Noggin null allele mice exhibit a microform of holoprosencephaly

Eva Lana-Elola1,2, Przemko Tylzanowski3, Maarit Takatalo4, Kirsi Alakurtti4, Lotta Veistinen4, Thimios A. Mitsiadis5, Daniel Graf5, Ritva Rice1,2, Frank P. Luyten3 and David P. Rice1,2,4,6,*

1Department of Craniofacial Development and 2Department of Orthodontics, King’s College, London, UK, 3Laboratory of Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, Katholieke Universiteit Leuven, Leuven, Belgium, 4Department of Orthodontics, Institute of Dentistry, University of Helsinki, Finland, 5Department of Orofacial Development and Structure, Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, Zurich, Switzerland and 6Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland

Received July 6, 2011; Revised and Accepted July 25, 2011

Holoprosencephaly (HPE) is a heterogeneous craniofacial and neural developmental anomaly characterized in its most severe form by the failure of the forebrain to divide. In humans, HPE is associated with disruption of Sonic hedgehog and Nodal signaling pathways, but the role of other signaling pathways has not yet been determined. In this study, we analyzed mice which, due to the lack of the Bmp antagonist Noggin, exhibit elevated Bmp signaling. Noggin2/2 mice exhibited a solitary median maxillary incisor that developed from a single dental placode, early midfacial narrowing as well as abnormalities in the developing hyoid bone, pituitary gland and vomeronasal organ. In Noggin2/2 mice, the expression domains of Shh, as well as the Shh target genes Ptch1 and Gli1, were reduced in the frontonasal region at key stages of early facial development. Using E10.5 facial cultures, we show that excessive BMP4 results in reduced Fgf8 and Ptch1 expression. These data suggest that increased Bmp signaling in Noggin2/2 mice results in downregulation of the hedgehog pathway at a critical stage when the midline craniofacial structures are developing, which leads to a phenotype consistent with a microform of HPE.

INTRODUCTION

Holoprosencephaly (HPE) is a developmental anomaly that can present as a range of midline craniofacial and neural malformations. HPE is the most common developmental defect of the forebrain and is characterized by the abnormal separation of the telencephalon into left and right hemispheres and the associated abnormal development of midline neural structures. Alobar HPE is the most severe form of this developmental defect, in which the prosencephalon does not separate along both its medial–lateral and anterior–posterior axes which result in a single uncleaved cerebral lobe, and the telencephalon and diencephalon remain unsegmented. There is a spectrum of clinical facial features including the presence of only one upper central incisor tooth with an absent maxillary midline frenum, cleft of the lip and palate, nasal defects including single nostril and nasal agenesis, central proboscis, hypotelorism and cyclopia (1,2). When these features appear without defects in the central nervous system, they are termed ‘microforms’. HPE occurs in 1 in 7600 live births (3). However, the incidence is much higher, 1 in 240, during early embryogenesis with most embryos undergoing spontaneous abortion (4).

The etiology of HPE is heterogeneous with both genetic and environmental factors. Environmental factors include poorly controlled maternal diabetes, alcohol, vitamin A analogues and alteration in cholesterol metabolism (5). Approximately 25% of HPE cases are syndromic; these syndromes include Pallister–Hall, Rubinstein–Taybi and Smith–Lemli–Opitz. In non-syndromic cases, 12 different chromosomal loci have been implicated in HPE and mutations in 7 genes have been found to cause HPE, and these are all members of the Hedgehog and Nodal signaling pathways. Genes with mutations

*To whom correspondence should be addressed at: Department of Orthodontics, Institute of Dentistry, Room C229a, Biomedical Helsinki, PL 63 (Hartmaninkatu 8), 00014 University of Helsinki, Finland. Tel: +358 919127387; Fax: +358 919125371; Email: david.rice@helsinki.fi

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
known to cause HPE are Shh (HPE3), the Hedgehog receptor Patched 1 (PTCH1) (HPE7), the transcription factors GLI2, SIX3 (HPE2) and ZIC2 (HPE5), the Hedgehog regulator GAS1, as well as Transforming growth factor interacting factor (TGIF) and Teratocarcinoma-derived growth factor 1 (TDGF1/CRIPTO) (6–8).

Evidence from animal forebrain developmental studies and the characterization of some of the genes causing HPE in humans suggest that distinct mechanisms underlie the two major classes of HPE (9). First, ‘classic’ HPE in which the ventral telencephalon is most severely affected and where the ventralizing effects of Shh signaling are disrupted. Second, midline interhemispheric HPE or syntelencephaly in which the dorsal telencephalon fails to split while the ventral telencephalon may be normal, and the dorsalizing effect of Bone morphogenetic protein (Bmp) signaling is disrupted. Evidence for the role of Bmp signaling in the pathogenesis of midline interhemispheric HPE comes from the analysis of Bmpr1a−/−; Bmpr1b−/− compound mutant mice which exhibit a loss of all dorsal midline cell types without affecting the specification of cortical and ventral precursors in the telencephalon (10).

Bmps regulate many aspects of craniofacial morphogenesis (11). Variations in Bmp signaling create morphological species-specific diversification of the middle and upper face (12,13) and Bmps together with retinoid acid specify the identity and regulate the growth of the frontonasal mass and maxillary prominences (14,15). Noggin is an extracellular Bmp antagonist which binds, with picomolar affinity, to Bmp2, 4, 6 and 7 (16). This high-binding affinity prevents Bmps from binding to their receptors and subsequent signal transduction. Noggin null allele mice exhibit elevated Bmp signaling which results in patterning and growth defects of the neural tube and somites. In the appendicular and axial skeleton cartilage is hyperplastic and there is a failure to initiate joint formation (17–20).

In this study, we show that Noggin is expressed in the midline of the developing upper face and that Noggin−/− mouse embryos exhibit craniofacial abnormalities which equate to a microform HPE. More specifically, the mutant mice display a solitary median maxillary incisor, midfacial narrowing and abnormalities in the developing hyoid bone, pituitary gland and vomeronasal organ (VO). The Shh signaling pathway regulates midface development and has also been implicated in HPE. We found smaller expression domains of Shh, and the Shh target genes Ptc1 and GlI1 in the frontonasal region of Noggin−/− mice compared with their wild-type (WT) littermates. Using bead implantation assays on E10.5 WT upper facial explants, we show that excessive Bmp4 protein results in reduced expression of both Fgfl8 and Ptch1.

Taken together, the present data suggest that disrupted Bmp signaling can result in HPE by regulating the Fgfl8-Shh pathway and we put forward the Noggin−/− mouse as a model of microform HPE.

RESULTS

Noggin−/− mice exhibit a narrowing of the frontonasal process and a solitary median upper incisor

Noggin expression, revealed by LacZ staining, was analyzed in mice at keys stages when the midline of the upper face is patterned and undergoing major morphogenesis. At E9.5 and E12.5, Noggin was detected in the midline of the developing frontonasal process as fine line which extends into the oral cavity (arrow) and in the developing nasal pits (asterisks). (D and E) Schematic diagram illustrates the upper face of an E11.5 mouse embryo. The red arrow indicates the distance between the nasal pits. Noggin−/− mice have a shorter distance between the nasal pits. (F and G) Localization of Pax9 in the developing upper face of E11.5 WT and Noggin−/− mice. Using Pax9 as a marker of the lateral and medial nasal processes, we were able to record a reduction in the distance between the nasal pits in Noggin−/− mice compared with their WT littermates. Error bars: standard deviation.
located in the midline in a single premaxillary bone (Fig. 2). The morphology of the incisor was analyzed in histological sections at E16.5 (Fig.2C and D). Instead of two separated tooth germs positioned adjacently to the nasal cavity and separated by the inter-premaxillary suture, Noggin \(^{+/−}\) mice had a single midline incisor situated below the nasal septum.

In order to establish whether this tooth had developed from a single primordium or from the fusion of two well-defined primordia, we analyzed early tooth development in Noggin \(^{+/−}\) mice and their WT littermates. During tooth development, Shh is expressed in dental placodes, which are thickenings of the oral epithelium and represent the earliest stages of tooth development. We performed whole-mount in situ hybridization for Shh mRNA at E11.5 and E12.5 and found that Noggin \(^{+/−}\) mice exhibit a single Shh expression domain in the midline of the frontonasal process (9/10 mice).

Figure 2. Noggin \(^{+/−}\) mice have a solitary median upper incisor tooth. (A and B) Premaxillary region of new born WT and Noggin \(^{+/−}\) mice stained with alcian blue (cartilage) and alizarin red (bone). WT mice have two upper incisor teeth (A, arrowheads), whereas Noggin \(^{+/−}\) mice have only one (B, arrowhead). (C and D) Hematoxylin and eosin stained frontal sections from E16.5 WT and Noggin \(^{+/−}\) heads confirming the presence of two upper incisors in WT mice and a single upper incisor in Noggin \(^{+/−}\) mice (arrowheads). The developing upper incisor in Noggin \(^{+/−}\) mice has an abnormal thick stalk attachment to the oral epithelium and abnormal epithelial convolutions (D). Associated with the dental epithelium is a condensed dental mesenchyme. (E–H) Shh whole-mount in situ hybridization of E11.5 and E12.5 WT and Noggin \(^{+/−}\) oral region. (E) In WT mice, at E11.5, Shh expression is seen in the two mandibular incisors (arrowheads) and in the continuous maxillary dental lamina (arrow). (F) In Noggin \(^{+/−}\) mice, dental development is delayed in that Shh mRNA is not detected in the oral region. (G and H) At E12.5, WT mice have two upper incisor primordia (G, arrowheads) and two lower incisor primordia which express Shh but have only one centrally positioned incisor primordium which is smaller than its WT counterparts (F, arrowhead). np, nasal pit; ns, nasal septum; t, tongue. Scale bars: 0.5 mm. Images on the left of the panel are the same magnification as the images on the right.

This expression domain had not formed from two placodes, as occurs in WT mice. In WT mice, two maxillary incisor primordia were seen at E12.5; these had formed from a continuous dental lamina. Also, we noted that the Shh expression domain in the incisor placode was smaller in Noggin \(^{+/−}\) mice compared with WT littermates (Fig. 2).

Consistent with previous reports, we found that the cranial neural tube of most Noggin \(^{+/−}\) mice (18/22 E17.5 and E18.5 mice) failed to close leaving the mutants with an exencephalic phenotype (19).

Shh signal transduction is decreased in the oral region in Noggin \(^{+/−}\) mice

As Shh expression domains in the incisor placode were smaller in Noggin \(^{+/−}\) mice compared with the WT and because Shh
signaling has been shown to developmentally regulate midfacial width, we compared the expression of several genes involved in the Shh pathway in the midline facial regions of WT and Noggin−/− mice during early embryogenesis (E11.5 and E12.5) (Fig. 3). In WT mice, Shh was expressed in the oral epithelium and facial ectoderm, as well as the pharyngeal endoderm and diencephalic epithelium. In Noggin−/− mutant mice, the expression of Shh is missing from the oral epithelium (D, arrowhead). (E–G) Ptch1 and Gli1 are expressed in the oral epithelium and in the facial mesenchyme (arrowheads). They show a gradient of transcriptional activity across these regions away from the epithelium, the source of hedgehog ligand. (E–H) In Noggin−/− embryos, there is a reduction in the expression of Ptch1 and Gli1 in facial region compared with WT littermates (arrowheads). (I and J) E12.5 frontal sections. Ptch1 expression domain smaller in Noggin−/− mice compared with WT littermates (arrowheads). fe, facial ectoderm; fnp, frontonasal process; mp, mandibular process; ne, neural ectoderm; oe, oral epithelium; pe, pharyngeal endoderm. Scale bars: (A) 200 μm; (I) 500 μm. (A–H, same magnification) (I and J, same magnification).

Figure 3. Decreased Shh signal transduction in the oral region of Noggin−/− mice. (A–H) Sagittal sections through the midline region of WT and Noggin−/− mice. (A–H) E11.5 (A and B) hematoxylin and eosin stained sections. (C–J) 35S-in situ hybridization for Shh signaling pathway members. (C and D) Shh is expressed in the oral epithelium (C, arrowhead), pharyngeal endoderm and neuro epithelium of the diencephalon. In Noggin−/− mutant mice, the expression of Shh is missing from the oral epithelium (D, arrowhead). (E and G) Ptch1 and Gli1 are expressed in the oral epithelium and in the facial mesenchyme (arrowheads). They show a gradient of transcriptional activity across these regions away from the epithelium, the source of hedgehog ligand. (E–H) In Noggin−/− embryos, there is a reduction in the expression of Ptch1 and Gli1 in facial region compared with WT littermates (arrowheads). (I and J) E12.5 frontal sections. Ptch1 expression domain smaller in Noggin−/− mice compared with WT littermates (arrowheads). fe, facial ectoderm; fnp, frontonasal process; mp, mandibular process; ne, neural ectoderm; oe, oral epithelium; pe, pharyngeal endoderm. Scale bars: (A) 200 μm; (I) 500 μm. (A–H, same magnification) (I and J, same magnification).
Bmp4 and Bmp7 were expressed in the facial, oral and mandibular epithelia as well as in the mesenchyme of the frontonasal mass and the first branchial arch (mandible) at both E10.5 and E12.5 (Supplementary Material, Fig. S1).

It has been reported that Bmp4 expression is more intense and has an expanded domain in the first branchial arch of Noggin2/2 mice compared with WT littermates (24). Using in situ hybridization, we tested whether the expression of Bmp4 and Bmp7 were changed in the midline of the developing face in Noggin2/2 mice. Similar to WT littermates, Bmp4 and Bmp7 were expressed in the epithelium and mesenchyme of the frontonasal mass and in the first branchial arch. Levels of intensity were comparable to those found in WT littermates (Supplementary Material, Fig. S1).

Figure 4. BMP4 downregulates Fgf8 and Ptc1 in the developing mouse face. (A–D) WT mouse heads cultured overnight with beads impregnated with BMP4 or BSA. (A and B) E10.5 whole-mount in situ hybridization for Fgf8. Fgf8 is downregulated in the nasal pit in response to BMP4. (C and D) E11.5 whole-mount in situ hybridization for Ptc1. Ptc1 is downregulated in mesenchyme underlying the nasal pit in response to BMP4 (arrow), but Ptc1 expression is maintained in the contralateral side (C, arrowhead) and in response to BSA (negative control, D arrowheads). Nasal pits demarcated with red dotted lines. Asterisks indicate bead locations. Scale bars 500 μm. (A and B, same magnification) (C and D, same magnification).

BMP4 inhibits Fgf8 and Ptc1 in the developing midface

In the developing chick face, it has been shown that increasing levels of Bmp leads to a downregulation of Fgf8 and Shh (23). We postulated that increased Bmp signaling could, via Fgf8, reduce Shh signaling in the developing frontonasal process and thereby result in the Noggin+/− phenotype. Using bead assays, we tested the effects of adding exogenous BMP4 to E10.5 mouse facial organ cultures. BMP4 downregulated Fgf8 in the nasal pit [8/9 explants, compared with 2/9 with bovine serum albumin (BSA)] (Fig. 4). Fgf8 and Shh are expressed in the facial ectoderm; however, Shh signals to its receptor Ptc1 which is located in the facial mesenchyme to regulate facial morphogenesis. As ligand binding to Ptc1 initiates signal transduction and as Ptc1 is also upregulated by the binding of Hh, Ptc1 expression is regarded as a readout of Hh signaling. We therefore investigated the effects of BMP4 on Ptc1 expression in the developing mouse frontonasal process and found that BMP4 downregulated Ptc1 expression (9/11 explants, compared with 2/11 with BSA). Thus, in Noggin null allele mice, increased Bmp activity may inhibit Fgf8/ Shh-dependent facial development.

Normal palate formation despite abnormal early shelf morphogenesis

Cleft lip and/or palate are part of the spectrum of features in human HPE. We examined the developing lips and palate of Noggin+/− and WT mice from the initial stages of
development at E12.5 until after palatal shelf fusion is complete at E16.5 and E18.5. Normally, the palatal shelves develop as buds from maxillary processes (A), they extend into a position between the tongue and the floor of the mouth, (C) then elevate to a position between the tongue dorsum and the nasal capsule (E) and fuse in the midline. (D) In contrast, the palatal shelves of Noggin^{−/−} mice were in a position above the tongue, already at E13.5. (D and F) Also, the shape of the Noggin^{−/−} palatal shelves was not ‘finger-like’ but more bulbous. (H) At E16.5, the palatal shelves of Noggin^{−/−} mice appeared normal having fused together. (I–L) Alcian blue and alizarin red staining of hyoid bones from WT and Noggin^{−/−} mice. (I and J) At E16.5, the Noggin^{−/−} hyoid is bigger than its WT counterpart. In both WT and Noggin^{−/−} mice, the body of the hyoid has started to mineralize (arrowheads). (K and L) At E18.5, the body of the Noggin^{−/−} hyoid bone is larger. It has four instead of two cornua which are thicker, shorter and prematurely mineralized compared with their WT littermates. b, body of the hyoid bone; gc, greater cornua of hyoid bone; m, upper molar tooth; mc, Meckel’s cartilage; nc, nasal cavity; np, nasal projection of the maxillary bone; ns, cartilage primordium of the nasal septum; oc, oral cavity; t, tongue; vc, vomeronasal cartilage; *palatal shelves. Scale bars: (A) 500 μm, (I) 1 mm (A–H, same magnification) (I–L, same magnification).

Figure 5. Palate and hyoid bone development in Noggin^{−/−} mice. (A–H) Hematoxylin and eosin stained frontal sections of WT heads and Noggin^{−/−} heads E12.5–E16.5. In WT mice, the palatal shelf primordia bud from the maxillary processes (A), they extend into a position between the tongue and the floor of the mouth, (C) then elevate to a position between the tongue dorsum and the nasal capsule (E) and fuse in the midline. (D) In contrast, the palatal shelves of Noggin^{−/−} mice were in a position above the tongue, already at E13.5. (D and F) Also, the shape of the Noggin^{−/−} palatal shelves was not ‘finger-like’ but more bulbous. (H) At E16.5, the palatal shelves of Noggin^{−/−} mice appeared normal having fused together. (I–L) Alcian blue and alizarin red staining of hyoid bones from WT and Noggin^{−/−} mice. (I and J) At E16.5, the Noggin^{−/−} hyoid is bigger than its WT counterpart. In both WT and Noggin^{−/−} mice, the body of the hyoid has started to mineralize (arrowheads). (K and L) At E18.5, the body of the Noggin^{−/−} hyoid bone is larger. It has four instead of two cornua which are thicker, shorter and prematurely mineralized compared with their WT littermates. b, body of the hyoid bone; gc, greater cornua of hyoid bone; m, upper molar tooth; mc, Meckel’s cartilage; nc, nasal cavity; np, nasal projection of the maxillary bone; ns, cartilage primordium of the nasal septum; oc, oral cavity; t, tongue; vc, vomeronasal cartilage; *palatal shelves. Scale bars: (A) 500 μm, (I) 1 mm (A–H, same magnification) (I–L, same magnification).
It seems likely that this phenotype is, at least in part, secondary to abnormalities causing the mandible and tongue to be held down so that the palatal shelves remain above the tongue. Meckel’s cartilages in Noggin\(^{-/-}\) mice were greatly enlarged holding the oral cavity open (Fig. 5). In addition, there were developmental abnormalities in the hyoid bone. The hyoid bone is a U-shaped bone positioned below the mandible in the anterior triangle of the neck. It gives attachment to muscles controlling the function of the tongue and mandible. The hyoid comprises a body, two greater cornua and two lesser cornua. It develops from cartilages from the pharyngeal arches (PA), the body from both PA II and III, the lesser cornua from PA II and the greater cornua from PA III. We examined the hyoid bones by alizarin red (bone) and alcian blue (cartilage) staining at E16.5, E17.5 and E18.5. Already at E16.5, the mutant hyoid bones/cartilages were much larger than in their WT littermates (Fig. 5I and J). In WT E18.5 mice, the hyoid was composed of a body and greater cornua with the lesser cornua developing later, while the hyoid of Noggin\(^{-/-}\) mice was abnormal in size, shape and number of cornua (Fig. 5K and L) (5/5 mice). The body of the hyoid bone was enlarged greatly and its shape changed with four instead of two cornua. These cornua were shorter, wider and mineralized distally compared with the cornua of WT littermates.

In WT mice, the palatal shelves develop in an oral cavity that is expanding in all directions. As Noggin\(^{-/-}\) mice exhibit a lack of midfacial transverse growth, the oral cavity is narrow and this may allow the palatal shelves to touch and fuse so that a palate could form. That said, 2 out of 31 Noggin\(^{-/-}\) mice exhibited facial clefts and 1 out of 21 mice exhibited a cleft palate (data not shown).

The vomeronasal capsule is absent in Noggin\(^{-/-}\) mice

The VO (also known as Jacobson’s organ) is an auxiliary olfactory sense organ situated adjacent to the cartilage of the nasal septum, mainly used to detect pheromones. The VO is a c-shaped structure surrounded by a cartilaginous capsule which opens into the base of the nasal cavity. The vomeronasal capsule is a structure distinct from the nasal septum, which it neighbors. Histological analysis of the frontal section of Noggin\(^{-/-}\) E16.5 heads revealed that the epithelial section of the VO appeared normal (Fig. 6). However, the vomeronasal capsule was missing in the Noggin\(^{-/-}\) mutants and the mesenchyme around the VO was reduced in size (in all animals examined).
Pituitary gland abnormalities in Noggin\(^{-/-}\) mice

The developing pituitary gland was analyzed in sagittal and coronal sections at E13.5, E14.5 and E16.5 (Supplementary Material, Fig. S2, data not shown). The most notable feature in Noggin\(^{-/-}\) mice was that the developing pituitary was smaller when compared with WT mice, especially the pars anterior. The pars anterior (pars distalis) ultimately produces the most of the pituitary hormones. Other defects that have previously been reported in Noggin\(^{-/-}\) mice include a rostral displacement of Rathke’s pouch and the induction of secondary pituitary tissue (25).

DISCUSSION

Noggin null allele mice exhibit several craniofacial abnormalities including a narrowed frontonasal process, a solitary median maxillary incisor and defects in the hyoid bone, VO and pituitary gland. All these Noggin-related facial anomalies are characteristic of a microform of HPE and are associated with reduced expression of hedgehog target genes. Our findings are consistent with the hypothesis that Bmps have a role in midline patterning and the regulation of midface width by inhibiting Shh signaling.

Solitary median upper incisor

WT mice have two upper incisors. We found that Noggin\(^{-/-}\) mice have a solitary median upper incisor (100% penetrant), which develops from single expression domain in the midline of a single premaxillary bone. We cannot rule out that the single Shh expression domain is a consequence of a lack midline tissue intervening between two anlagen which have subsequently fused together, although this is relatively unlikely as the centrally located Shh domain in the Noggin\(^{-/-}\) mice is smaller than the individual domain of WT upper incisors. Alterations in the number of teeth can be caused by irregularities in the tooth initiation process (26). In Noggin\(^{-/-}\) mice, the single incisor is part of a HPE midfacial phenotype where the lack of tissue in the midline and a patterning defect are responsible for the tooth phenotype. Overactivation of Noggin in the oral epithelium using transgenic tools (K14 promoter) does not result in a change in the number of incisors. However, the morphology and structure of the K14-Noggin incisors are altered: incisors are large with abnormalities in enamel and dentine formation. In addition, all mandibular and maxillary third molars are lost due to developmental arrest at the early bud stage (27).

Humans normally have two deciduous and two permanent central incisors and the development of a solitary median maxillary central incisor (SMMC1) in the primary and/or secondary dentition is rare. SMMC1 can occur as part of a holoprosencephalic phenotype, in association with abnormalities not related to HPE or as an apparently isolated finding. Missense mutations in SHH have been reported in patients with SMMC1 that do not have other features of HPE (28,29). The I111F mutation has been found in eight members of the same family and it has been suggested that this mutation may be specific for SMMC1 as it has not been found in either HPE patients or in a normal population (28).

Hypopituitarism

Hypopituitarism due to pituitary hypoplasia has been described in patients with SMMC1 together with other HPE-like features and has been reported in patients with loss of function mutations in the HH signaling transcription factor GLI2 (30,31). In zebrafish, it has been shown that Gli1 and Gli2 regulate Hh signaling to induce and pattern the developing adenohypophysis (32). Elevated GLI2 in mice, 50% of Gli2\(^{-/-}\) mutants and 100% of Gli2\(^{-/-}\),Gli1\(^{-/-}\) mutants fail to develop a pituitary gland (33). Whether Bmp and Hh signaling interact during pituitary development is not known. In Noggin\(^{-/-}\) mice, the pituitary abnormalities appear to be due to an expanded domain of Bmp4 activity that results in Fgf10 repression and rostral shift of the Bmp4 and Shh boundary (25).

Midfacial width is regulated by Noggin

Several studies have analyzed the role of Bmps and other growth factors in the control of facial proximal/distal outgrowth, but very few have addressed what controls facial width. Here we show that Bmp, by modulating Shh signaling, plays a fundamental role in regulating facial width. Although the facial features of Noggin\(^{-/-}\) mice have not been previously reported, there is evidence that Bmps control facial patterning and growth and that alteration of Bmp signaling can lead to HPE. For instance, compound mouse mutants for Chordin and Noggin (34,35) or chick embryos that have had BMP4-soaked beads implanted into their forebrains (36) exhibit holoprosencephalic facial features including cyclopia, a central proboscis and orofacial clefing. With regard to the proximal/distal outgrowth of the facial processes, Noggin-soaked beads implanted in the developing chick face at different developmental stages results in decreased cell proliferation and subsequently decreased outgrowth, smaller frontonasal and maxillary processes and deletion of the maxillary and palatine bones (14,15,23).

We show that in Noggin\(^{-/-}\) mice, Shh and the Shh target genes Ptc1 and Gli1 are misexpressed at E11.5 and E12.5 in the developing face. This suggests that disrupted Bmp signaling in Noggin\(^{-/-}\) mice results in downregulation of the hedgehog pathway at the critical time when the midline craniofacial structures are developing. This is supported by experiments in the developing chick that demonstrate that excessive exogenous BMP2 (micro bead implantation) downregulates Shh expression (23), and transient loss of SHH signaling by either excision of the frontonasal epithelium or by the introduction of Shh neutralizing antibodies inhibits growth of the facial primordia and results in a narrowing of the mid and upper face and subsequent hypotelorism (37). Also, mice lacking the transmembrane protein Cdo, which positively regulates Shh signaling, exhibit HPE with a midface hypoplasia and hypotelorism (38).

Disruption in Shh signal transduction by exposing chick embryos, at Hamilton Hamburger stages 15 and 17, to the Smoothened inhibitor cyclopamine, results in a continuum of HPE-related defects including hypotelorism (39). The time when Shh signaling, and presumably Bmp signaling, is blocked is critical. Early blockade of Shh (before the division
of the eye field into two) (stage 4) causes cyclopia, Shh blockage later (stages 15 and 17) results in hypotelorism, midfacial hypoplasia and orofacial clefting, while blockage later in development has no effect (39). Conversely, excessive SHH in the embryonic face leads to increased proliferation in the frontonasal process, increased width of mid and upper facial processes and consequently hypertelorism (37). When considering facial development, it is important to differentiate between early abnormal Shh signaling from the developing brain and signaling later from the developing facial structures.

In this study, we show that exogenous BMP4 inhibits Fgf8 and Ptch1 in the developing mouse frontonasal process. Fgf8 is a key regulator of facial development which is known to regulate Shh signaling in several embryonic locations, including the limb and genital tubercle. Blocking Fgf signaling in the developing chick face results in a narrowing of the upper process and consequently hypertelorism (46). Despite multiple regulators controlling the Bmp pathway, disruption of Noggin alone is sufficient to result in the midfacial phenotype described in this paper. In conclusion, we demonstrate the importance of Noggin in the correct patterning of the face and in the etiology of HPE.

MATERIALS AND METHODS

Mice

The generation, breeding and genotyping of the Noggin mutant mice used in this study have been described previously (17,22). The initial inactivation of the Noggin gene was done in an inbred 129SvJ genetic background. Heterozygote males have been serially backcrossed with CD1 females for at least 10 generations. NogginLacZ reporter mice were backcrossed to C57BL/6 and used as heterozygotes.

Skeletal and LacZ staining

Alcian blue/alizarin red and LacZ staining were performed according to Rice et al. (2010) and Zouvelou et al. (2009) (47,48).

Organ culture

E10.5 and E11.5 WT mouse heads were dissected and placed on Nuclepore filters in a Trowell-type organ culture system as described previously (49). Affi-gel agarose beads (Biorad) or BSA at 37°C were incubated with recombinant human BMP4 (100 ng/μL, R&D Systems) or BSA at 37°C for 1 h and stored at 4°C before being placed on the explants. Bead assays were cultured overnight.

Preparation of probes and in situ hybridization

35S in situ hybridization on paraffin sections was performed as described previously (50). Both bright and dark field images were taken of hybridized sections. Silver grains were selected from the dark field images, colored red and then superimposed onto the identical bright field image using Adobe Photoshop 6.0 software. Whole-mount in situ hybridization was performed using digoxigenin-UTP-labelled riboprobes as previously described (51). The preparation of the Bmp, Fgf8, Glil, Pax9, Ptch1 and Shh RNA probes has been described previously (52–54).

Statistical analysis

An independent samples t-test was used for the statistical analysis of normally distributed samples. A P-value of <0.05 was considered statistically significant. SPSS 15.0 was used for the statistical analysis of the data.
SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS
We thank Airi Sinkko for her technical assistance. The Pax9 cDNA was a kind gift from Heiko Peters.

Conflict of Interest statement. None declared

FUNDING
This work was supported by the Academy of Finland, Sigrid Jusélius Foundation, Helsinki University Research Foundation, Biocentrum Helsinki, Medical Research Council UK and the Flemish Science Foundation (FWO) grant number G.2.214.07. T.A.M. was supported by grants from the University of Zurich.

REFERENCES

