic benefits to Medicare and Medicaid beneficiaries with type 1 and type 2 diabetes, emphasizing that access to this technology should be made available regardless of A1C levels and should be based on the individual’s needs (243).

Automated Insulin Delivery Systems in Pregnancy

The use of AID systems in diabetes and pregnancy presents particular challenges, as none of the current FDA-approved systems have glucose goals that are pregnancy specific or algorithms designed to achieve pregnancy-specific glucose goals. Initiating or continuing AID systems during pregnancy needs to be assessed carefully. Selected individuals with type 1 diabetes should be evaluated as potential candidates for AID systems in the setting of expert guidance. Moreover, if the decision is made to use these systems in selected pregnant individuals, then using assistive techniques, such as the combination of sensor-augmented pump mode and hybrid closed-loop mode at different time points in pregnancy or throughout the day, should be considered and applied as needed to achieve intended goals (244). See Section 15, “Diabetes and Pregnancy,” for more details.

Insulin Pumps in People With Type 2 and Other Types of Diabetes

Traditional insulin pumps can be considered for the treatment of people with type 2 diabetes who are on MDI as well as those who have other types of diabetes resulting in insulin deficiency, for instance, those who have had a pancreaticectomy and/or individuals with cystic fibrosis (245–249). Similar to data on insulin pump use in people with type 1 diabetes, reductions in A1C levels have been reported in some studies (247,250). More recently, real-world reports have shown reduction of A1C levels and reduction of total daily insulin dose in individuals with type 2 diabetes initiating insulin pump therapy (251). Use of insulin pumps in insulin-requiring people with any type of diabetes may improve user satisfaction and simplify therapy (180,245).

For people with diabetes judged to be clinically insulin deficient who are treated with an intensive insulin therapy, the presence or absence of measurable C-peptide levels does not correlate with response to therapy (180). A low C-peptide value should not be required for insulin pump coverage in individuals with type 2 diabetes.

The use of insulin pumps and AID systems in type 2 diabetes is still limited; however, real-world studies have shown benefits of these technologies in these individuals (243,252).

Alternative insulin delivery options in people with type 2 diabetes may include disposable patch-like devices, which provide either a CSII of rapid-acting insulin (basal) with bolus insulin in 2-unit increments at the press of a button or bolus insulin only delivered in 2-unit increments used in conjunction with basal insulin injections (246,248,253,254). Use of an insulin pump as a means of insulin delivery is an individual choice for people with diabetes and should be considered an option in those who are capable of safely using the device.

Do-It-Yourself Closed-Loop Systems

Recommendation

7.31 Individuals with diabetes may be using systems not approved by the FDA, such as do-it-yourself closed-loop systems and others; health care professionals cannot prescribe these systems but should assist in diabetes management to ensure the safety of people with diabetes. E

Some people with type 1 diabetes have been using do-it-yourself systems that combine an insulin pump and an rtCGM with a controller and an algorithm designed to automate insulin delivery (255–259). Data are emerging on the safety and effectiveness of specific systems (260,261). However, these systems are not approved by the FDA, although efforts are underway to obtain regulatory approval for some of them. The information on how to set up and manage these systems is freely available on the internet, and there are internet groups where people inform each other as to how to set up and use them. Although health care professionals cannot prescribe these systems, it is crucial to keep people with diabetes safe if they are using these methods for AID. Part of this entails ensuring people have a backup plan in case of pump failure. Additionally, in most do-it-yourself systems, insulin doses are adjusted based on the pump settings.
for basal rates, carbohydrate ratios, correction doses, and insulin activity. Therefore, these settings can be evaluated and modified based on the individual’s insulin requirements.

Digital Health Technology

Recommendation

7.32 Systems that combine technology and online coaching can be beneficial in managing prediabetes and diabetes for some individuals.

Increasingly, people are turning to the internet for advice, coaching, connection, and health care. Diabetes, partly because it is both common and numeric, lends itself to the development of apps and online programs. Recommendations for developing and implementing a digital diabetes clinic have been published (262). The FDA approves and monitors clinically validated, digital, and usually online health technologies intended to treat a medical or psychological condition; these are known as digital therapeutics or “digiceuticals” (fda.gov/medical-devices/digital-health-center-excellence/device-software-functions-including-mobile-medical-applications) (263). Other applications, such as those that assist in displaying or storing data, encourage a healthy lifestyle or provide limited clinical data support. Therefore, it is possible to find apps that have been fully reviewed and approved by the FDA and others designed and promoted by people with relatively little skill or knowledge in the clinical treatment of diabetes. There are insufficient data to provide recommendations for specific apps for diabetes management, education, and support in the absence of RCTs and validation of apps unless they are FDA cleared.

An area of particular importance is that of online privacy and security. Established cloud-based data aggregator programs, such as Tidepool, Gloko, and others, have been developed with appropriate data security features and are compliant with the U.S. Health Insurance Portability and Accountability Act of 1996. These programs can help monitor people with diabetes and provide access to their health care teams (264). Consumers should read the policy regarding data privacy and sharing before entering data into an application and learn how they can control the way their data will be used (some programs offer the ability to share more or less information, such as being part of a registry or data repository or not).

Many online programs offer lifestyle counseling to achieve weight loss and increased physical activity (265). Many include a health coach and can create small groups of similar participants on social networks. Some programs aim to treat prediabetes and prevent progression to diabetes, often following the model of the Diabetes Prevention Program (266,267). Others assist in improving diabetes outcomes by remotely monitoring clinical data (for instance, wireless monitoring of glucose levels, weight, or blood pressure) and providing feedback and coaching (268–273). There are text messaging approaches that tie into a variety of different types of lifestyle and treatment programs, which vary in terms of their effectiveness (274,275). There are limited RCT data for many of these interventions, and long-term follow-up is lacking. However, for an individual with diabetes, opting into one of these programs can be helpful in providing support and, for many, is an attractive option.

Inpatient Care

Recommendations

7.33 In people with diabetes using personal CGM, the use of CGM should be continued when clinically appropriate during hospitalization, with confirmatory point-of-care glucose measurements for insulin dosing and hypoglycemia assessment and treatment under an institutional protocol.

7.34 People with diabetes who are competent to safely use diabetes devices such as insulin pumps and CGM systems should be supported to continue using them in an inpatient setting or during outpatient procedures, whenever possible, and when proper supervision is available.

Individuals who are comfortable using their diabetes devices, such as insulin pumps and CGM, should be allowed to use them in an inpatient setting if they are well enough to take care of the devices and have brought the necessary supplies (275–279). People with diabetes who are familiar with treating their own glucose levels can often adjust insulin doses more knowledgeably than inpatient staff who do not personally know the individual or their management style. However, this should occur based on the hospital’s policies for diabetes management and use of diabetes technology, and there should be supervision to ensure that the individual is achieving and maintaining glycemic goals during acute illness in a hospitalized setting where factors, such as infection, certain medications, immobility, changes in nutrition, and others, can impact insulin sensitivity and the insulin response (280–282).

With the advent of the coronavirus disease 2019 pandemic, the FDA exercised enforcement discretion by allowing CGM device use temporarily in the hospital for patient monitoring (283). This approach has been used to reduce the use of personal protective equipment and more closely monitor patients so that health care personnel do not have to go into a patient room solely to measure a glucose level (284–286). Studies have been published assessing the effectiveness of this approach, which may ultimately lead to the approved use of CGM for monitoring hospitalized individuals (278,287–296). When used in the setting of a clinical trial or when clinical circumstances (such as during a shortage of personal protective equipment) require it, CGM can be used to manage hospitalized individuals in conjunction with BGM. Point-of-care BGM remains the approved method for glucose monitoring in hospitals, especially for dosing insulin and treating hypoglycemia. Similarly, data are emerging on the inpatient use of AID systems and their challenges (278,297,298). For more information, see Section 16, “Diabetes Care in the Hospital.”

The Future

The pace of development in diabetes technology is extremely rapid. New approaches and tools are available each year. It is difficult for research to keep up with these advances because newer versions of the devices and digital solutions are already on the market by the time a study is completed. The most important component in all of these systems is the person with diabetes. Technology selection must be appropriate for the individual. Simply having a device or application does not change outcomes unless the human being engages with it to create positive health benefits. This underscores the need for the health care
team to assist people with diabetes in device and program selection and to support their use through ongoing education and training. Expectations must be tempered by reality—we do not yet have technology that completely eliminates the self-care tasks necessary for managing diabetes, but the tools described in this section can make it easier to manage.

References
46. Hohendorf J, Gumprecht J, Mysliwiec M, Zozulinska-Ziolkiewicz D, Malecki MT. Intermittently scanned continuous glucose monitoring data of polish patients from real-life conditions: more scanning and better glycemic control compared to worldwide data. Diabetes Technol Ther 2021;23:577–585
74. Teo E, Hassan N, Tam W, Koh S. Effectiveness of continuous glucose monitoring in maintaining glycaemic control among people with type 1 diabetes mellitus: a systematic review of randomised controlled trials and meta-analysis. Diabetologia 2022;65:604–619
91. Riveline JP, Roussel R, Vicaut E, et al. Reduced rate of acute diabetes events with flash glucose monitoring is sustained for 2 years after initiation: extended outcomes from the RELIEF study. Diabetes Technol Ther 2022;24:611–618
92. Wright EE Jr, Kerr MSD, Reyes LJ, Nabutovsky V, Miller E. Use of flash continuous glucose monitoring is associated with A1C reduction in people with type 2 diabetes treated with basal insulin or noninsulin therapy. Diabetes Spectr 2021;34:184–189
98. Häsková A, Radovická L, Petruželková et al. Real-time CGM is superior to flash glucose monitoring for glucose control in type 1 diabetes: the CORRIDA randomized controlled trial. Diabetes Care 2020;43:2744–2750
119. Ribeiro RT, Andrade R, Nascimento do OD, Lopes AF, Raposo JF. Impact of blinded retrospective continuous glucose monitoring on clinical decision making and glycemic control in
persons with type 2 diabetes on insulin therapy. Nutr Metab Cardiovasc Dis 2021;31:1267–1275
124. Friedmann A, de Montjoye L, Baecq M. Adverse cutaneous reaction to diabetic glucose sensors and insulin pumps: irritant contact dermatitis or allergic contact dermatitis? Contact Dermat 2020;83:25–30
132. Szmulowitz ED, Aleppo G. Interferent effect of hydroxyurea on continuous glucose monitoring. Diabetes Care 2021;44:e89–e90
146. Luijf YM, DeVries JH. Dosing accuracy of insulin pens versus conventional syringes and vials. Diabetes Technol Ther 2010;12(Suppl. 1):S1–S7
151. Thomas DR, Fischer RG, Nicholas WC, Beghe C, Hatten KW, Thomas JM. Disposable insulin syringe reuse and aseptic practices in

180. Vigersky RA, Huang S, Cordero TL, et al.; Opt2mise Study Group. Improved Hba1c, total daily insulin dose, and treatment satisfaction with insulin pump therapy compared to multiple daily insulin injections in patients with type 2 diabetes irrespective of baseline C-peptide levels. Endocr Pract 2018;24:446–452

pump therapy with predictive low-glucose suspend function on glycemic control and patient satisfaction in adults and children with type 1 diabetes. Diabetes Technol Ther 2018;20:738–743
239. Grunberger G, Sze D, Ermakova A, Sieradzan R, Oliveira T, Miller EM. Treatment intensification with insulin pumps and other technologies in patients with type 2 diabetes:

265. Chao DY, Lin TM, Ma WY. Enhanced self-efficacy and behavioral changes among patients with diabetes: cloud-based mobile health platform and mobile app service. JMIIR Diabetes 2019;e11017

266. Sepah SC, Jiang L, Peters AL. Translating the efficacy of the Omnipod 5 automated insulin dosing systems in the hospital to the home: a randomized controlled trial. Diabetes Technol Ther 2023;25:625–634

