Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression

Frank Zaucke1, Joana M. Boehnlein1, Sarah Steffens1, Roman S. Polishchuk4, Luca Rampoldi5, Andreas Fischer6, Andreas Pasch7, Christoph W. A. Boehm1, Anne Baasner2, Massimo Attanasio8,9, Bernd Hoppe3, Helmut Hopfer10, Bodo B. Beck3, John A. Sayer11, Friedhelm Hildebrandt8,9 and Matthias T. F. Wolf3,12,*

1Center for Biochemistry, Medical Faculty, 2Institute of Human Genetics and 3Department of Pediatric Nephrology, University Children’s Hospital, University of Cologne, Cologne, Germany, 4Department of Cell Biology and Oncology, Consorzio ‘Mario Negri Sud’, Santa Maria Imbaro (CH), Italy, 5Dulbecco Telethon Institute, DIBIT, San Raffaele Scientific Institute, Milan, Italy, 6Department of Nephrology, Kantonsspital Lucerne, Lucerne, Switzerland, 7Department of Nephrology and Hypertension, Inselspital, University of Berne, Berne, Switzerland, 8Department of Pediatrics and 9Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA, 10Department of Pathology, Universitätsspital Basel, Basel, Switzerland, 11Institute of Human Genetics, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK and 12Pediatric Nephrology, Children’s Medical Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9063, USA

Received November 15, 2009; Revised January 20, 2010; Accepted February 17, 2010

Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the ‘nephronophthisis–MCKD complex’, a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.

INTRODUCTION

Uromodulin (UMOD) mutations have been reported in three autosomal dominant tubulo-interstitial nephropathies: (i) medullary cystic kidney disease (MCKD2) (OMIM 603860), (ii) familial juvenile hyperuricemic nephropathy (FJHN) (OMIM 162000) and (iii) in glomerulocystic kidney disease (GCKD) (OMIM 609886) (1–3).

*To whom correspondence should be addressed. Tel: +1 2146483438; Fax: +1 2146482034; Email: matthias.wolf@utsouthwestern.edu

© The Author 2010. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
UMOD mutations result in a urinary concentration defect, urinary salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease (ESRD). MCKD2 is characterized by hypertension and ESRD in the fourth decade of life. Renal ultrasound in affected patients may show small corticomedullary cysts. MCKD2 shows a renal histologic triad of (1) tubular basement membrane disintegration (2), tubular atrophy with cyst development at the corticomedullary border and (3) interstitial cell infiltration associated with fibrosis. The condition shares clinical and morphological similarities with autosomal recessive juvenile nephronophthisis (NPHP) (4,5). In contrast to juvenile onset of ESRD and the autosomal-recessive inheritance in NPHP, MCKD2 leads to ESRD in adulthood and is inherited in an autosomal-dominant pattern (6). FJHN may present with hyperuricemia in childhood and early adult life (7). GCKD is characterized by a cystic dilatation of Bowman’s space and a collapse of the glomerular tuft. Familial GCKD can be associated with hypoplastic kidneys (3). All three disorders show significant clinical overlap. Characteristics of both FJHN and MCKD2 were described in one kindred (8). Another group published 10 kindreds with **UMOD** mutations and FJHN. Five of the 10 kindreds had renal cysts and even within the same family there was variation with regard to the presence of cysts (2). Because all three phenotypes can be caused by the same **UMOD** mutation, these three disorders (FJHN, MCKD2 and GCKD) have also been described as ‘Uromodulin-associated kidney disease’ (UAKD) (9,10).

The **UMOD** gene encodes the Uromodulin (UMOD) protein (alias Tamm-Horsfall protein) and contains three epidermal growth factor-like (EGF-like) domains, a cysteine-rich D8C domain, and a zona pellucida domain. Forty-six different missense mutations in the **UMOD** gene have been described (1–3,11,12). For MCKD2, FJHN and GCKD patients, decreased urinary UMOD excretion and retention of the misfolded UMOD in the endoplasmatic reticulum (ER) is a postulated mechanism of disease (2,3,12). The mutant UMOD protein showed delayed ER to Golgi trafficking (12,13) as a result of an altered protein conformation and leading to an increased rate of apoptosis (14).

UMOD represents the most abundant urinary protein in humans (15). UMOD is expressed in renal tubular cells primarily at the apical surface of the thick ascending loop of Henle (TAL) and of the early distal convoluted tubules. It is a transmembrane protein, which is secreted into the urine through pro teaseolytic cleavage of the glycosylphosphatidylinositol (GPI) anchor (16). UMOD is an 80–90 kDa macromolecule, which has been shown to be involved as a protective factor in urinary tract infections (UTI), in binding of complement factors and immunoglobulin light chains (to form casts in myeloma kidney), and as an inhibitor of nephrolithiasis (17–22). An Umod knock-out mouse model underlines the protective effects of UMOD in UTI caused by fimbriated *Escherichia coli* (23). Another mouse model (**UMOD**^{A22T}) shows that homozygous mice have a very similar phenotype to human UAKD with azotemia, impaired urine concentration and reduced urinary excretion of uric acid (24). In addition, a recent genome-wide association study found a significant single nucleotide polymorphism association of the **UMOD** locus with chronic kidney disease (25). Different modifications of the UMOD protein by N- and O-linked glycosylation have been described (26), and are responsible for interactions with interleukin-1, tumor necrosis factor-α, immunoglobulin light chains, IgG, complement 1 and 1q (20,21,27–29). Moreover stimulation of polymorphonuclear neutrophils, lymphocytes and monocytes by UMOD was shown (30–32). UMOD can directly activate dendritic cells via the Toll-like receptor 4 pathway, indicating a role in the innate immune response (33). In addition, the ability of UMOD to polymerize *in vitro* and so forming a gel-like structure has resulted in the hypothesis that UMOD is important for the water impermeability of the TAL (34).

Recently, ciliary expression of multiple ‘cystoproteins’, which are responsible for cystic kidney disease if altered, has been demonstrated (35). Expression in renal primary cilia was shown for: (i) polycystin-1 and -2, encoded by *PKD1* and *PKD2*, where mutations lead to autosomal-dominant polycystic kidney disease (ADPKD) (36); (ii) fibrocystin/polyductin, encoded by *PKHD1*, where mutations lead to autosomal-recessive polycystic kidney disease (ARPKD) (37); and (iii) the nephrocystin-1 to -11, proteins, where mutations in the genes *NPHP1*–*11* cause nephronophthisis (NPHP) (6). Ciliary and basal body expression was also shown for the protein products of Bardet–Biedl syndrome (BBS) genes. Patients with BBS and NPHP often share phenotypes (38). Ciliary expression has also been shown for the gene products of a number of cystic kidney knock-out mouse models implicating a role in the primary cilia for polaris, cystin, inversin and NEK8 (39–42). In addition, the transcription factor HNF1B was identified as an upstream regulator of nephrocystins and UMOD (43). In this report we describe seven novel mutations in the **UMOD** gene. Because of the previous hypothesis of the ‘MCKD—nephronophthisis’ complex, similar histopathological findings and the regulation of both genes by HNF1B, we were interested in studying: (i) if UMOD would be expressed in renal primary cilia, (ii) if mutant UMOD would show a different expression pattern and subcellular localization in human renal biopsies and (iii) if UMOD could be linked to the ciliary hypothesis of cystogenesis.

RESULTS

Mutation analysis

We performed mutational analysis in 54 individuals compatible with UAKD from 44 different unrelated kindreds. Out of the 54 individuals, 17 patients presented with familial disease in seven kindreds. Affected individuals underwent mutation analysis by exon polymerase chain reaction (PCR) and direct sequencing of all **UMOD** exons. We identified seven novel mutations in 11 individuals of seven kindreds: c.172 G > T (p.G58C); c.206G > A (p.C69Y); c.317G > A (p.C106Y); c.448T > A (p.G58C); c.688T > A (p.C248S); c.821A > C (p.W230R); c.967A > G (p.Y323C). In addition, we identified three previously published mutations in three individuals: 383del12/ins9 VCPEG93-97AASC; c.586G > A (p.D196N); c.897G > T (p.C300G) (1). A cysteine residue was substituted by another amino acid in four of the seven novel **UMOD** mutations and in two of the previously known mutations. In two of the seven novel
UMOD mutations another amino acid was changed to a cysteine. None of the mutations were found in 100 healthy Caucasian controls, indicating that our detected mutations are unlikely to be common polymorphisms and are most likely disease-causing. Moreover, the PolyPhen software (http://genetics.bwh.harvard.edu/pph/index.html) predicted all

<table>
<thead>
<tr>
<th>Individual</th>
<th>Age at onset (years)</th>
<th>S. Cr. (mg/dl)</th>
<th>GFR (ml/min/1.73 m²)</th>
<th>S. UA. (mg/dl)</th>
<th>Clinical characteristics</th>
<th>Ultrasound/biopsy findings</th>
<th>Mutation/ (amino acid change)</th>
<th>PolyPhen PSIC score difference²</th>
<th>Affected UMOD domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>13</td>
<td>25.3</td>
<td>3</td>
<td>n.d.</td>
<td>anemia, ESRD, HTN, HD, proteinuria</td>
<td>US: ↑ echogenicity, renal atrophy, cysts</td>
<td>c.172 G > T (G58C)</td>
<td>2.397</td>
<td>EGF-like domain 1</td>
</tr>
<tr>
<td>II-2</td>
<td>12</td>
<td>3.3</td>
<td>23</td>
<td>n.d.</td>
<td>anemia</td>
<td>US: ↑ echogenicity, cysts, Bx: TIF, cysts, TA</td>
<td>c.172 G > T (G58C)</td>
<td>2.397</td>
<td>EGF-like domain 1</td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-1</td>
<td>43</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>ESRD, positive FHxb</td>
<td>Bx: sister with Bx</td>
<td>c.206G > A (C69Y)</td>
<td>3.084</td>
<td>EGF-like domain 2</td>
</tr>
<tr>
<td>F8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>49</td>
<td>2.8</td>
<td>n.d.</td>
<td>n.d.</td>
<td>HTN, ESRD, positive FHxc</td>
<td>Bx: TA, LPI, interstitial scarring</td>
<td>383del12/ins9 (VCPEG93-97AASC)³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>50</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>positive FHxed</td>
<td>MRI: brother with renal cysts and S.Cr. of 1.5</td>
<td>c.317G > A (C106Y)</td>
<td>3.185</td>
<td>EGF-like domain 2</td>
</tr>
<tr>
<td>F4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-1</td>
<td>27</td>
<td>2.0</td>
<td>61</td>
<td>7.0</td>
<td>HTN, anemia, hyperuricemia</td>
<td>US: nL, Bx: TA, LPI, TIF</td>
<td>c.448T > A (C150S)³</td>
<td>2.505</td>
<td>Cysteine-rich domain</td>
</tr>
<tr>
<td>II-1</td>
<td>23</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>HTN, HD, NTX</td>
<td>US: small atrophic kidneys B/L</td>
<td>c.448T > A (C150S)³</td>
<td>2.505</td>
<td>Cysteine-rich domain</td>
</tr>
<tr>
<td>F9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>36</td>
<td>2.5</td>
<td>37.5</td>
<td>12.6</td>
<td>gout, HTN, nocturia, positive FHxed</td>
<td>Bx: chronic interstitial nephritis</td>
<td>c.688T > C (W230R)</td>
<td>3.902</td>
<td>D8C</td>
</tr>
<tr>
<td>F6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>18</td>
<td>1.5</td>
<td>53</td>
<td>9.2</td>
<td>HTN, HD</td>
<td>Bx: TA, TIF, thickened basement membrane anemia, HTN</td>
<td>c.743G > C (W230R)</td>
<td>3.121</td>
<td>D8C</td>
</tr>
<tr>
<td>II-2</td>
<td>18</td>
<td>2.2</td>
<td>58</td>
<td>n.d.</td>
<td>HTN, gout</td>
<td></td>
<td>c.743G > C (W230R)</td>
<td>3.121</td>
<td>D8C</td>
</tr>
<tr>
<td>F7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>13</td>
<td>1.5</td>
<td>60</td>
<td>3.0</td>
<td>HTN, microhematuria, hearing, impairment, MR, positive FHxed</td>
<td>Bx: glomerulosclerosis, TA</td>
<td>c.821A > G (Y274C)</td>
<td>2.758</td>
<td>D8C</td>
</tr>
<tr>
<td>F10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>33</td>
<td>1.4</td>
<td>39.4</td>
<td>8.2</td>
<td>HTN, positive FHxed</td>
<td>n.d.</td>
<td>c.898T > G (C300G)⁰</td>
<td>3.121</td>
<td>D8C</td>
</tr>
</tbody>
</table>

B/L, bilateral; Bx: biopsy; CHF, congestive heart failure; ESRD, end-stage renal disease; GFR, glomerular filtration rate; HD, hemodialysis; HTN, hypertension; LPI, lympho-plasmacellular infiltrate; MR, mental retardation; MRI, magnetic resonance imaging; n.d., no data; nl, normal; NTX, renal transplant; S. Cr, serum creatinine; S. UA., serum uric acid; TA, tubular atrophy; TIF, tubulo-interstitial fibrosis; US, ultrasound.

²PolyPhen at http://genetics.bwh.harvard.edu/pph/index.html.
³FHx: The patient’s mother (at the age of 54 years) and grandfather deceased because of ESRD. The patient’s 1 year younger brother is treated with HD. The patient’s 6 years younger sister has an elevated S.Cr. of 1.7 mg/dl. A renal US showed medullary cysts and increased echogenicity in her kidneys. A renal biopsy showed TIF, TA and nephrosclerosis.
⁴FHx: The patient’s brother, paternal grandfather and uncle have a history of ESRD.
⁵Previously published mutation.
⁶FHx: A brother of the patient had an elevated serum creatinin of 1.5 mg/dl and an MRI showed bilateral renal cysts. The father of both patients required hemodialysis. DNA was only available from II-1.
⁷The same amino acid has been found previously affected by a c.449G > C (C150S) mutation (3).
⁸FHx: A sister has ESRD and gout. The patient’s father died with advanced ESRD. No DNA was available from the father or the sister.
⁹The same amino acid has been found previously affected by a c.744C > G (C248W) mutation (10).
¹⁰FHx: Two brothers and a grandmother have been reported as affected. No DNA was available from these individuals.
¹¹FHx: The patient’s paternal grandmother and father suffer from ESRD. The father has also hypertension and gout.
(Fig. 1, lanes 1 and 2) were compared with UMOD purified UMOD. The IMCD3 lysates from different time points probed with the mouse monoclonal antibody directed against (PAGE) and after electrotransfer, the membranes were dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis possible primary cilia expression of UMOD, we characterized blot and immunofluorescence staining of cell cultures Characterization of the UMOD mouse antibody in western blot and immunofluorescence staining of cell cultures Prior to analysis of human kidney biopsies and cell cultures for possible primary cilia expression of UMOD, we characterized a primary UMOD antibody using western blots on cell lysates of IMCD3 cells. Lysates were separated on an 8% sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) and after electrotransfer, the membranes were probed with the mouse monoclonal antibody directed against UMOD. The IMCD3 lysates from different time points (Fig. 1, lanes 1 and 2) were compared with UMOD purified from urine (Fig. 1, lane 3, U). In cell lysates of post-confluent IMCD3 cells (which express primary cilia) grown for further 2 weeks, a clear band was detected by the UMOD antibody. This band had a molecular weight of 80 kDa as expected and the molecular weight is shown at the left side in kilodaltons. The 2-week-old IMCD3 cell lysate and the urine UMOD show the expected size of 80 kDa for UMOD. new mutations as probably damaging with significant position-specific independent counts (PSIC) score differences (Table 1). Mutations are mostly located in the EGF-like domains and the D8C domain.

Characterization of the UMOD mouse antibody in western blot and immunofluorescence staining of cell cultures

Prior to analysis of human kidney biopsies and cell cultures for possible primary cilia expression of UMOD, we characterized a primary UMOD antibody using western blots on cell lysates of IMCD3 cells. Lysates were separated on an 8% sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) and after electrotransfer, the membranes were probed with the mouse monoclonal antibody directed against UMOD. The IMCD3 lysates from different time points (Fig. 1, lanes 1 and 2) were compared with UMOD purified from urine (Fig. 1, lane 3, U). In cell lysates of post-confluent IMCD3 cells (which express primary cilia) grown for further 2 weeks, a clear band was detected by the UMOD antibody. This band had a molecular weight of 80 kDa as expected and migrated as the urinary UMOD. Staining of IMCD3 cells with the mouse antibody showed staining of the cytoplasm and the cilia. Primary cilia were visualized using an antibody directed against acetylated tubulin (Supplementary Material, Fig. S1). Pre-incubation of the antibodies with purified UMOD only reduced the staining for UMOD significantly but not for acetylated tubulin, thereby confirming specificity of the antibodies (Supplementary Material, Fig. S1).

In order to rule out any non-specific staining of the UMOD antibody to the cell surface or primary cilia, we treated IMCD3 cells with commercially available UMOD (up to 50 μg/ml) and repeated the UMOD antibody staining. No artificially increased UMOD staining was seen after the pre-incubation of cells with UMOD, indicating that the washing steps during the fixation and staining would remove non-specifically bound UMOD (data not shown). This experiment strongly suggests that the staining in renal tubules results from the expression of tubular cells rather than from urinary-free UMOD sticking non-specifically to the tubular surface.

Decreased UMOD expression in primary renal cilia of UMOD patients in human renal biopsies

In order to investigate the hypothesis that UAKD belongs to the group of diseases termed ciliopathies, we wanted to compare the number of UMOD-positive cilia in renal biopsy tissue from patients with known UMOD mutations versus control patient tissue.

In control experiments, we analyzed healthy renal biopsy tissue from four unaffected individuals for UMOD expression. We detected UMOD staining in ciliary structures pointing towards the tubular lumen (Fig. 2A). Co-staining with antibodies against acetylated tubulin confirmed that these structures are primary cilia (Fig. 2B). Two renal biopsies from patients with UMOD mutations were analyzed in detail. We anticipated a low number of patient biopsies, because a renal biopsy is not necessarily required for diagnosing UAKD.

Patient K11 (Fig. 2C and D) was diagnosed with a c.744C > G (C248W) mutation and her clinical characteristics have been extensively characterized (10). In summary, patient K11 is a female, who presented at the age of 46 years with a serum creatinine of 1.5 mg/dl, a glomerular filtration rate (GFR) of 58 ml/min/1.73 m² and a serum uric acid of 5.4 mg/dl. In addition, she had mild proteinuria and hypertension. A renal ultrasound showed four to five renal cysts bilaterally. A kidney biopsy revealed tubulo-interstitial sclerosis, fibrosis with interstitial lymphocytic cell infiltration, atrophic tubuli and a thickened basement membrane. After 6 years she required peritoneal dialysis. Patient F5 (Fig. 2E and F) was diagnosed with a novel c.668T > C (W230R) mutation, which was not present in 190 control individuals (Table 1). In order to rule out an unspecific effect reducing the ciliary UMOD staining owing to tubulo-interstitial kidney disease, we analyzed three kidney biopsies of patients with other tubulo-interstitial kidney diseases (Supplementary Material, Fig. S2). The three patients (C1–C3) were diagnosed with primary hyperoxaluria (C1) and interstitial nephritis (C2 and C3). In each renal biopsy specimen 20 tubules of the TAL, identified by intense UMOD staining, were analyzed for numbers of cilia and UMOD-positive cilia. In both of the UMOD patients' renal biopsies, we found a reduction in the total number of cilia in the TAL when compared with control samples (24 and 17 in 20 tubuli in each UMOD patient compared with the mean value of 44 in each of the four healthy control samples and 51 in each of the three patients with tubulo-interstitial kidney disease) (Table 2). About 86% of the primary cilia in the healthy control samples and 78% in the three patients with tubulo-interstitial kidney disease were UMOD-positive, while only 31% of cilia in UMOD patients were UMOD-positive (13 in two UMOD patients compared with 152 in the four healthy control samples and 119 in patients with tubulo-interstitial kidney disease) (Table 2). In patients with UMOD mutations, some primary cilia may still be found and appear morphologically normal, yet the total number of cilia and UMOD-positive
cilia seems to be significantly lower than in the control samples.

Analysis of IMCD3 cell cultures for ciliary expression of UMOD by immunofluorescence

IMCD3 cells were grown on coverslips and maintained at confluence for 5 days before fixation in order to ensure maximal ciliary growth. Cells were then co-stained with antibodies directed against UMOD (Fig. 3A and D) and the ciliary marker acetylated tubulin (Fig. 3B and E). Images taken at lower magnification reveal that almost every cell expresses a single cilium at that time point. Colocalization of acetylated tubulin and UMOD was seen at the base and along the entire length of the cilium (Fig. 3C and F), indicating UMOD expression in the ciliary axoneme in IMCD3 cells. Higher magnification images show a punctate staining pattern (Fig. 3C' and F'). These findings were confirmed by independent polyclonal antibodies against UMOD raised in goat (Fig. 3G) and γ-tubulin (Fig. 3H) indicated UMOD expression in the basal bodies (Fig. 3I and I'). All negative controls, omitting primary antibodies and using secondary antibodies alone remained unstained (data not shown).

Analyzing UMOD expression in cilia by electron microscopy

In order to verify ciliary UMOD expression in IMCD3 cells, we performed immunogold labeling and electron microscopy (EM). Prior studies with EM have demonstrated impaired trafficking and retention of mutant UMOD in the ER (13). In post-confluent IMCD3 cells, UMOD was detected by immunogold labeling at the primary cilium, at the plasma membrane and in the ER (Fig. 4A). In post-confluent IMCD3 cells, UMOD was detected by immunogold labeling at the primary cilium, at the plasma membrane and in the ER (Fig. 4A). To prove further the point that our antibody is specific and is able to label UMOD inside the cells, we employed HeLa cells transfected with the C150S UMOD mutant. This mutant accumulates mainly within the ER, while it is almost absent at the plasma membrane (13). EM pictures clearly show specific labeling of the ER and nuclear
envelop in transfected cells, while no labeling can be seen inside untransfected cells (Fig. 4B). This suggests that the antibody specifically labels intracellular structures when UMOD is present.

Mutant UMOD transfected IMCD3 cells show no UMOD ciliary expression

Examination of the renal tissue from two patients with UMOD mutations (K11 and F5) had revealed firstly a decrease in the total number of cilia and secondly a reduction in the number of UMOD-positive cilia when compared with controls (Fig. 2, Supplementary Material, Fig. S2, Table 2). In order to support our findings in human kidney biopsies, we transfected IMCD3 cells using previously described UMOD constructs, including two UMOD missense mutations (C150S, T225K) (13). We used an antibody directed against green fluorescent protein (GFP) to visualize exclusively transgenic UMOD (13). We used an antibody directed against green fluorescent protein (GFP) to visualize exclusively transgenic UMOD and intracellular protein aggregates were detected frequently inside untransfected cells (Fig. 4B). This suggests that the antibody specifically labels intracellular structures when UMOD is present.

Analysis of colocalization of UMOD, nephrocystin-1 and KIF3 in IMCD3 cells by immunofluorescence

In order to investigate whether UMOD colocalizes with other cystoproteins, IMCD3 cells were co-stained with antibodies directed against UMOD (Fig. 6A and D), nephrocystin-1 (Fig. 6B) and kinesin family member 3A (KIF3A) (Fig. 6E), respectively. Immunofluorescence showed a partial colocalization of UMOD with both nephrocystin-1 and KIF3A in cilia (Fig. 6C and F).

Analyzing UMOD expression in dividing IMCD3 cells

As nephrocystin-4 (alias nephroretinin), inversin (alias nephrocystin-2), nephrocystin-6 and RPRGIP1L (alias nephrocystin-8) were all shown to be expressed in the mitotic spindle poles (44–46), we were interested if UMOD would also be expressed at this position. Figure 7 shows staining of IMCD3 cells with polyclonal rabbit antibodies for UMOD (Fig. 7A) and acetylated tubulin (Fig. 7B). In mitotic cells, UMOD and acetylated tubulin colocalized at the spindle poles (Figs. 7C and C') in a similar manner to nephrocystin-4 (nephroretinin) and inversin (44,47).

DISCUSSION

In patients with clinical evidence of UAKD, we found a total of seven new UMOD mutations in 11 individuals and confirmed three previously published mutations in another three individuals (Table 1). In our patient group, a cysteine residue was involved in six out of seven of the new mutations and in two out of the three known mutations. Cysteine is crucial for the formation of disulfide bridges and thus influences protein conformation. All new mutations were found in individuals with an autosomal-dominant pattern of renal disease. One patient (F7) had a more complex phenotype including mental retardation and hearing impairment. Five of the 11 patients had gout or hyperuricemia. All of our mutations are either missense mutations or deletions and occur in exons 4 or 5.

Patient F5’s kidney biopsy appears more severely affected by the disease with significantly more tubular atrophy than patient K11. In comparison with patient K11, patient F5 had an earlier age of onset (36 versus 46 years), a lower GFR (37.5 versus 58 ml/min/1.73 m²) and a higher serum creatinine (2.5 versus 1.5 mg/dl). Patient K11 had a severe clinical course and was started on peritoneal dialysis at 52 years. For patient F5, we do not have a significant follow-up period yet. Currently, patient F5 has chronic kidney disease stage 3 and no dialysis requirement.

By demonstrating an aberration in ciliary expression of UMOD, we suggest a novel pathophysiological mechanism for the etiology of MCKD2, FJHN and GCKD, by describing abberant ciliary expression of UMOD in patients with UMOD mutations. MCKD has previously been described to be part of the disease complex called ‘nephronophthisis–MCKD complex’ (4,5), given the fact that renal biopsies of patients with MCKD or nephronophthisis are indistinguishable. UMOD co-expression with nephrocystin-1 in the mitotic spindle and the decreased number of UMOD-positive cilia in

<table>
<thead>
<tr>
<th>Sample</th>
<th>UMOD-positive cilia (%)</th>
<th>P-value*</th>
<th>No. of tubules analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group (n = 4)</td>
<td>152/176 (86)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>UMOD patients (n = 2)</td>
<td>13/41 (31)</td>
<td>0.0028</td>
<td>40</td>
</tr>
<tr>
<td>TIKD patients (n = 3)</td>
<td>119/152 (78)</td>
<td>0.565</td>
<td>60</td>
</tr>
</tbody>
</table>

*Fisher exact test determined two-tailed P-value.
the kidney biopsies of UMOD patients suggests a specific function of UMOD in cilia. We showed that the reduced ciliary UMOD staining is specific for UMOD mutations and cannot be found in kidney biopsies of patients with other tubulo-interstitial kidney disorders (Supplementary Material, Fig. S2). Using transfection of wild-type and mutant UMOD constructs into IMCD3 cells, we reproduce the mislocalization defect for mutant UMOD in IMCD3 cells. The level of expression was similar for both constructs but the subcellular localization was clearly different (Fig. 5). We then analyzed the presence of cilia in transfected cells and could show that overexpressed wild-type UMOD could be detected in cilia. Expression of mutant UMOD showed absence of UMOD expression in primary cilia but did not result in a loss of cilia excluding a dominant-negative effect on cilia formation. Our findings suggest that there may be a common pathomechanism between these separate genetic diseases, as their gene products colocalize to the same subcellular structures and suggest an involvement of UMOD in the nephrocystin multiprotein complex. There is significant overlap in the regulation and function of nephrocysts, polycysts, polyductin and UMOD, which supports our hypothesis. Firstly, a centrosomal localization was shown for nephrocystin-4, nephrocystin-6, RPGRIP1L/nephrocystin-8 and NEK8/nephrocystin-9 (44–46,48), while ciliary and basal body localization was demonstrated for nephrocystin-4 and RPGRIP1L/nephrocystin-8 (44,46). This corresponds to the same location where we identified UMOD by colocalization with γ-tubulin. Pyk2 and p130Cas have been shown to be part of the nephrocystin-1/nephrocystin-4 multiprotein complexes (44,49). A similar multiprotein complex was described for polycystin-1 and -2 with KIF3B (50). Even though colocalization does not necessarily mean that the proteins are active in the same pathway, we here show colocalization of UMOD with nephrocystin-1 and KIF3A, suggesting that UMOD may take part in such a multiprotein complex.

Secondly, it is interesting, that UMOD is also regulated by HNF1B, a transcription factor which also activates the nephrocysts and polycysts (43). Moreover, sequence analysis has revealed ciliary localization sequences in polycystin-2 and G-protein-coupled receptors (51,52). A very short ciliary localization sequence shown for mouse somatostatin receptor 2 and 5 is shared by UMOD. This ciliary localization sequence encompasses the amino acids IRVG from position 448 to 451 and is located at the beginning of exon 8.

It is intriguing to speculate whether a secreted protein can play a role in planar orientation. Similar to UMOD, polyductin, which if altered causes ARPKD, is expressed in the primary cilium and is also secreted (53,54). The shed polyductin ectodomain and a concomitant C-terminal product, which is localized to the nucleus, may regulate the planar orientation of developing renal tubules in a paracrine fashion (53,54). This could imply that ciliary localized and secreted forms of proteins could have different functions.

Furthermore, ciliary function includes mechanosensation of urinary flow (55). It is speculated that the primary cilium sense the urine flow and thus provide vectorial information for orientated cell division (56). It is tempting to speculate that the protein expression in the TAL may be regulated by a mechano- or osmosensor, such as the primary cilium. Cilia are also involved in the canonical Wnt signaling pathway.
We think that the conditional Kif3a knock-out mouse model (59) may improve our understanding with regard to phenotype variability. Adult conditional Kif3a knock-out mice did not develop cysts rapidly, despite a loss of primary cilia. However, acute kidney injury exacerbated cystic kidney disease underlining that Kif3a in primary cilia are required for the maintenance of planar cell polarity in the kidney (59). Only an additional trigger-like induction of acute renal injury, which resulted in increased cell proliferation, caused the development of renal cysts in mice (59).

Treatment of UMOD patients has been very challenging with contradictory reports about successful treatment with allopurinol and benzbromarone (7). Recently, inhibition of URAT1 by losartan was published (60), providing us with a new alternative medication for the treatment of hyperuricemia, which also addresses hypertension and proteinuria in UMOD patients.

Here, we present evidence that UMOD is ciliary and centrosomal expressed, implicating UMOD as a cystoprotein. We show that a decreased ciliary UMOD expression occurs following C150S, T225K (both in cell culture), W230R and C248W (both in kidney biopsies) UMOD mutations and may provide a pathophysiological mechanism contributing to this disease. We link UMOD to the ciliary network of proteins by colocalization with nephrocystin-1 and KIF3A. It is likely that UMOD is part of a multiprotein complex and takes part in the maintenance of cilia.

MATERIALS AND METHODS

Patients

We ascertained blood from 54 individuals from 44 different families who had a phenotype consistent with UAKD. Families are from Germany, Switzerland, the Netherlands, the UK and USA. Age at diagnosis, age at onset of ESRD, hyperuricemia, imaging data and biopsy results were reviewed if available. Diagnostic criteria were normal or small-sized kidneys with occasional small cortico-medullary cysts and renal insufficiency. At least one of the optional criteria as hypertension, a family history of renal disease, reduced fractional urinary excretion of uric acid or hyperuricemia was required. Hyperuricemia was defined as serum uric acid concentration >1 standard deviations higher than the normal values for age and gender (61). Renal biopsies from the UMOD patients were obtained where available. The kidney samples used as a control for UMOD expression were obtained from healthy poles of kidneys from nephrectomy specimens as part of the treatment for renal tumors. Additional control samples from patients with other tubulo-interstitial kidney disease were obtained from one patient with primary hyperoxaluria and two patients with interstitial nephritis. Samples were routinely fixed in 4% formaldehyde and embedded in paraffin. The study was approved by the institutional review board of the University of Cologne, Medical School. All participating family members provided informed consent.

Mutational analysis of the UMOD gene

Mutational analysis was performed by exon PCR of the UMOD gene. Primer sequences were used as described by...
Figure 5. Overexpression of wild-type and mutant UMOD in IMCD3 cells. IMCD3 cells were transfected with wild-type (A,C,E,G) or C150S mutant UMOD–EGFP fusion constructs (B,D,F,H) and processed for immunofluorescence staining. Using an antibody directed against GFP, wild-type UMOD was mainly localized to the cell surface (A), while C150S mutant UMOD was detected mainly intracellularly in larger aggregates (B). A co-staining with antibodies directed against GFP and acetylated tubulin revealed ciliary expression for wild-type UMOD. Ciliary structures stained with both antibodies are indicated by arrows (C,E,G). In contrast, transfection with mutant UMOD did not result in ciliary UMOD localization (D,H). However, mutant UMOD-expressing cells still display cilia as indicated by arrows (F). A merge of the boxed areas in Figure 5C–F is shown in higher magnification (G,H). The scale bar represents 10 μm.
Wolf et al. (11). PCR products were purified using the Marli-
gen Rapid PCR Purification System. Purified PCR products
were sequenced, using a Genetic Analyzer 3700 (Applied Bio-
systems) and resulting sequences were evaluated with the
Sequencher™ software.

Cell culture and transfection

mIMCD3 cells were obtained from the American Type
Culture Collection (www.atcc.org).

IMCD3 cells were maintained in DMEM/F12 media (Invi-
trogen) supplemented with 10% fetal calf serum, 2.5 mM
l-glutamine, 15 mM HEPES, 0.5 mM sodium pyruvate, 1.2 g/l
sodium bicarbonate. IMCD3 cells were transfected with
Fugene (Roche) according to the manufacturer’s instructions.
The GFP-tagged wild-type and missense mutant (C150S,
T225K) constructs have been described in detail (13).

SDS-PAGE and immunoblotting

Cell extracts were prepared by directly adding 2× SDS
sample buffer (50 mM Tris–HCl, pH 6.8, 2% (w/v) SDS,
20% glycerol and 0.025% (w/v) bromphenol blue) to
the cell layer. Samples were reduced (4% 2-mercaptoethanol,
followed by 7 min heating at 95°C) and separated using 8%
SDS–PAGE and transferred to nitrocellulose. After blocking,
membranes were incubated either 1 h at room temperature
(RT) or overnight at 4°C with primary antibodies (mouse
monoclonal antibody against uromodulin, 1:500 dilution,
Biozol, Eching, Germany), washed, incubated for 1 h at RT
with a peroxidase-labeled antibody (Dako, Glostrup,
Denmark), washed again and visualized with enhanced chemi-
luminescence. Specificity of the immunoblot was determined
by co-migration with purified human uromodulin (Human
Tamm Horsfall Glycoprotein, SCIPAC Ltd., Sittingbourne,
UK) and diluted urine. In blocking experiments, the primary
antibody directed against UMOD was preincubated overnight
at 4°C with UMOD protein purified from urine.

Immunofluorescence

For immunofluorescence stainings, 20 000 cells were grown
on glass chamber slides (Nalge Nunc Int., Rochester, NY,
USA) for the indicated time after having reached confluency.
Cells were fixed with 100% methanol for 10 min at −20°C,
washed, blocked with 1% normal goat serum or 5% fetal calf
serum and incubated with primary antibodies either for 2 h at
RT or overnight at 4°C: mouse anti-human Tamm-Horsfall

Figure 6. Colocalization of UMOD with nephrocystin-1 and KIF3A in cilia. IMCD3 cells were stained with antibodies directed against UMOD (A,D)
nephrocystin-1 (B) and KIF3A (E). A merge of these stainings (C,F) demonstrate partial colocalization of UMOD with nephrocystin-1 and KIF3A. The
scale bar in (C) and (F) represents 5 μm.

Figure 7. Detection of UMOD expression in the mitotic spindle poles. IMCD3 cell cultures were co-stained with antibodies directed against UMOD (A)
and acetylated tubulin (B). In a mitotic cell, both signals colocalize in the spindle poles indicated by arrows (C). Higher magnification (C′). The scale bar in (C) and
(C′) represent 10 and 5 μm, respectively.
protein (THP) monoclonal IgG2b (Biozol, Eching, Germany; dilution 1:500), goat anti-human THP polyclonal IgG (MP Biomedicals, Illkirch, France; dilution 1:100) or rabbit anti-human THP polyclonal IgG (Biotrend, Cologne, Germany; dilution 1:500) for UMOD detection; rabbit anti-nephrocystin-1 (NPHP1) polyclonal IgG (Biozol, Eching, Germany; dilution 1:100) and rabbit anti-KIF3A polyclonal IgG (Sigma, Saint Louis, USA; dilution 1:500) for spindle and plasma membrane localization; mouse anti-acetylated tubulin monoclonal IgG (Sigma, Saint Louis, USA; dilution 1:2000) and rabbit anti-acetylated tubulin polyclonal IgG (Biomol GmbH, Hamburg, Germany; dilution 1:500) for cilium detection; mouse anti-y-tubulin monoclonal IgG (Sigma; dilution 1:300) for centrosome localization and anti-GFP rabbit polyclonal (Abcam, Cambridge, UK; dilution 1:500). For detection, fluorescence-labeled antibodies Alexa Fluor 488 goat anti-rabbit IgG, Alexa Fluor 488 donkey anti-goat IgG, Cy3 goat anti-mouse IgG, Cy3 donkey anti-rabbit IgG (Jackson Molecular Probes; dilution 1:1000) were used. For nuclear counterstaining, bisbenzimide (Sigma, Germany) was added to the cells for 3 min at a final concentration of 0.05 μg/ml. Slides were mounted in fluorescence mounting medium (DakoCytomation, Glostrup, Denmark) and analyzed by fluorescence (Axiophot, Zeiss) or confocal microscopy (Leica DMIRE 2). The blocking experiment was performed as described above. Paraffin-embedded tissue sections were processed using standard protocols and stained as described above.

Immuno-electron microscopy analysis

Confluent IMCD3 cells and transfected HeLa cells were fixed with a mixture of 4% paraformaldehyde and 0.05% glutaraldehyde 6–8 h after transfection, labelled with goat polyclonal primary antibody against uromodulin (ICN biomedicals) using the gold-enhance protocol, embedded in Epon-812 and cut as described previously (62). EM images were acquired from thin sections under a Philips Tecnai-12 electron microscope (Philips, Eindhoven, The Netherlands) using an ULTRA VIEW CCD digital camera.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

We thank Dr B. Steiner and Professor Dr A. Schinzl from the University of Zurich, Switzerland; Dr C. Ferandos; Professor Dr H.P. Neumann from the University of Freiburg, Germany; Drs L. Pena and D. Waggoner from the University of Chicago, USA; and Dr M. Azar from the University of Texas, San Antonio, USA for sending us DNA from UAKD patients. We thank Dr Heike Göbel from the Institute of Pathology, University of Cologne, Germany, for making the kidney biopsy slides for the antibody staining experiments.

Conflict of Interest statement. None of the authors has a conflict of interest.

FUNDING

This work was supported by the Koeln Fortune Program Faculty of Medicine, University of Cologne (184/2004); Deutsche Nierenstiftung; and the German Research Foundation (DFG WO 1229/2-1) (for M.T.F.W.) and NIH (DK064614, DK069274 and DK068506) (for F.H.). J.A.S. is a GlaxoSmithKline clinician scientist. F.H. is a member of the Howard Hughes Medical Institute, a Doris Duke Distinguished Clinical Scientist and a F.G.L. Huetwell Professor. L.R. is financially supported by Telethon-Italy (Grant TCR08006) and through Coordination Theme 1 (Health) of the European Community’s 7th Framework Program, EUNEFRON (GA number HEALTH-F2-2007-201590). L.R. is an Associate Telethon Scientist.

REFERENCES

