Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity

Chronis Fatouros1,2,4,5,*, Ghulam Jeelani Pir6,7,*, Jacek Biernat6,7, Sandhya Padmanabhan Koushika9, Eckhard Mandelkow6,7,8, Eva-Maria Mandelkow6,7,8, Enrico Schmidt1,2,4,*, and Ralf Baumeister1,2,3,4,∗

1Faculty of Biology, Institute of Biology III, 2Faculty of Medicine, Center for Biochemistry and Molecular Cell Research (ZBMZ) and 3Center for Biological Signalling Studies (BIOSS) and Freiburg Center for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany, 4Center for Biological Systems Analysis (ZBSA), 79104 Freiburg, Germany, 5International Max Planck Research School for Molecular and Cell Biology (IMPRS-MCB), Freiburg, Germany, 6German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany, 7Max Planck Institute for Neurological Research (MPINF), 50931 Cologne, Germany, 8CAESAR Research Center, 53175 Bonn, Germany and 9Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

Received February 21, 2012; Revised and Accepted May 14, 2012

Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents β-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood–brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.

INTRODUCTION

Aggregation of mutant or even wild-type, hyperphosphorylated Tau is a common factor in the course of several neurodegenerative diseases collectively called tauopathies (1–5). An unresolved debate in the field focuses on the role of terminal Tau aggregates termed neurofibrillary tangles for the pathogenesis of the disease. It is still unclear whether...
these are the cause of neuronal toxicity, or whether they result from an effort of the cell to sequester the more toxic oligomers that could disrupt various cellular functions, such as axonal transport (4,6,7). A deluge of recent evidence points to the pre-tangle oligomers with high propensity to aggregate as being the instigating factor of toxicity, not only for Tau (reviewed in 7), but also for amyloid-beta or Huntington (8,9). Their continuous presence in the cell is detrimental, although no correlation was detected between neuronal toxicity and the formation of tangles which can persist even after expression of transgenic Tau has been switched off (10–14).

An experimental approach to uncouple the aggregation-mediated toxicity of Tau from other functions involves the ΔK280 pro-aggregation mutation which is found in patients with FDT-P-17 (15) and the respective anti-aggregation mutations I277P and I308P in the hexapeptide motifs. These substitutions prevent the formation of a β-sheet structure and thus hinder aggregation (10–13,16). These studies have shown that the pro-aggregating Tau species is very toxic, whereas at a similar expression level the anti-aggregating species is not (16). Moreover, the F3ΔK280 fragment of Tau (amino acids 258–360) has been shown to act as a nucleation agent, and leads to accelerated toxicity by promoting the aggregation of both mutant and wild-type Tau (17).

The C. elegans system presents numerous practical advantages, especially for high-throughput screening approaches (18–21). As a result, transgenic strains expressing various human Tau mutations have been studied as disease models by several groups (22–27). However, a common theme in these previously published tauopathy models is that they develop a significant proteotoxicity phenotype at a rather advanced age. Specifically, it has been shown that expression of hyperphosphorylated, mutated Tau protein, and also wild-type Tau, can lead to progressive accumulation of structural damage such as axonal breaks in the GABAergic motor neurons and age-dependent defects in locomotion (25). Additionally, expression of different Tau mutants (P301L and V337M) in the C. elegans nervous system was reported to result in Tau pathology (24). Kraemer et al. used their tauopathy model to perform a mutagenesis screen, uncovering two new factors that participate in the pathological cascade, namely SUT-1 and SUT-2 (22,26,28). The latter was shown in a follow-up study to have a direct homologue in humans (MSUT-2), whose knock-down also alleviated Tau pathology in a mammalian cell culture model (28). These seminal contributions served as proof of principle, showing that human Tau mutants can indeed recapitulate neuron-related phenotypes in the worm, and that insights gained in such a time and cost-effective model can have relevance for understanding the disease in humans. Importantly, studying human Tau mutants in C. elegans has the advantage of avoiding interference with endogenous Tau, since the only Tau homologue in the worm, PTL-1, is expressed only in a small subset of neurons (29,30).

Here, we take advantage of the well-documented molecular dissection of Tau aggregation-mediated toxicity (11,13,16) and establish a C. elegans model of tauopathy based on the highly amyloidogenic ΔK280 Tau mutation. We strove to achieve a strong toxicity phenotype that could be attributed to the process of accelerated aggregation already in young adult worms. For this purpose, we introduced a pan-neuronally expressed pro-aggregate F3ΔK280 Tau fragment (encompassing the repeat domain of Tau) in the full-length (FL) Tau V337M strain CK10 (22), using the anti-aggregate F3ΔK280-PP transgene as a control. Pro-aggregating Tau led to substantially increased toxicity in the worms. This recapitulated the main aspects of tauopathy known from mammalian models of the disease (4,6,13), manifested by uncoordinated movement from the first day of adulthood, axonal defects such as gaps and varicosities in motor neurons, impaired presynaptic areas and perturbed axonal transport of mitochondria. The anti-aggregating combination caused only a mild phenotype with a significantly reduced level of morphological abnormalities. We also showed that the levels of rapidly aggregating Tau in the pro-aggregating worms are increased. Treating the worms with methylene blue (MB), an aggregation inhibitor of the phenothiazine class (31,32), resulted in beneficial effects. We also demonstrated that the treatment of the pro-aggregating transgenic strains with a novel Tau aggregation inhibitor, a compound belonging to the aminothienopyridazine (ATPZ) class (compound #16 in reference 33, hereafter referred to as cmp16), ameliorated the motility phenotype, reflected also by a reduced extent of the progressive accumulation of neuronal morphological abnormalities.

RESULTS

Rapid deposition of Tau aggregates in the nervous system of C. elegans led to early onset of uncoordinated phenotype

Our first aim was to create a novel tauopathy model in the nematode C. elegans that allows distinction of pathological mechanisms specifically induced by aggregation of the Tau protein. For this purpose, we focused on the well-characterized ΔK280 mutation (10–13), which specifically leads to aggregation-mediated toxicity. We generated transgenic strains expressing chromosomally integrated versions of the amyloidogenic F3ΔK280 fragment of human Tau [derived from the repeat domain of TauΔK280 (16,17)] from the rab-3 promoter, to achieve pan-neuronal expression. In one set of C. elegans strains, we expressed the pathological FDT-17 mutant ΔK280, which enhances aggregation, whereas the other set harbours, in addition to ΔK280, the proline substitutions I277P and I308P (PP), which act as β-sheet breakers and prevent aggregation (15). We obtained two independently integrated lines for each mutant, which we then backcrossed to wild-type N2 worms 10 times each, to get rid of possible background mutations caused by the insertion events. Our hypothesis was that the strains carrying integrated transgenes of the pro-aggregant F3ΔK280 (byls161, byls193) would result in a more pronounced phenotype than that of the strains expressing the anti-aggregant F3ΔK280-PP transgenes (byls162, byls194). However, the locomotion phenotype of day 1 adult animals of these single-transgenic strains was very similar (Supplementary Material, Fig. S1A), which could be the consequence of the nucleation process being too slow compared with the short lifespan of the animals. We therefore crossed each of these strains with CK10, a previously characterized strain that expresses pan-neuronal FL Tau V337M (23,24). We hypothesized that
co-generating FL mutant Tau and the F3ΔK280 fragment should potentiate nucleation of aggregation and result in increased toxicity. Indeed, strongly defective locomotion phenotype developed at day 1 of adulthood for both strains expressing FL Tau plus F3ΔK280 (BR5485 pro-aggr. line 1 mean speed ± standard deviation (SD) = 70.6 ± 17.9 μm/s and BR5706 pro-aggr. line 2 speed = 60.8 ± 32.3 μm/s), compared with both the anti-aggregant strains expressing FL Tau plus F3ΔK280-PP (BR5486 anti-aggr line 1 speed = 103.5 ± 29.5 μm/s and BR6427 anti-aggr line 2 speed = 108.7 ± 27.5 μm/s; Fig. 1A). The latter strains did not exhibit locomotion defects (Supplementary Material, Movies S1–S3).

We verified with western blot analysis that the independently integrated transgene arrays are expressed at similar levels in both sets of strains (Fig. 1B and C). We also performed antibody staining to confirm that Tau is properly expressed in the nervous system (Fig. 1D–F). Since the two independent strains for each transgene combination had similar phenotype and comparable expression levels, we decided to further analyse one strain from each set, namely the pro-aggregant line 1 (with the byls161 transgene) and the anti-aggregant line 1 (with the byls162 transgene).

In order to quantitate aggregate formation, we applied thioflavin-S (ThS) staining, which detects amyloid deposits (34,35) on synchronous young adult populations of worms, including worms expressing just the transformation masker as control. We observed extensive ThS staining at the nerve ring of the pro-aggregant strain (mean number of aggregates = 14.6, range = 1–64), whereas the anti-aggregant strain showed only minimal staining (mean = 2.2, range: 0–6), similar to negative controls (mean = 0.7, range = 0–2). Representative images are shown in Figure 1G–I and quantification is shown in Supplementary Material, Figure S1B. We next extracted Tau aggregates from these worms, using formic acid (FA) (Fig. 2A). The pro-aggregant F3ΔK280 fragment appeared only in the detergent insoluble fraction (FA fraction), whereas the anti-aggregant F3ΔK280-PP appeared solely in the soluble RAB fraction (Fig. 2A, upper panel), suggesting that the pro-aggregation construct indeed preferentially aggregated. In addition, only FL Tau V337M was phosphorylated at the KXGS motif (Fig. 2A, mid panel, 12E8), S396 and S404 (PHF-1 epitope) (Fig. 2A, lower panel, PHF-1). We then extracted Tau from 7-day-old worms and detected both detergent-soluble and -insoluble aggregates even in the CK10 strain (FL Tau V337M) as reported earlier (24). However, the pro-aggregant strain displayed approximately four times more aggregated Tau than the CK10 strain (BR5674) did not show comparable morphological abnormalities in the motor neurons of C. elegans

We next hypothesized that the locomotion phenotype is caused by damage in the motor neurons, since the transgenes are expressed in the whole nervous system, and neuronal structural defects have been demonstrated in previous neurodegenerative C. elegans models (24,25). We first looked at the GABAergic motor neurons, using the juIs73[junc-23::gfp]III reporter (45) and measured the number of axonal discontinuities (gaps) in the ventral and dorsal cords of the animals during larval stages as well as during adulthood (representative example of a wild-type young adult animal is shown in Fig. 3A). In wild-type animals, the development of the nervous system is mostly completed in the L3 stage. Correspondingly, GFP-stained processes show no gaps and have continuous dorsal and ventral cords (Fig. 3D). In contrast, we observed severe developmental defects in the pro-aggregant strain (BR5707) that manifest as increased numbers of persistent gaps in both the ventral and dorsal neural cords (mean ± SD = 2.7 ± 1.4 gaps at the L3 stage). Gaps were still visible at the L4 stage (Fig. 3D). At day 1 of adulthood, we observed 1.32 ± 0.8 gaps in the cords of the pro-aggregant strain (example of a young adult in Fig. 3C). In contrast, the anti-aggregant strain (BR5674) did not show comparable morphological defects during development (Fig. 3D), and as young adults (example in Fig. 3B), they showed very few, if any, gaps (mean ± SD = 0.13 ± 0.3). The number of axonal gaps in the pro-aggregant strain rose with age, so that by day 5 of...
adulthood almost 100% of the worms showed axonal gaps (3.1 ± 0.9) (Fig. 3D). By that age, the anti-aggregant strain showed a reduced number of gaps (1.1 ± 0.9), which was not very different from wild-type (0.5 ± 0.4) (Fig. 3D). To corroborate this result, we also looked at the cholinergic motor neurons, which provide the activating signals to the neuromuscular junctions in coordination with the GABAergic inhibitory neurons on the opposite side (46). For this purpose, we introduced an extrachromosomal array to mark the cholinergic neurons [Punc-129::mCherry] and examined the ventral

Figure 1. Pan-neuronal expression of pro-aggregant human Tau transgenes resulted in the deposition of aggregates and locomotion defects. (A) Mean locomotion speed of day 1 adult animals from strains carrying independently integrated transgene arrays with pro- or anti-aggregant Tau. N2 wild-type strain serves as control. Error bars denote SD. One-way ANOVA with Tukey’s test was applied for comparisons (n.s., non-significant). (B) Western blot of total lysates from synchronized L4 larvae. The blots were probed with the K9JA antibody (upper panel), which recognizes the Tau repeat domain (RD) and thus detects both the FL Tau and the F3 fragment. An anti-actin antibody was used as loading control (lower panel). L4 larvae extracts did not show the F3 fragment but total levels of Tau expression were similar among all the different transgenic lines (normalization to actin)— quantification shown in the graph below the blot. The error bars denote SEM from three repetitions of the experiment, and differences were considered non-significant (P > 0.05) after performing one-way ANOVA. (C) Western blot of total lysates from synchronized day-5-old adults. Both the FL Tau and the F3 fragment were detected with the K9JA antibody. The independently integrated strains express the F3 fragment at comparable levels (normalization to actin)— quantification shown in the graph below the blot. The error bars denote SEM from three repetitions of the experiment, and differences were considered non-significant (P > 0.05) after performing one-way ANOVA. (D–F) Tau expression detected with anti-Tau K9JA antibody. Neuronal structures were stained in the anti-aggregant (E) and pro-aggregant (F) Tau transgenic strains (marked with arrowheads). Only background staining is observed in non-transgenic controls (D). (G–I) Maximal intensity projections (MIP) of worms stained with ThS to image Tau aggregates in the nerve ring. The strong signal in the pharynx of the animals (marked with an asterisk) derives from the transformation marker (Pmyo-2::gfp). Wild-type strain (transformation marker only) in (G) shows only background staining, the anti-aggregant strain (H) shows very few spots and the pro-aggregant strain in (I) shows extensive decoration, with spots around the nerve ring area. (J–L) Zoom of the marked area of (G)–(I), corresponding to the dotted rectangle region. Grey arrowheads point to individual ThS-stained Tau aggregates. Scale bars: 20 μm.
and dorsal cords of young adult animals for morphological abnormalities. The wild-type reporter strain (BR6061) and the anti-aggregant strain (BR6089) showed rare occurrence of gaps (wild-type: 2.3 ± 0.5% animals with gaps, 8.5 ± 3.2% in anti-aggregant) (Fig. 3E and Supplementary Material, Fig. S3). In contrast, the pro-aggregant strain showed frequent occurrence of gaps (27.8 ± 4.8% of day 1 adult animals), similar to those observed in the GABAergic neurons (Fig. 3E and Supplementary Material, Fig. S3). From these data, we conclude that the continued expression of FL Tau V337M and F3DK280 is toxic for the neurons and as a consequence, the development of the nervous system is perturbed. The continuous rise of the number of gaps later in adulthood suggests that progressive axonal degeneration follows the initial developmental defects. Combination of FL Tau V337M with the non-amyloidogenic F3ΔK280-PP produced only mild defects which only in day 5 old animals became statistically distinguishable from wild-type.

The pro-aggregant strain had defective accumulation of synaptobrevin-1 in the pre-synaptic termini, indicating impaired presynaptic transmission

Aberrant phosphorylation and aggregation of Tau have been linked to axonal transport problems, synaptic malfunction and degeneration (6). In order to examine synapse morphology

Figure 2. Sequential extraction revealed increased accumulation of insoluble Tau in the pro-aggregant strain. (A) After sequential extraction of Tau from day 1 adult transgenic C. elegans strains (with laboratory wild-type N2 strain as control), only the pro-aggregant strain (lane 3) shows the detergent-soluble (RIPA) and the detergent-insoluble tau aggregates, which were solubilized with 70% FA. FL Tau V337M, but not the F3ΔK280 fragment, is phosphorylated at the KXGS motif (12E8 panel) and the S396 and S404 epitopes (PHF-1 panel). In the pro-aggregant strain, F3ΔK280 appears only in the detergent-insoluble fraction (lane 3 of the FA fraction in the top panel). In contrast, F3ΔK280-PP in the anti-aggregant strain appears solely in the soluble fraction (lane 4 of the RAB fraction, top panel). (B) Sequential extraction of Tau from day 7 adult animals. Equal amount of protein was loaded and normalized against the CK10 sample. The pro-aggregant shows ~2-fold soluble (RAB blot), 4-fold detergent-soluble (RIPA blot) and 8-fold detergent-insoluble Tau (FA blot), as quantified from three independent experiments (one-way ANOVA, *P < 0.05, **P < 0.01, ***P < 0.001). These data corroborate the notion that Tau displays increased aggregation when combined with the amyloidogenic F3ΔK280 fragment in the pro-aggregant strain, whereas combination with the non-amyloidogenic F3ΔK280-PP fragment, or FL Tau V337M alone, does not aggregate to such extent.
in Tau-expressing worms, we used the reporter gene nIs52::*Punc-47::snb-1::gfp as a marker (47) that expresses GFP fused to synaptobrevin-1 from the motor neuron-specific unc-47 promoter. For quantitation, we focused on analysing the dorsal neural cord at the posterior gonadal arm (Fig. 4A–C). In the wild-type strain, SNB-1::GFP formed a regular pattern of puncta along the neural cord (Fig. 4D) as described before (48). This pattern was similar to that of the anti-aggregant strain (BR5793, Fig. 4E). In contrast, the pro-aggregant strain (BR5792) displayed a discontinuous punctate pattern and staining was generally more diffuse in pre-synaptic areas, which we take as an indicator for synaptic transport defects or potentially synaptic loss (Fig. 4F). In older animals, this phenotypic pattern deteriorated further (Supplementary Material, Fig. S4A–F). We quantitated the mean of the fluorescence intensity in SNB-1::GFP puncta from 25 animals of each genotype (Fig. 4G–I) and found that the puncta intensity of the pro-aggregant strain was reduced (mean intensity \pm SD = 1022 \pm 330 arbitrary units, AU) compared with both wild-type (1410 \pm 300 AU) and anti-aggregant (1292 \pm 400 AU) strains (Fig. 4J). Moreover, the density of puncta (number of puncta per 50 μm) was also reduced (Fig. 4K). Specifically, pro-aggregant worms had 8.9 \pm 5.1 puncta per 50 μm, whereas wild-type had 14.1 \pm 3.3 and the anti-aggregants had 12.5 \pm 3.5. This indicated that SNB-1 failed to properly accumulate at the presynaptic termini of young adult pro-aggregant worms. At day 5 of adulthood, reduction of puncta numbers was already seen in wild-type and anti-aggregant strains compared with young adults. However, the staining loss was more pronounced for the pro-aggregant strain (Supplementary Material, Fig. S4J).

Since previous experiments performed by others (48,49) suggested a correlation of SNB-1 puncta with the presence of synapses, we are confident that our marker staining faithfully represents the alterations of presynaptic structures. This finding suggests that synaptic transmission may be negatively affected. In order to test neurotransmission in the individual strains, we performed aldicarb and levamisole sensitivity assays with day 1 adult animals (50). Worms with functional neurotransmitter release should be sensitive to both substances and become paralysed due to muscle hypercontraction (50). Resistance to aldicarb can arise from either a pre- or a post-synaptic perturbation, whereas resistance to levamisole typically indicates a post-synaptic defect (50). Animals of the pro-aggregant strain displayed a mild resistance to aldicarb, producing a paralysis profile intermediate between the sensitive wild-type N2 and the resistant rab-3(js49) strain, which we used as controls (Fig. 5A).
The anti-aggregant strain also displayed mild resistance to aldicarb, although animals typically became paralysed earlier than pro-aggregants (Fig. 5A, the small difference between anti-aggregant and pro-aggregant strains was not statistically significant). All the transgenic strains were sensitive to levamisole and indistinguishable from wild-type (Fig. 5B).
Mitochondrial transport problems have been suggested to contribute to the progression of pathology in most mammalian neurodegeneration models, so we examined whether our tauopathy model recapitulates the neuronal mitochondria mislocalization phenotype (6,51–53). For this purpose, we took advantage of the wyEx2709 [Pitr-1::TOM-201-54aa::yfp] reporter strain (54), which labels mitochondria only in the DA9 neuron close to the posterior end of the animal. The soma of the DA9 neuron is located at the ventral side near the anus and extends a dendrite anterioventrally and an axon towards the dorsal cord which then extends anteriodorsally. This region typically displays a regular distribution of mitochondrial particles (54) (Fig. 6A), extending to the distal axonal segment. The vertical axonal part is asynaptic and has few mitochondria (54). We crossed WyEx2709 into the pro-aggregant strain (resulting in strain BR6011) and discovered that this regular mitochondrial distribution was distorted. Few or no mitochondrial particles were detected in the distal axonal segment (example in Fig. 6C), whereas the anti-aggregant strain (BR6012) showed only a moderate perturbation (example in Fig. 6B). Almost 60% of the axonal mitochondria accumulated in the proximal region and typically did not reach the more distal parts of the axon in the animals of the pro-aggregant strain. In contrast, only 32 and 45% of the axonal mitochondrial population was localized to the proximal axonal segment of wild-type and anti-aggregant strain, respectively (Fig. 6D and Supplementary Material, Fig. S5). It is unclear whether this mislocalization arose from a severe transport problem or from axonal retraction, reminiscent of the axonal gaps in Figure 3. In summary, the results shown so far further support the notion that a highly amyloidogenic Tau species is detrimental for neurons, whereas the non-amyloidogenic species does not cause severe problems.

Axonal transport was perturbed in mechanosensory neurons of the pro-aggregant Tau transgenic worms

We reasoned that aggregation-prone Tau species might affect axonal transport properties which, for example, may alter the motility of mitochondria. The strain js16009 expresses GFP with a mitochondrial localization signal (MLS) in the six mechanosensory neurons of *C. elegans*. We crossed this strain with our Tau mutants, creating the pro-aggregant (BR6174) and the anti-aggregant (BR6175) mitochondrial marker strains. To quantify mitochondrial movements, we performed single-plane live imaging of the middle axonal segment of the PLML or PLMR neurons in immobilized worms, for ~8–10 min per time lapse (see Materials and Methods). For analysis, we selected in each animal the PLM axon closer to the microscope objective. We chose these posterior neurons for two reasons: (i) analysis of the axons of the other mechanosensory neurons is frequently obscured by gut autofluorescence for two reasons: (i) analysis of the axons of the other mechanosensory neurons is frequently obscured by gut autofluorescence and (ii) with our anaesthetic-free immobilization protocol we get animals that can still slightly move their heads and have a pumping pharynx—both may affect the quality of data acquisitions. We collected time lapse acquisitions from 20 animals of each strain—representative examples of which are shown as kymographs in Figure 7A–C and as movies in the Supplementary Material, Movies S4–S6. We manually tracked each moving GFP particle with ImageJ and extracted the instantaneous velocity values of continuously moving particles (Fig. 7D). The velocity

The pro-aggregant Tau strain showed mislocalized mitochondria in the DA9 motor neuron

Mitochondrial transport problems have been suggested to contribute to the progression of pathology in most mammalian

Figure 5. Tau expression resulted in mild resistance against aldicarb-induced paralysis but did not change the levamisole sensitivity. (A) Time course of aldicarb-induced paralysis. The percentage of worms still moving on 1 mM aldicarb plates after being touched with a metal wire is plotted as a function of time. The lev-1(x21) strain is strongly resistant to aldicarb, whereas the rab-3(js49) is mildly resistant and wild-type N2 is sensitive (50). Both the pro- and anti-aggregant strains displayed slight resistance to aldicarb. Two-way ANOVA with the Bonferroni correction was applied for comparisions and produced P < 0.001 for both the pro- and anti-aggregants compared with N2 for the time points of 140, 220 and 280 min. Error bars denote SEM calculated from three repetitions of the experiment (blind test). (B) Time course of levamisole-induced paralysis. The percentage of worms still moving on 0.2 mM levamisole plates after being touched with a metal wire is plotted as a function of time. The lev-1(x21) strain is strongly resistant to levamisole and did not paralyse. The different Tau transgenic strains paralysed fast, at the same rate as wild-type (N2), indicating levamisole sensitivity.

Taken together, these experiments suggest that both anti- and pro-aggregant strains may display pre-synaptic defects. This corresponds to the observed SNB-1 puncta defect at the presynaptic termini of the pro-aggregant strain. We conclude that expression of amyloidogenic Tau fragments in combination with FL Tau V337M perturbs proper presynaptic organization in this *C. elegans* tauopathy model.
of mitochondrial transport in the pro-aggregant strain was lower than in wild-type (mean ± SD = 171 ± 111 versus 256 ± 117 nm/s), whereas the anti-aggregant strain (194 ± 131 nm/s) did not substantially differ from wild-type (Fig. 7D). In addition, a striking difference in the mitochondrial pausing frequency was observed between pro-aggregant and the other two strains, with approximately four times more frequent pause events for the pro- compared with the anti-aggregant (Fig. 7E). This suggests that mitochondrial transport in the axons of this strain is perturbed. The mitochondrial flux (number of moving mitochondria per minute) was slightly reduced in both Tau transgenics (Fig. 7F), and the ratio of mobile to stationary mitochondria was also lower, particularly in the pro-aggregants (Fig. 7F), although these differences proved to be not statistically significant. The range of track lengths we recorded for the pro-aggregants was from 1 to 33.1 μm (mean = 6.31 μm), whereas for the anti-aggregants we recorded a range from 1.6 to 87.2 μm (mean = 14.39 μm); for the wild-type, these values ranged from 2.7 to 87.3 μm (mean = 19.2 μm) (Fig. 7G). Taken together, the track length of mitochondria in a given time lapse was smaller in the pro-aggregant strain. In summary, we found that several phenotypic criteria tested allow us to distinguish between pro-aggregant and anti-aggregant Tau transgenic strains. Therefore, our C. elegans model indicates that amyloidogenic properties of Tau block axonal transport of mitochondria.

A novel Tau aggregation inhibitor compound ameliorated the phenotype of the pro-aggregant strains and mitigated neurotoxicity

The pathology we observed in C. elegans is reminiscent of the cellular pathology observed in mammalian tauopathy models. Aiming to see whether we can ameliorate the phenotype, we set out to test small molecule compounds that have already been shown to have Tau anti-aggregation properties in vitro. As a proof of principle, we first tested the efficacy of MB, a Tau aggregation inhibitor with potential cognition-enhancing effects (55, 56). We supplemented the growth medium of synchronized L1 larvae (pro-aggregant strain) with 25 μM MB and measured their locomotion speed as day 1 young adults. This treatment led to 15% amelioration of locomotion (Supplementary Material, Fig. S6A). Higher MB concentrations were not effective. At the biochemical level, MB treatment altered Tau solubility, shifting the equilibrium towards more soluble Tau and reduced detergent-insoluble Tau by ~35% in the pro-aggregant strain (Fig. 8A, quantitation in 8B), consistent with its anti-aggregation properties (31). We then applied, in the 96-well liquid culture format, the two most promising hit compounds obtained in a mammalian cell model of Tau toxicity (57), namely the phenylthiazolyl-hydrazide derivatives Bsc3094 and bb14, and observed a similar amelioration effect in locomotion (Supplementary Material, Fig. S6B). Bsc3094 resulted in 40% decrease in the detergent-insoluble Tau (FA fraction) in pro-aggregant animals, but there was no apparent change in the detergent-insoluble monomeric Tau after bb14 treatment (Fig. 8C, quantitation in 8D).

The successful treatment using a small molecule served as a proof of principle, suggesting that the C. elegans tauopathy
model we generated is well suited for the in vivo testing of compounds in high throughput. We next analysed the most prominent Tau aggregation inhibitor compound from a recently published in vitro screen (compound #16 in reference 33), which belongs to the ATPZ class of Tau inhibitors (5-amino-3-(4-chlorophenyl)-N-cyclopropyl-4-oxo-3,4-dihydrothieno[3,4-d]pyridazin-1-carboxamide, referred to as cmp16 for simplicity, structure shown in Fig. 9A). This compound prevents Tau fibril formation in vitro, and is able to cross the mammalian blood–brain barrier, an attribute that makes it favourable for clinical applications (33). We incubated pro-aggregant L1 larvae with increasing concentrations of cmp16 until adulthood. At 100 μM, we observed improved locomotion of treated animals. These animals moved approximately 1.6 times faster than DMSO-treated controls (Fig. 9A). The compound did not have an effect on the other strains tested, suggesting that it acts specifically by reducing the toxicity of the amyloidogenic F3ΔK280 fragment.
(Supplementary Material, Fig. S6C). To visualize whether cmp16 is successful in reducing neural outgrowth defects, we also treated the pro-aggregant GABAergic reporter strain (described in Fig. 3), using the same conditions. For this purpose, we sampled animals at day 1, day 3 and day 5 of adulthood and counted the number of axonal discontinuities in the motor neurons. Treatment with cmp16 diminished the progressive accumulation of neurite gaps in the motor neurons of the pro-aggregant animals compared with the DMSO-treated controls (from 3.2 ± 1 gaps at day 5 of the DMSO-treated strains to 2.4 ± 1 gaps of the cmp16-treated strains, \(P < 0.05 \)) (Fig. 9B). Lower accumulation of structural damage in neurons can be interpreted as a sign of reduced neurodegeneration (22,58). This phenotype correlated with a reduction of the insoluble Tau species by \(~50\)% in animals, following cmp16 treatment (Fig. 8B and D). In summary, these data indicate that this novel Tau anti-aggregation compound may be neuroprotective.

DISCUSSION

In this study, we created and characterized a new tauopathy model in *C. elegans* by combining expression of FL Tau V337M (22) and the F3 fragment harbouring the FDTP-17 mutation AK280 (15). This model differs from previously described tauopathy models in *C. elegans* (24,25) since it is based on a well-characterized pathology basis and shows a robust toxicity phenotype. The latter appears already at day 1 of adulthood, which allows the uncoupling from age-related alterations of proteostasis (59–62). Importantly, using this model allowed us to focus on Tau aggregation-mediated toxicity and decouple this effect from Tau hyperphosphorylation or association with microtubules or membranes. To achieve this, we did not restrict ourselves to comparing phenotypes of transgenic versus non-transgenic animals, as was done in previous *C. elegans* Tau studies. Instead, we compared strains that all harboured FL Tau V337M, coexpressed either
Human Molecular Genetics, 2012, Vol. 21, No. 16

with a pro-aggregant F3ΔK280 or with an anti-aggregant F3ΔK280-PP fragment. These strains revealed significant phenotypic differences that will allow using them for modifier screening assays. These F3 fragments have been shown to differ only in their amyloidogenic propensity and not in other aspects, such as microtubule interaction (both have very poor binding) or phosphorylation patterns (both contain only a few phosphorylation sites in the repeat domain) (12,16). Consequently, this provides support that the toxicity which manifests itself through neuronal morphological abnormalities, loss of SNB-1 puncta and impaired mitochondrial transport correlates with the amyloidogenic potential of Tau moieties and this is in accordance with recent reports in mouse models (13).

Axonal transport of mitochondria is a vital process for neuronal physiology and it is not surprising that its perturbation is thought to contribute to the neurodegenerative demise (52,63–66). We probed axonal transport of mitochondria in our system with two approaches. First, we examined the localization of mitochondria along the axon of the DA9 tail neuron and found that there are proportionally less fluorescent puncta corresponding to tagged mitochondria in the distal axonal segment of the pro-aggregant strain. These mitochondrial accumulations that correspond to synapses made en passant along the DA9 neuron (54) suggest either a lack of supply of mitochondria to the most distal synapses, or they may be caused by a loss of synapses or axonal retraction. With the marker we used here we cannot distinguish between these possibilities, as we would need the co-expression of a soluble fluorescent protein to fill the axonal cytoplasm and discern its boundaries. However, the results obtained with the second method, time lapse imaging and tracking of moving mitochondria, support the interpretation that their transport is perturbed by the amyloidogenic Tau species. Although the instantaneous particle velocities are similar, the pausing frequencies in the pro-aggregation animals show a significant increase. This is reminiscent of the differences between fast and slow axonal transport in mammalian neurons, which differ not by the motor-driven instantaneous speed, but by the intervening pauses (67). Many mitochondrial particles in these animals demonstrate a characteristic motion of short bursts of displacement followed by pauses, reminiscent of a traffic jam (68). We conclude that such a mitochondrial behaviour is unfavourable for the high energy demands of neurons.

The rapid occurrence of the neural toxicity phenotype already during development, and also its age-dependent progression, supports the notion that the accelerated formation of amyloidogenic oligomers within neurons is the causative toxicity factor. The robust locomotion defect that appears in our transgenic model makes this aspect a particularly suitable read-out for time- and cost-effective pharmacological or genetic screens to uncover specific modulators of Tau pathology. Several other neurodegeneration screens have been successfully performed before in C. elegans, as exemplified for Tau (22), amyloid-beta peptide (69,70), Huntingtin/polyQ (19,71) and spinal muscular atrophy (72) disease models. To demonstrate the value of our new model, we tested several compounds for which an efficacy against Tau aggregation has been suggested. These were MB, which was already tested in mouse models (56,73), BSc3094 and bb14, which demonstrated protective effects in cell culture models (57,74,75), and the ATPZ Tau inhibitor cmp16, which blocked Tau aggregation in vitro and has been shown to readily cross the blood–brain barrier of mice (33). We showed here that they are all capable of at least partially preventing or delaying Tau-mediated toxicity in C. elegans. At the biochemical level, we demonstrated a reduction of insoluble Tau after applying the compounds in liquid cultures. Concerning the bioavailability of the reported compounds, all of them have chemical structures such as benzene rings that...
have been found enriched in molecules that can accumulate within C. elegans tissues (76). This lends support to our interpretation that these compounds reach the neurons of the worms and act on Tau species inhibiting their aggregation.

An important conclusion from this study is that, by inhibiting the aggregation process, neuronal damage can be thwarted. We achieved this in two ways: by expressing the F3ΔK280-PP fragment, which does not allow accelerated aggregate formation, and by treating with compounds that have anti-aggregation capacities. This treatment is essentially effective if administered from the early larval stages onwards, to suppress even the initial formation of toxic oligomers. Actively preventing the aggregation process is a promising therapeutic avenue and encompasses a particularly active research field (75,77–80). Capitalizing on advances in structural and computational biology, researchers have recently developed non-natural amino acid inhibitors of Tau and polyQ aggregation (81,82). Moreover, the compound thioflavin-T, which is pre-

natural amino acid inhibitors of Tau and polyQ aggregation putational biology, researchers have recently developed non-

spread aggregation and proteotoxicity in worms (83). The

been recently revisited and demonstrated to prevent wide-

fact that amyloidogenic intermediates share common structure (84) implies that compounds that are able to block the process in a non-protein-specific way can be effective in a wider range of protein folding disorders. In this study, we used MB, BSc3094 and bb14 as proof of principle and demonstrated that a new compound belonging to the ATPZ class can be protective against Tau aggregation-mediated toxicity. It would be interesting to know whether this compound has therapeutic potential by testing it in mouse models of tauopathies and, if proven effective, to promote it for clinical testing in an effort to curb the progression of this debilitating condition. Finally, this new C. elegans model of tauopathy can be exploited for high-throughput screening approaches to uncover novel modulators of neurodegeneration.

MATERIALS AND METHODS

Generation and maintenance of C. elegans strains

The following transgenic C. elegans strains were generated for this study: BR5270: byls161[Prab-3::F3ΔK280;Pmyo-2::mCherry], BR5271:byls162,[Prab-3::F3ΔK280/I277P/I308P];Pmyo-2::mCherry], BR5944: byls193[Prab-3::F3ΔK280;Pmyo-2::mCherry], BR6516: byls194,[Prab-3::F3ΔK280/I277P/I308P];Pmyo-2::mCherry], CK10: bks10[Paea-3::h4R1 NTAuV337M;Pmyo-2::gfp] (provided by Brian Kraemer) (24), BR5485: byls161;bks10 (pro-aggregant line 1), BR5486: byls162;bks10 (anti-aggregant line 1), BR5706: byls193; bks10 (pro-aggregant line 2), BR6427: byls194;bks10 (anti-aggregant line 2), BR5625: erti-1[mg366]V;lin-15B(n744) X;bys161;bks10 (pro-aggregant, neuronal RNAi-sensitized strain), BR5578: erti-1[mg366]V;lin-15B(n744)X;bys162; bks10 (anti-aggregant, neuronal RNAi sensitized strain) and juIs73[Punc-25::gfp]III (provided by Erik Lundquist) (45), BR5674: byls162;bks10;juIs73, BR5707: byls161;bks10;juIs73, nls52[Punc-47::snb-1::gfp] (provided by Erik Jørgensen) (47), BR5792: byls161;bks10;nls52, BR5793: byls162;bks10;nls52, BR5960: bks10;Ex1069[Pmyo-2::mCherry;Prab-3::F3ΔK280], BR5961: bks10;Ex1070[Pmyo-2::mCherry;Prab-3::F3ΔK280/I277P/I308P] and wyEx2709;[Pitr-1::TOM-201-54aa::yfp;Podr-1::gfp] (provided by Kang Shen) (54), BR6011: byls161;bks10;wyEx2709, BR6012: byls162;bks10;wyEx2709, BR6088: byls161; bks10;Ex[Punc-129::mCherry], BR6089: byls162;bks10; Ex[Punc-129::mCherry], BR6061: Ex[Prab-3::gfp;Punc- 129::mCherry] (provided by Stefan Eimer) and jsIs609:Is[P-mec-4::MLS::gfp], BR6174: byls161;bks10;jsIs609, BR6175: byls162;bks10;jsIs609.

The following mutant strains were used in this study: BR4338: erti-1[mg366]V;lin-15B(n744)X [sensitized strain for neuronal RNAi (44)], BR794: lev-1(s21)IV, NM791: rab-3(js49)II (as resistant controls for the aldabetic and levamisole assays).

General worm handling and generation of transgenic worms were performed according to standard procedures described previously (85). Worm cultures were maintained at 20°C unless otherwise mentioned. Integration of extra chromosomal arrays was achieved after subjecting L4 transgenic larvae to 30 Gy dosage of γ-irradiation and screening the F2 generation for clones that have 100% fluorescent marker penetrance. The stable lines obtained were subsequently backcrossed to laboratory N2 wild-type males for 10 rounds, to get rid of background mutations. The strains were typically thawed fresh from – 80°C glycerol stocks every 4–5 months, to avoid (epi)genetic drift.

Sequential extraction of proteins

Synchronized worms were washed off NGM plates with M9 buffer. Dead animals and bacteria were removed by flotation on a 30% sucrose solution. The entire extraction procedure was carried out on ice and centrifugation steps were at 4°C except for the last step with 70% FA, which was performed at room temperature. To extract the different Tau fractions (86), worm pellets—after sucrose separation—were directly resuspended in an equal amount (w/v) of high-salt RAB buffer [100 mm 2-(N-morpholino) ethanesulfonic acid (MES), 1 mm EGTA, 0.5 mm MgSO4, 20 mm NaF]. Worms were lysed by sonication (6 × 10 s, 10 s break) on ice, and homogenates were centrifuged at 40 000 g for 40 min. The supernatant constitutes the RAB fraction. The pellet was re-extracted with 1 m sucrose in RAB buffer and centrifuged for 20 min at 40 000 g, and the supernatant was discarded. The pellet was extracted with RIPA buffer (150 mm NaCl, 1% Nonidet P-40, 0.5% deoxycholate, 0.1% SDS, 50 mm Tris, pH 8.0) and centrifuged at 40 000 g for 20 min. The supernatant is the RIPA fraction. The pellet, after a brief washing with RIPA buffer, was extracted with 70% FA and centrifuged at 13 000 g for 15 min. The supernatant is the FA fraction. All buffers contained Complete Protease Inhibitor Mixture 3 × (Sigma-Aldrich P8340, Hamburg, Germany) and 0.5 mm PMSF.

Immunohistochemistry

Antibody staining was done as described previously (87). To detect Tau and F3 fragment together, the K9JA antibody was used at 1:20 000 dilution. An Alexa 488 goat anti-rabbit antibody (1:5000) was used for detection. Imaging was
performed with a Nikon A1 CLEM confocal through a Plan Apo VC 60× Oil DIC N2 objective, using a 488 nm laser at 14% power and 120 PMT value.

Thioflavin S staining

ThS (Sigma-Aldrich, Hamburg, Germany) was used to stain aggregates as described previously (34,35), with the modification that the fixation procedure was performed according to the antibody-staining protocol to increase the permeability of the cuticle. ThS signal was visualized with a Plan Apo VC 60× Oil DIC N2 objective and a 488 nm laser at 25% power, 110 PMT. Z-stacks were acquired with 1.5× zoom, and the region between the first and the second pharyngeal bulb (where the nerve ring is located) was examined for the presence of ThS-positive staining. For quantification, the acquired images were thresholded at 600 arbitrary intensity units, and spots were counted using the NIS Elements 3.0 software (Nikon).

Live imaging

Images were acquired with a Nikon A1 CLEM confocal and a Nikon A1 CCD camera. Within each group of reporter strains, the laser power and PMT values were kept constant, always avoiding oversaturation. For immobilizing the animals on the slides, a suspension of 1% (v/v) solution of 0.1 μm polystyrene beads (Polysciences Europe, Eppelheim, Germany) was used without the need for anaesthetics as described in Wasserman et al. (88). The worms become immobilized due to their inability to surpass friction between the beads and the underlying 8% agarose pad. Z-stacks of the posterior dorsal neural cord of Punc-47::snb-1::gfp reporter strains were collected with 30% GFP laser power, 150 PMT with a Plan Apo VC 60× WI DIC N2 objective and a 2× zoom factor. Imaging of the DA9 tail neuron to visualize the mitochondrial marker Pitr-1::TOM-20::3xmon::yfp was performed with 30% power of a 514.5 nm laser, 140 PMT and a 1.68 zoom factor of a Plan Apo VC 60× WI DIC N2 objective. For time lapse imaging of the Pmec-4::MLS::gfp mitochondrial marker, a 488 nm laser at 13.5% power and 140 PMT was used, with a 1.5× zoom factor of a Plan Apo VC 60× WI DIC N2 objective and 1.3 airy unit pinhole size. For each time lapse video, an axonal region of the PLML or PLMR neuron was selected that could be observed in a single plane, and one frame was acquired every 2 s, for 8–10 min.

Quantitative analysis

In all sampled animals, the dorsal cord segment above the posterior gonadal arm was imaged and Z-stacks were acquired for comparisons. The resulting files were analysed with the NIS Elements 3.0 software (Nikon). A region of interest was drawn around the neural cord, and a threshold was set at 600 intensity units, as well as at 0.5 μm diameter to select fluorescent puncta. Then the puncta number and the mean intensity for each punctum were calculated. The length of each imaged cord was measured as well, in order to extract the ratio of number of synapses per 50 μm. For the compilation of the cumulative panels in Figure 4 and Supplementary Material, Figure S4, the ImageJ ‘Straighten’ function was applied to straighten the cords, using a line width of 50 pixels, and then the ‘Threshold’ function was performed, selecting the default B&W method and setting the threshold level at 600 arbitrary intensity units.

Aldicarb and levamisole assays

We performed aldicarb and levamisole assays as previously described (50,89), using plates with 1 mM aldicarb (Supelco Germany Gmbh) and 0.2 mM levamisole (Fluka Analytical, Germany), respectively. The scoring of animals for paralysis was performed blind to the genotype with 30 animals per strain and the experiment was repeated three times.

Compound treatment

The compounds were applied in liquid culture in the 96-well plate format. OP50 bacteria were grown overnight at 37°C in LB medium, collected by centrifugation, frozen at −80°C and then resuspended in nematode S-medium (90), so that the OD595 was 1.5 in four times diluted samples. Twenty microlitres of this suspension were added per well. Synchronized L1 larvae were resuspended in S-medium supplemented with 10 μg/ml fungizone and 10 μg/ml cholesterol (both from Sigma-Aldrich) in an appropriate volume so that there is approximately one worm per microlitre, and 20 μl was added per well. Finally, 40 μl of a 2× compound solution in S-medium was added per well, reaching a total volume of 80 μl. The final concentrations used in the experiments were 100 μM cmp16, 50 μM BSe3094 and 50 μM bb14 each in 1% DMSO. Worms cultured in 1% DMSO served as treatment control. Water-soluble MB was used at a final concentration of 25 μM, with H2O as control. Plates were sealed with parafilm and incubated at 20°C for 4 days. The worms were then transferred to empty NGM plates to measure the locomotion speed by acquiring and analysing movies as described in Supplementary Material, Methods. For biochemical characterization, the same procedure was scaled up for the six-well plate format, having 5 ml of final volume added per well. Synchronized L1 larvae were added to the wells containing the compounds of interest, and when the worms became L4 larvae, 75 μM FuDR was added to prevent spawning of progeny. The worms were allowed to grow at 20°C with constant shaking until harvested for protein extraction.

Statistical analysis

For statistical analyses, the software GraphPad Prism 4.03 was used (GraphPad Software, Inc., LaJolla, CA, USA). One-way ANOVA was used for comparisons between three or more groups, with Tukey’s post hoc test for comparisons between all groups. In case of non-parametric distributions, the Kruskall–Wallis ANOVA with Dunn’s post hoc test was used. For the time course experiments with the drug treatments, two-way ANOVA with the Bonferroni correction was applied. For the comparison of mitochondrial distributions, Yates’s χ² test was used. In all graphs, the error bars depict
the SD, unless otherwise mentioned. Differences at $P < 0.05$
were accepted as statistically significant.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at *HMG* online.

AUTHORS’ CONTRIBUTIONS

C.F. created the transgenic strains that were used in this study (excluding *jsls609* and the ones provided by others as defined in Materials and Methods), performed all the imaging and phenotypic characterization experiments and co-wrote the paper. G.J.P. performed the cloning and all the biochemical experiments and contributed the relevant parts of Materials and Methods and Results sections. S.P.K. created the *jsls609* strain in Michael L. Nonet’s laboratory. E.M., E.-M.M., E.S. and R.B. proposed and supervised the study, co-wrote the paper and received the financial means to accomplish it.

ACKNOWLEDGEMENTS

We are grateful to the following people for providing strains and reagents crucial for this study: Brian Kraemer (VA Puget Sound Health Care System, Seattle, USA), Yishi Jin (University of California, San Diego, USA), Stefan Eimer (European Neuroscience Institute, Göttingen, Germany), Kang Shen (Stanford University, USA), Erik Lundquist (University of Kansas, USA), Erik Jorgensen (University of Utah, USA), Daniele Bano (DZNE, Bonn, Germany) and Peter Davies (Feinstein Institute for Medical Research, North Shore LIJ, USA). Senexis Limited (Babraham Research Campus, Cambridge, UK) kindly provided the Tau inhibitor cmp16. We also thank Malikmohamed Yousuf (ZBSA, Freiburg, Germany), Ursula Schäffer (ZBSA, Freiburg, Germany) and Yipeng Wang (DZNE, Bonn, Germany) for helpful discussions and comments.

Conflict of Interest statement. None declared.

FUNDING

E.M., E.-M.M. and R.B. were supported by MEMOSAD, a collaborative project receiving funds from the European Community’s Seventh Framework Programme (FP7/2007-2011 under Grant Agreement No. 200611). Additional support was provided by DFB SFBS92, BIOSS and FRIAS (The German Excellence Initiative) to R.B. and Metlife Foundation was provided by DFB SFB592, BIOSS and FRIAS (The community’s Seventh Framework Programme (FP7/2007-2011). Additional support was provided by DFB SFBS92, BIOSS and FRIAS (The German Excellence Initiative) to R.B. and Metlife Foundation was provided by DFB SFB592, BIOSS and FRIAS (The community’s Seventh Framework Programme (FP7/2007-2011).

REFERENCES

