Genome-wide linkage identifies novel modifier loci of aganglionosis in the Sox10Dom model of Hirschsprung disease

Sarah E. Owens¹, Karl W. Broman², Tim Wiltshire³, J. Bradford Elmore¹, Kevin M. Bradley¹, Jeffrey R. Smith¹ and E. Michelle Southard-Smith¹,∗

¹Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, TN 37232-0275, USA, ²Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205-2179, USA and ³Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA

Received February 17, 2005; Revised and Accepted April 12, 2005

Hirschsprung disease (HSCR) is a complex disorder that exhibits incomplete penetrance and variable expressivity due to interactions among multiple susceptibility genes. Studies in HSCR families have identified RET-dependent modifiers for short-segment HSCR (S-HSCR), but epistatic effects in long-segment (L-HSCR) and syndromic cases have not been fully explained. SOX10 mutations contribute to syndromic HSCR cases and Sox10 alleles in mice exhibit aganglionosis and pigmentary anomalies typical of a subset of HSCR patients categorized as Waardenburg–Shah syndrome (WS4, OMIM 277580). Sox10 mutant alleles in mice exhibit strain-dependent variation in penetrance and expressivity of agangionic megacolon analogous to the variation observed in patients with aganglionosis. In this study, we focused on enteric ganglia deficits in Sox10Dom mice and defined aganglionosis as a quantitative trait in Sox10Dom intercross progeny to investigate the contribution of strain background to variation in enteric nervous system deficits. We observe that the phenotype of Sox10Dom/+ mutants ranges over a continuum from severe aganglionosis to no detectable phenotype in the gut. To systematically identify genes that modulate Sox10-dependent aganglionosis, we performed a single nucleotide polymorphism-based genome scan in Sox10Dom F₁ intercross progeny. Our analysis reveals modifier loci on mouse chromosomes 3, 5, 8, 11 and 14 with distinct effects on penetrance and severity of aganglionosis. Three of these loci on chromosomes 3, 8 and 11 do not coincide with previously known aganglionosis susceptibility genes or modifier loci and offer new avenues for elucidating the genetic network that modulates this complex neurocristopathy.

INTRODUCTION

Phenotypes that display non-mendelian inheritance have challenged geneticists to define the genes and mechanisms that contribute to complex disease. Hirschsprung disease (HSCR) is a well-recognized complex disorder characterized by multi-genic inheritance, with minimally nine genes (RET, GDNF, NTN, EDN3, EDNRB, ECE-1, SOX10, ZFHX1B and PHOX2B) contributing to aganglionosis susceptibility in patients (1,2). HSCR is the most common cause of neonatal intestinal obstruction, with a general population incidence of one in 5000 live births. The disorder is clinically identified by the absence of enteric ganglia in a variable portion of the distal gastrointestinal tract. To facilitate genetic analysis, aganglionosis phenotypes in HSCR patients have been subdivided based on the extent of the affected gut segment. Long-segment HSCR (L-HSCR) includes patients with aganglionosis of, and proximal to, the splenic flexure, whereas the remaining cases are grouped as short-segment (S-HSCR) (1,3). Segregation analysis among S-HSCR patients suggests distinct models of segregation with multifactorial or recessive inheritance in effect for S-HSCR, whereas rarer dominant allele models are more consistent with L-HSCR (3). In the cases of isolated HSCR, where aganglionosis is the only
documented neural crest defect, RET mutations are the predominant genetic alteration. Syndromic HSCR, aganglionosis in the context of additional neural crest phenotypes, appears to be the consequence of genetic alteration in genes that are more broadly expressed across neural crest lineages. Regardless of the categorical classification of aganglionosis phenotype (S-HSCR versus L-HSCR; isolated HSCR versus syndromic HSCR), the variable penetrance and expressivity of this disease are attributed to complex genetic interactions between susceptibility loci and undiscovered modifiers in the genetic background that predispose to deficiencies of enteric neural crest (4–6).

Efforts to identify the gene interactions that contribute to phenotypic variation of aganglionic megacolon have focused on the RET locus and identified modifiers at 3p21, 9q31, 16q23 and 19q12 (4,7). These loci are hypothesized to result in misregulation of RET. Studies in HSCR families and mouse models demonstrate that interactions between RET and EDNRB also impact disease susceptibility (5,6). Recent molecular and genetic analyses in mice have expanded the gene network to include Ednrb–Sox10 among the interactions that modulate neural crest cells during enteric nervous system (ENS) ontogeny (8,9). Although in vitro studies have suggested that Sox10 is capable of mediating transcriptional regulation of Ret (10), Sox10 may also impact Ret via its interaction with Ednrb. Strategies to elucidate the gene interactions that contribute to variation in penetrance and severity of aganglionosis continue to be of great interest because mutations are seldom documented in >30% of total HSCR cases (1).

SOX10 is an essential neural crest transcription factor that is altered in some syndromic HSCR patients (11–13) and in Dominant megacolon (Sox10^{Dom}) mice (14,15). Patients with SOX10 alterations typically present with syndromic HSCR defined as aganglionosis associated with other deficits: hypopigmentation, deafness, iridia, nystagmus or ataxia. Sox10^{Dom} mice exhibit strain-dependent variation in aganglionosis penetrance and severity analogous to the heterogeneous enteric phenotypes of HSCR patients. This study focuses on the variation in aganglionosis between individual Sox10^{Dom} mice and uses this variation to identify modifiers that are influencing the aganglionosis aspect of the phenotype. These studies have been facilitated by the ability to control genetic background in inbred lines of Sox10^{Dom} mice that are not possible in patient studies. Previous candidate gene analysis has identified contributions of alleles at Ednrb to the variation among individual Sox10^{Dom} animals. Yet, only a minor proportion of aganglionosis variance in Sox10^{Dom} mice is attributable to the Ednrb locus, and the phenotype of Sox10/Ednrb double mutants is significantly different on distinct genetic backgrounds (8), implying the existence of additional modifier loci.

The variation in HSCR phenotype and potential number of genes that influence development of the ENS are not surprising when considered in the context of the complex biological processes that neural crest cells endure to populate the gastrointestinal tract. These cells must emigrate from the neural tube, traffic to the foregut, and migrate throughout the intestine, all the while proliferating, and differentiating to give rise to the glia and neurons of the enteric ganglia. Interestingly, assays of gene expression in enteric neural crest stem cells (NCSC) have established that genes that play a role in aganglionosis susceptibility are highly expressed in these cells and suggest that HSCR is a consequence of NCSC dysfunction (16). Sox10 is among the genes upregulated in NSCS and maintains both glial and neuronal stem cell potential in the neural crest (17). Consequently, modifiers of Sox10 are likely to be relevant to neurobiology of enteric stem cells and should further elucidate interacting pathways that are essential for normal development of enteric ganglia.

Candidate gene approaches can be informative, but they are typically based on the biological processes under investigation and are often limited by complete knowledge of all components in a pathway. In contrast, genome-wide linkage studies have the potential to identify essential genes in complex diseases that otherwise would be missed by candidate gene studies (18,19). In this report, we describe a genome-wide survey performed to comprehensively identify Sox10 modifier loci that affect the penetrance and extent of intestinal aganglionosis. Our analysis reveals modifier loci on mouse chromosomes 3, 5, 8, 11 and 14 that have distinct effects on the penetrance and severity of aganglionosis. Fine-mapping in the modifier interval on chromosome 5, coupled with bioinformatics analysis of genes in the interval, identifies several candidates that are highly relevant based on their expression in enteric neural crest. Our analysis is consistent with the hypothesis that the Sox10^{Dom} phenotype is modulated by loci in addition to Ednrb. This study contributes significantly to the epistatic network that modulates ENS deficits and will expand our understanding of neural development in the gut.

RESULTS
Evaluation of aganglionosis as a quantitative trait in Sox10^{Dom}+/F₂ mice

To establish the range of phenotypes among Sox10^{Dom}+/F₁ intercross progeny, we evaluated the extent of aganglionosis in postnatal day 7–10 (P7–P10) F₂ pups by whole-mount acetylcholinesterase (AChE) histochemistry. AChE staining detects cholinergic neurons in the ENS and is a rapid, high definition method for visualizing ganglia architecture. This technique is advantageous over sectioning because it preserves the three-dimensional organization of the intestinal tissue. All F₂ animals (n = 2210) were phenotyped and then genotyped for the Sox10^{Dom} mutation, with subsequent analyses focusing on Sox10^{Dom}+/ mutants. Genotyping results were consistent with the anticipated 50% transmission ratio, identified 1092 Sox10^{Dom}+/ mice, and confirmed the absence of enteric deficits in all pups that had wild-type genotype. Microscopic examination of Sox10^{Dom}+/ intestines stained by AChE allowed us to score the extent of gut length affected by hypo- and/or aganglionosis in individual animals as a quantitative trait. Consequently, the ready identification of individual mice at the extremes of the phenotype distribution allowed selective genotyping of Sox10^{Dom}+/ animals based either on penetrance (no hypo- or aganglionosis present) (Fig. 1B) or on severity (extent of gut length affected) in the F₂ phenotype distribution (Fig. 1A and B).
Regions of significant linkage detected in the initial genome scan were investigated further by genotyping all \(\text{Sox10}^{\text{Dom}/+} \) \(F_2 \) mice \((n = 1068) \) with the marker closest to each significant modifier. In this analysis, the ability to accurately quantify hypoganglionosis, aganglionosis and the total length of gut affected in \(\text{Sox10}^{\text{Dom}/+} \) mice allowed us to assign effects of individual modifiers either on penetrance or severity or on both (Fig. 3). The most significant modifier, on chromosome 5 (chr5) affects the penetrance and severity of both aganglionosis and total affected gut length phenotypes. The other modifier loci on chromosomes 8, 11 and 14 greatly affect penetrance of aganglionosis. Although multipoint LOD plots for these chromosomes demonstrate a notable effect on the severity of the total affected phenotype, this is largely due to individual mice that exhibit hypoganglionosis but no aganglionosis. When the 245 animals with hypoganglionosis but no aganglionosis are excluded (green curves in Fig. 3B), the loci on chromosomes 3, 8, 11 and 14 are seen to have little impact on the severity of the total affected phenotype.

Allele effects of \(\text{Sox10}^{\text{Dom}} \) modifier loci

Modifier loci either can increase susceptibility and severity of phenotype or can act protectively to confer resistance to disease in the face of a predisposing mutation (23). To assess the effects of individual \(\text{Sox10}^{\text{Dom}} \) modifiers (one at a time) on the penetrance and severity of aganglionosis, we evaluated complete genotype information in the total \(F_2 \) distribution. B6 alleles at modifier loci on chromosomes 5, 8, 11 and 14 increased both the proportion of individuals affected by aganglionosis and the extent of gut length affected by aganglionosis (Fig. 4). This is consistent with prior reports of more severe phenotype in \(\text{Sox10}^{\text{Dom}/+} \) mutants on the B6 background (8,24,25). In contrast, the chromosome 3 locus exerted an opposite effect with B6 alleles protecting mutants from the presence of aganglionosis and decreasing the severity of aganglionosis. All allele effects observed were approximately additive, with heterozygotes exhibiting phenotypes mid-way between the phenotype ranges of the homozygous animals, consistent with semi-dominant effects of each locus. Complete dominance was not detected for any of the modifier loci.

1.5-LOD support intervals define genomic intervals of \(\text{Sox10}^{\text{Dom}} \) modifier loci

To identify an approximate chromosomal location for each locus, 1.5-LOD support intervals were calculated for each modifier (26) (Fig. 5). Additional genotyping was performed for chromosomes 5, 11 and 14 using 23 additional markers to refine the positions and determine if these peaks were due to more than one modifier on each chromosome. Information for all markers used for genotyping is provided in Supplementary Material Table S1. Although the shape of the LOD curve for chromosome 11 suggested the possibility of multiple modifiers, after controlling for the locus at 42 cm, no further evidence for additional chromosome 11 loci was detected. Analysis of chromosomes 5 and 14 also supported the presence of only a single modifier. The refined mapping narrowed the 1.5-LOD support interval for chr5 to a location at 15–

Genome-wide linkage analysis identifies modifiers of \(\text{Sox10}^{\text{Dom}} \) aganglionosis penetrance and severity

Selective genotyping of individual animals at the extremes of the phenotype distribution increases the power to detect quantitative trait loci (20,21). We used this approach in our genome survey and determined genotypes of individual \(F_2 \) mice. Numbers of mice (y-axis) in each phenotype class defined in 2.5% gut length increments are plotted along the x-axis. Bracket in (A) identifies the most severely aganglionic 10% of the phenotype distribution \((n = 109) \) selected for genotyping. Plot of total affected phenotype in (B) includes both hypoganglionosis and aganglionosis. Animals representing the mildest 10% affected mice \((M, n = 107) \) and the non-penetrant animals \((\ast, \text{phenotype of } 0\% \text{ gut length affected, } n = 107) \) were selected for genotyping.

Figure 1. Evaluation of aganglionosis as a quantitative trait in \(\text{Sox10}^{\text{Dom}/+} \) \(F_2 \) mice. Phenotype distribution of aganglionosis \((A) \) and total length of the gut affected \((B) \) by ENS deficits in \(\text{Sox10}^{\text{Dom}/+} \) \(F_2 \) mice. Numbers of mice \((y\text{-axis}) \) in each phenotype class defined in 2.5% gut length increments are plotted along the x-axis. Bracket in \((A) \) identifies the most severely aganglionic 10% of the phenotype distribution \((n = 109) \) selected for genotyping. Plot of total affected phenotype in \((B) \) includes both hypoganglionosis and aganglionosis. Animals representing the mildest 10% affected mice \((M, n = 107) \) and the non-penetrant animals \((\ast, \text{phenotype of } 0\% \text{ gut length affected, } n = 107) \) were selected for genotyping.
Identification of candidate genes in chromosome 5 modifier interval

Bioinformatics approaches combining genome annotation with literature searches have been used successfully to identify biologically relevant genes within modifier intervals (27). We used the positions of the closest markers flanking the 1.5-LOD interval on chr5 to define the boundaries of this interval on the mouse genome assembly and search for genes that might be involved in development of enteric neural crest based on their expression profiles in the literature and public databases. A total of 59 genes within this interval were identified by Ensembl Martview (28). This listing of candidates was narrowed to include only those genes with reported expression in the embryo and in the gastrointestinal tract based on information in the PubMed and in the Gene Expression Database (29) (Table 1). Within this focused list, several highly relevant candidates were identified based on their documented expression in enteric neural crest cells in the developing gut. These include Uchl1 (PGP9.5), Atp8a1 and Phox2b. Uchl1, a ubiquitin ligase, is expressed early in the development of enteric neurons and maintained in mature neurons. Expression of Atp8a1, an aminophospholipid translocase, has been reported in embryonic enteric precursors but the developmental timing or cell-type specificity has not been determined (30). Phox2b is expressed in early enteric neural progenitors, maintained in differentiating neurons (31–33) and ablation of the gene leads to complete loss of enteric neurons in mice (34). It is notable that PHOX2B mutations have been reported in Haddad syndrome patients that exhibit features of central congenital hypoventilation defects syndrome in association with aganglionosis (2,35). Expansions of the second polyalanine tract in PHOX2B have been associated with severity of the neural crest defects in this syndrome (36) and specific haplotypes at PHOX2B are over-represented in HSCR patients in case–control studies (37). Phox2b is a logical and exciting candidate modifier for future study.

DISCUSSION

Variation in expressivity and penetrance of HSCR is the consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. Sox10 is a key transcriptional regulator, which is integral to the processes of ENS development. To identify the genome locations of new genes that impact ENS development and thus aganglionosis, we have undertaken a genome-wide linkage analysis in Sox10Dom/+ mice. Our study was designed to detect genetic modifiers, regions of the genome that do not exhibit an obvious phenotype, but in the context of the Sox10Dom mutation, exert an effect on the penetrance and severity of aganglionosis. Using this comprehensive approach, we have successfully identified five modifier loci of Sox10Dom on mouse chromosomes 3, 5, 8, 11 and 14.

We have demonstrated the value of defining aganglionosis as a quantitative trait in mouse models to map modifiers of aganglionic megacolon. Our approach allows us to estimate the genetic contribution to this phenotype and establishes that there is a significant genetic contribution to Sox10Dom hypoganglionosis ($h^2 = 0.52$), aganglionosis ($h^2 = 0.60$) and total affected phenotypes ($h^2 = 0.66$). This is consistent with previous reports of genetic background effects on Sox10 phenotypes (8,12,24,38 and 39). Importantly, phenotype
evaluation in mouse mutants like Sox10Dom is not limited by practical challenges associated with obtaining biopsy materials in human HSCR patients. Our characterization of Sox10Dom phenotype illustrates that enteric deficits are present as a continuum ranging from extremely severe aganglionosis to unaffected animals. In human HSCR, Sox10 mutations have been more frequently documented in syndromic HSCR cases (11,13), but reports of non-penetrant individuals with SOX10 alterations have been documented (12). Previous genetic studies of HSCR have attempted to simplify phenotypes by classifying patients into L-HSCR and S-HSCR categories based on the extent of gastrointestinal tract affected (3). Our characterization of Sox10Dom phenotype suggests that categorization of patients may be an over-simplification that could dilute the power to detect all modifier loci involved in a complex phenotype like aganglionosis. Although comparable studies have not been performed in Ret mouse models to investigate the effects of genetic background and range of phenotype, studies in HSCR patients indicate that aganglionosis also varies widely in RET patients (1,7,40).

Although chr14 position and allele effects are consistent with prior reports of Ednrb affecting aganglionosis in Sox10 mutants, three of the five modifier loci we identify map to novel regions on chromosomes 3, 8, and 11 that have not been previously reported. The identification of these novel modifier loci highlights the importance of systematic genetic analysis of HSCR to uncover the complex genetic architecture underlying this disorder.
been previously associated with HSCR. These novel modifier intervals do not coincide with syntenic regions of known aganglionosis susceptibility loci (RET, GDNF, NTN, EDN3, EDNRB, ECE-1, SOX10 and ZFHX1B) or previously mapped modifiers in HSCR patients (3p21, 19q12, 9q31 or 16q23) (4,5,7). Moreover, we determined that essential genes for neural crest development including Grb10, Pax3, Phox2a, dHand, Hox11L1, Krox20, Mash1, Pou3f1, Kit, Ikbkap, Dlx2 and Ikkbkap do not map to these regions. Sox8 has been recently reported as a modifier of aganglionosis in mice haploinsufficient for Sox10 based on the increased extent of aganglionosis in double mutant Sox10lacZ/Sox8lacZ mice (41). However, none of the modifier loci identified in our study map to the same location as Sox8, and no previous evidence suggests that naturally occurring variants at Sox8 influence HSCR.

It is possible that the chr5 modifier locus we identified is equivalent to Phox2b and if substantiated would offer significant support for the mechanistic view of HSCR as a stem cell disorder. Sox10–Phox2b interaction would be consistent with prior descriptions of HSCR as a stem cell defect (16) because the most likely temporal window for interaction between these two genes would occur in the NCSC just before or during early migration into the gut. In support of this hypothesis, Kim et al. (17) have reported co-expression of Phox2b in Sox10+ neural crest cells and loss of Phox2b expression in homozygous Sox10Dom/Dom embryos.

HSCR inheritance is complicated by epistasis, gender and parent-of-origin effects (1,7). The modifier loci identified in this study are, by definition, in epistasis with Sox10. However, when we tested pairwise interactions between the modifiers identified in our analysis, we saw no evidence for epistasis between these loci (data not shown). Gender effects in isolated human HSCR where RET alterations are the predominating alteration show a marked 4:1 predominance of males/females (3). Gender effects on penetrance of aganglionosis have also been reported for patients with alterations in ENDRB (42). There is not a greater incidence or severity of aganglionosis in Sox10Dom/+ males than in females. We previously reported a small gender specific effect for the direction of dominance at the Ednrb locus on the severity of aganglionosis in Sox10Dom/+ mutants (8). Our current findings are consistent with that result. In both cases, the analysis derived from comparison of C57BL/6J with C3 substrains, C3FeLe.B6-a and C3HeB/FeJ, respectively, and may reflect the common origin of these substrains. In our genome survey, we anticipated the potential to identify significant gender or parent-of-origin effects and established our crosses to facilitate detection; however, we observed little evidence for notable gender or parent-of-origin effects when we tested for these effects at the newly identified modifier loci. This is consistent with prior observations that notable gender effects have only been documented for RET and
EDNRB in human HSCR cases (1,42). It is possible that genome regions capable of exerting gender and parent-of-origin effects on Sox10^{Dom} phenotypes are equivalent between the B6 and the C3Fe strains that we have investigated. Future studies of Sox10^{Dom} mutants in additional strain backgrounds will determine whether Sox10 phenotypes are subject to the same gender and parent-of-origin effects observed in human HSCR or if these characteristics are unique to the RET and EDNRB loci and their modifiers.

We have summarized the gene interactions detected in this study and tried to define them in the context of what is known to date about epistatic effects in HSCR (Fig. 6). Others have established epistasis between Ret and Ednrb (5,6), while prior studies from our group identified effects of Sox10–Ednrb on aganglionosis phenotypes in Sox10^{Dom}/^{Dom} mutants. We did not detect any genetic interaction between Ret and Sox10 in our analysis despite prior in vitro studies suggesting Sox10 directly regulates Ret transcription (10). However, we strongly suspect that the B6 and C3Fe strains carry equivalent haplotypes through the Ret interval because screens to identify polymorphic markers in the immediate proximity of the Ret locus were not successful (V.A. Cantrell and E.M. Southard-Smith, unpublished data). Ret and Sox10 may exhibit epistasis in other strains that are divergent through the Ret interval. Given that Sox10 directly modulates Ednrb transcription (9), it is also possible that Sox10 may influence Ret activity via its interaction with Ednrb.

Our study does not exclude the potential for other HSCR modifiers and interactions that might be detected in additional strains, but instead emphasizes the value of investigating heterogeneous disorders like HSCR in mouse models where genetic background and input alleles can be controlled to provide additional power for genetic analysis.

Figure 6. Summary of gene interactions that contribute to heterogeneity of aganglionosis in HSCR. Heavy black arrows represent genetic interactions validated by analysis of double mutants in vivo. Lighter gray arrows indicate RET-dependent modifiers detected in human genetic studies. Effects of the 16q23 locus, although apparently confined to inbred Mennonite populations (5) may further inform the process of ENS development. Dashed arrow emphasizes potential for gene interaction between Sox10 and Ret based on in vitro studies. Modifiers of Sox10 identified in this study (Sox10m1-5) are shown in black text accompanied by gray shadowed arrows.

MATERIALS AND METHODS

Mice

All animal protocols were approved by the Institutional Animal Care and Use Committee at Vanderbilt University.
Table 2. Source crosses for generation of F1 intercross progeny

<table>
<thead>
<tr>
<th>Source cross</th>
<th>Number of breeding pairs</th>
<th>Number of Sox10Dom/+ progeny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (C3Fe × B6) F1 × male (C3Fe × B6.Dom) F1</td>
<td>8</td>
<td>260</td>
</tr>
<tr>
<td>Female (B6 × C3Fe) F1 × male (B6.Dom × C3Fe) F1</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td>Female (B6 × C3Fe) F1 × male (B6 × C3Fe) F1</td>
<td>7</td>
<td>283</td>
</tr>
<tr>
<td>Female (C3Fe × B6.Dom) F1 × male (C3Fe × B6) F1</td>
<td>10</td>
<td>315</td>
</tr>
<tr>
<td>Pups found dead before P7, no gut collected</td>
<td>NA</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>1092</td>
</tr>
</tbody>
</table>

aNumber of breeding pairs is defined as the number of Sox10Dom/+ parental mice used in each source cross. NA, not applicable.

Lines of Sox10Dom/+ mice congenic on the C57BL/6J background (B6N15.C3FeSox10Dom/+ (F1)) were crossed with C3HeB/FeJ (C3Fe) mice to generate B6N15.C3FeSox10Dom/+ (F1) progeny. Intercrosses were performed by crossing male B6N15.C3FeSox10Dom/+ (F1) mice to wild-type B6C3Fe or C3FeB6 females as well as reciprocal intercrosses between female B6N15.C3FeSox10Dom/+ (F1) mice and wild-type B6C3Fe or C3FeB6 males in order to explore the effects of imprinting (Table 2). From these crosses, 2210 F2 mice were generated. Of the total cohort, tissues were collected from 2184 animals for evaluation of ENS deficits. Gut tissues from P7–P10 pups were collected and processed for acetylcholinesterase whole-mount staining (AChE) using routine protocols (8) to visualize enteric ganglia. The extent of gut regions affected by either hypoganglionosis or aganglionosis was determined by microscopic examination. The entire length of the gut, as well as any hypo- or aganglionic regions, was measured. Lengths of the hypo- or aganglionic segment were divided by the total length of the gut to yield percentage of hypoganglionosis or percentage of aganglionosis. Total affected percentage was defined as the sum of percentage of hypoganglionosis and percentage of aganglionosis. Subsequent to AChE staining and quantitation of ENS deficits, animals were genotyped for gender and the presence of the Sox10Dom allele as described previously (15,43). Selective genotyping of individual animals at the extremes of the phenotype distribution was performed as described by Silver (44). Briefly, from the total distribution of 1068 Sox10Dom/+ animals, 109 F2 mice that represented the most severely aganglionic 10% from the tail of the phenotype distribution were selected and 107 F2 mice that represented the 10% most mildly affected were selected from the opposite tail of the distribution. To evaluate modifiers of penetrance, 107 (out of 126 total) non-penetrant F2 animals (phenotype of 0% gut length affected) were selected for genotyping.

Marker selection and detection

SNP markers selected on the basis of polymorphism between C57BL/6J and C3H/HeJ strains of mice were identified either from publicly available databases at the Whitehead Institute (www.genome.wi.mit.edu/SNP/mouse) and the Roche database (http://mouseSNP.roche.com) or from SNP screens performed at Novartis Research Foundation. A total of 98 SNP markers spanning all 19 autosomes and the X chromosome were chosen for the initial genome scan with an average inter-marker distance of ~18 cM. Twelve additional markers were applied in genotyping the tails of F2 phenotype distribution to refine the modifier interval on chromosome 5. Eight additional markers on chromosome 11 were likewise selected for genotyping to refine the broad interval and allow for further analysis of epistatic effects. Simple sequence length polymorphism markers neighboring Ednrb and Sox10 were also genotyped and included as components of the genome scan. In total, 121 markers (Supplementary Material, Table S1) were used for genotyping.

SNP genotypes were generated by single nucleotide primer extension with detection by fluorescence polarization (FP) (45). Reaction processing entailed three steps: a 4.2 μL PCR reaction, addition of 4 μL of an Exol and CIP reagent mix to degrade unincorporated primer and dephosphorylate dNTPs and a final addition of 4 μL of an Acyclopel and Acyclotermi- nator reagent mix for the primer extension reaction (AcycloPrime™-FP SNP Detection System, Perkin–Elmer, Boston, MA, USA). Each 4.2 μL of PCR mixture included 0.1 unit AmpliTaq Gold DNA polymerase, 1× Buffer II (Applied Biosystems, Foster City, CA, USA), 2.5 mM MgCl2, 0.25 mM dNTPs, 335 nM of each primer, and 2 ng DNA. Integrated automation was employed for genotyping in 384-well format (Tecan Genesis Workstation 200, Tecan GenMate, Velocity11 VSpin and MJ Tetrads). Incorporation of R110- and TAMRA-labeled Acyclotermi- nators was detected by FP on a Molecular Devices/LJL Analyst HT. Samples were genotyped in duplicate and in a few cases in triplicate to obtain the least number of uncalled genotypes possible for each marker in the total 326 samples assayed in the initial genome scan and for the closest marker to each modifier locus in the total F2 progeny of 1068 samples.

Statistical analysis

The heritability \(h^2 \) of ENS deficits in Sox10Dom mice was established by calculating the proportion of genetic variance to total variance \(\left(\frac{V_G}{V_T} \right) \), where \(V_G = \text{the phenotypic variance observed within the } \text{Sox10Dom } F_2 \text{ intercross progeny} \) \((n = 1068) \), and \(V_T = \text{the phenotypic variance within the } \text{Sox10Dom } F_1 \text{ parents} \) \((n = 39) \) used to perform the intercross. The heritability factor was calculated for three phenotypes: aganglionosis \((h^2 = 0.60) \), hypoganglionosis \((h^2 = 0.52) \), and total affected \((h^2 = 0.66) \). The significant genetic contribution to these phenotypes is consistent with previous reports of genetic background effects in congenic lines (8,24).
Table 3. Phenotype classes of Sox10Dom F\textsubscript{2} mice

<table>
<thead>
<tr>
<th>Sox10Dom Phenotype</th>
<th>Number of Sox10Dom F\textsubscript{2} mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Unaffected’, neither hypo- nor aganglionosis present</td>
<td>123</td>
</tr>
<tr>
<td>‘Hypo only’, no aganglionosis present</td>
<td>245</td>
</tr>
<tr>
<td>‘Agang only’, no hypoganglionosis present</td>
<td>3</td>
</tr>
<tr>
<td>‘Both’, hypo- and aganglionosis present</td>
<td>697</td>
</tr>
</tbody>
</table>

In the ‘agang only’ phenotype class, all three individuals had no hypo, but a large extent of aganglionosis; therefore three classifications were used in the analysis: unaffected (n = 123)/hypo only (n = 245)/aganglionosis (n = 700).

The total distribution of Sox10Dom F\textsubscript{2} animals comprised the following subsets in Table 3.

Statistical analyses to identify modifiers of Sox10Dom were performed via a two-part model (22), an extension of standard interval mapping appropriate for the case in which many individuals exhibit a non-penetrant phenotype of zero. We considered a single-modifier model and assumed that an individual with modifier genotype \(g\) has probability \(p_g\) of having a non-zero phenotype; and that, given its phenotype is greater than zero, it follows, approximately, a normal distribution with mean \(\mu_g\) and standard deviation \(\sigma\). We calculated three sets of LOD scores, to indicate the evidence for the presence of modifiers: LOD(\(p\)) concerns the test of the hypothesis that \(p_g = p\) for all \(g\), the penetrance; LOD(\(\mu\)) concerns the test of the hypothesis that \(\mu_g = \mu\) for all \(g\), the severity. LOD(\(p, \mu\)) combines the two. A log base 2 transformation was performed on all three phenotypes to attenuate the great skew in their distributions. Statistical analyses were performed with R/qtl version 0.99–9 (46).

Statistical significance was assessed via permutation tests (47), with 1000 permutation replicates. Interval estimates of modifier location were calculated via 1.5-LOD support intervals, which correspond to \(\approx 95\%\) confidence intervals (48).

Gender and parent-of-origin effects were assessed by splitting the data according to such covariates and by the inclusion of sex and/or parent-of-origin as additive covariates in the modifier analyses. The possibility of epistasis (interactions between modifiers) was assessed by testing for pairwise interactions between the loci identified in the single-modifier analyses. The possibility of multiple modifiers on chromosome 11, suggested by the multiple peaks in the LOD curve, was assessed by a two-dimensional, two-QTL scan of chromosome 11 only, and with the loci on chromosomes 3, 5, 8 and 14, included as additive covariates.

Nomenclature

The chromosome intervals that exert the specific effects on Sox10Dom penetrance and aganglionosis described in this manuscript have been approved by the Mouse Genome Informatics Nomenclature committee for designation as modifier loci: Sox10m1 (chr14), Sox10m2 (chr3), Sox10m3 (chr5), Sox10m4 (chr8) and Sox10m5 (chr11).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.

ACKNOWLEDGEMENTS

We thank Drs Al George, David Airey and David Threadgill for critical reading and thoughtful discussion of the manuscript. This work was supported by a Foundation for Digestive Health and Nutrition Research Scholar Award and US National Institutes of Health grants from NINDS (NS43556) and NIDDK (DK60047) to E.M.S.2.

Conflict of Interest statement. None declared.

REFERENCES

