Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype in \textit{mdx} mouse

Gaynor Miller1,†, Chris J. Moore2,†, Rebecca Terry3, Tracy La Riviere2, Andrew Mitchell2, Robert Piggott2 T. Neil Dear1,‡, Dominic J. Wells3 and Steve J. Winder2,*

1Department of Cardiovascular Science and 2Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK and 3Department of Veterinary Basic Science, Royal Veterinary College, Royal College Street, London NW1 0TU, UK

Received May 22, 2012; Revised and Accepted July 13, 2012

Loss of dystrophin protein due to mutations in the \textit{DMD} gene causes Duchenne muscular dystrophy. Dystrophin loss also leads to the loss of the dystrophin glycoprotein complex (DGC) from the sarcolemma which contributes to the dystrophic phenotype. Tyrosine phosphorylation of dystroglycan has been identified as a possible signal to promote the proteasomal degradation of the DGC. In order to test the role of tyrosine phosphorylation of dystroglycan in the aetiology of DMD, we generated a knock-in mouse with a phenylalanine substitution at a key tyrosine phosphorylation site in dystroglycan, Y890. Dystroglycan knock-in mice (\textit{Dag1Y890F/Y890F}) had no overt phenotype. In order to examine the consequence of blocking dystroglycan phosphorylation on the aetiology of dystrophin-deficient muscular dystrophy, the Y890F mice were crossed with \textit{mdx} mice an established model of muscular dystrophy. \textit{Dag1Y890F/Y890F/mdx} mice showed a significant improvement in several parameters of muscle pathophysiology associated with muscular dystrophy, including a reduction in centrally nucleated fibres, less Evans blue dye infiltration and lower serum creatine kinase levels. With the exception of dystrophin, other DGC components were restored to the sarcolemma including \textit{α}-sarcoglycan, \textit{α-}/\textit{β}-dystroglycan and sarcospan. Furthermore, \textit{Dag1Y890F/Y890F/mdx} showed a significant resistance to muscle damage and force loss following repeated eccentric contractions when compared with \textit{mdx} mice. While the Y890F substitution may prevent dystroglycan from proteasomal degradation, an increase in sarcolemmal plectin appeared to confer protection on \textit{Dag1Y890F/Y890F/mdx} mouse muscle. This new model confirms dystroglycan phosphorylation as an important pathway in the aetiology of DMD and provides novel targets for therapeutic intervention.

\section*{INTRODUCTION}

In normal striated muscle, dystrophin associates with a large group of proteins known as the dystrophin glycoprotein complex (DGC) \cite{1}. The DGC serves to stabilize the sarcolemma by making regularly spaced connections between the muscle fibre cytoskeleton and extracellular matrix—part of the costameric cell adhesion complex \cite{2}. At the core of this cell adhesion complex is the adhesion receptor dystroglycan, which binds laminin in the extracellular matrix and dystrophin on the cytoplasmic face \cite{3}. Like many cell adhesion complexes, the DGC also has associated signalling activity, in particular we have indentified the tyrosine phosphorylation of dystroglycan as an important regulatory event in controlling the integrity of the DGC \cite{4}. Previous studies from the Lisanti group and ourselves suggested that the tyrosine phosphorylation of dystroglycan is an important mechanism for controlling the association of dystroglycan with its cellular binding partners dystrophin and utrophin, and also as a signal for the degradation of dystroglycan \cite{5,6,7}. The Lisanti group further...
demonstrated that the inhibition of the proteasome was able to restore other DGC components in both mdx mice that lack dystrophin and in explants of DMD patients (8,9). From these studies, it can be concluded that under normal circumstances, binding of dystrophin to dystroglycan via the WW domain-binding motif PPPY890 prevents the tyrosine phosphorylation of β-dystroglycan, thus allowing the DGC to be maintained stably at the sarcolemma. However, with dystrophin deficiency, i.e. in DMD patients or in the mdx mouse, the WW domain-binding motif in dystroglycan is exposed, allowing Y890 to become phosphorylated which targets dystroglycan for degradation, and results in the loss of the entire DGC from the sarcolemma.

Previously, it has been demonstrated that the restoration of the DGC by Dp71 overexpression did not alleviate the dystrophic phenotype in mdx mice (10,11). We surmise that this approach fails because while the dystrophin- and utrophin-binding sites on dystroglycan are blocked by Dp71 and the complex is restored, Dp71 cannot bind to the actin cytoskeleton, so the link between extracellular matrix and cytoskeleton remains compromised. Furthermore, simple transgenic overexpression of dystroglycan in mdx is also not able to ameliorate the muscular dystrophy phenotype (12), probably because it is still susceptible to phosphorylation and subsequent degradation. We have therefore investigated whether preventing dystroglycan phosphorylation in mouse by a targeted gene knock-in of phenylalanine at tyrosine residue 890, which is predicted to block tyrosine phosphorylation, can restore dystroglycan function and reduce the dystrophic phenotype in mdx mice.

RESULTS

Generation of a Dag1Y890F mouse

In order to assess the role of Y890 in regulating dystroglycan function in vivo, a targeted substitution of tyrosine 890 to phenylalanine (Y890F) was generated in mouse using the standard techniques: homologous recombination in embryonic stem (ES) cells (Fig. 1), injection into blastocyst and selection of germine transmission of the targeting construct. Both heterozygous and homozygous Dag1Y890F mice appeared normal and healthy and were born at expected Mendelian ratios. To date in mice up to 8 months old, no deleterious effect of the substitution has been noted. Western blot and immunohistochemistry analysis of heterozygous and homozygous Dag1Y890F revealed normal levels of total β-dystroglycan compared with wild-type (WT), but with reduced levels of detectable pY890 β-dystroglycan in heterozygotes and an absence in homozygotes (Fig. 1F–I).

Preventing dystroglycan phosphorylation on tyrosine 890 reduces muscle pathology in dystrophic mice

In order to assess which the introduction of a Y890F substitution in dystroglycan had any beneficial effect on dystrophin deficiency, Dag1Y890F/Y890F/mdx mice were generated. Samples of muscle and serum from WT, Dag1Y890F/Y890F/mdx and Dag1Y890F/Y890F/mdx mice were examined for markers of muscle damage including serum creatine kinase levels and centrally nucleated fibres. The introduction of the Y890F substitution into dystroglycan by itself had no effect on pathophysiological parameters of muscle and compared with WT, haematoxylin and eosin stained sections of Dag1Y890F/Y890F/mdx muscle appeared normal (Fig. 2A and B). However, when crossed with mdx, Dag1Y890F/Y890F/mdx caused a significant reduction in the numbers of centrally nucleated fibres (Fig. 2C–E) and the levels of serum creatine kinase (Fig. 2F). The number of fibres with centrally located nuclei was decreased by 35% and the levels of serum creatine kinase were halved when compared with mdx alone. The improvement in muscle pathophysiology in Dag1Y890F/Y890F/mdx compared with mdx is consistent with an overall reduction in muscle damage as indicated by the reduced leakage of creatine kinase into the blood stream from Dag1Y890F/Y890F/mdx muscle. Moreover, the reduction in central fibre nucleation likely reflects a reduction in muscle regeneration as a consequence of reduced degeneration. Therefore, at the level of histopathology, the Y890F substitution in dystroglycan appears to have significantly reduced the dystrophic phenotype observed in mdx mice.

Preventing dystroglycan phosphorylation on tyrosine 890 restores sarcolemmal expression of the DGC in dystrophic mice

The absence of dystrophin in muscle leads to a significant reduction in the other components of the DGC from the sarcolemma (13). This in turn leads to a perturbation in the connection between the extracellular matrix and intracellular actin cytoskeleton which is thought to be one of the main reasons for the contraction-induced muscle damage observed with dystrophin deficiency (14). Preventing phosphorylation of dystroglycan on tyrosine 890 had no obvious detrimental effects on the localization of the following key members of the DGC: α- and β-dystroglycans, dystrophin, α-sarcoglycan and sarcospan (Fig. 3) or on the localization of laminin in the extracellular matrix and utrophin in the neuromuscular junction. However, preventing phosphorylation of dystroglycan in the absence of dystrophin, i.e. in Dag1Y890F/Y890F/mdx muscle, restored α- and β-dystroglycan, α-sarcoglycan and sarcospan to the sarcolemma (Fig. 3). Laminin was maintained in the sarcolemma of Dag1Y890F/Y890F/mdx muscle at similar levels to those found in WT and mdx muscle (Fig. 3). In previous studies, sarcolemmal utrophin was shown to be up-regulated in DMD and mdx muscle (15,16). In the Dag1Y890F/Y890F/mdx muscle sarcolemmal, however, utrophin staining returned to the more restricted neuromuscular junction distribution seen in WT muscle (Fig. 3 and Supplementary Material, Fig. S1). Therefore, in the absence of dystrophin, the Y890F substituted dystroglycan was not only protected from degradation but also contributed to the preservation of the normal distribution of other DGC components. Interestingly, the Y890F substituted dystroglycan did not support the extrasynaptic localization of utrophin seen in mdx alone (Supplementary Material, Fig. S1), but this could be due to the utrophin WW domain not binding efficiently to the phenylalanine substituted WW domain-binding motif (6). The staining of muscle sections with laminin gave the impression that there was an increase in the number of smaller...
muscle fibres in the Dag1Y890F/Y890F mice. Quantification of fibre size did reveal an \(\sim 25\%\) reduction in mean minimum Ferret’s diameter in Dag1Y890F/Y890F mice but this was not significant, nor was it associated with any apparent change in the fibre type based on the assessment of glycolytic activity nor any change in specific force (Supplementary Material, Figs S2–S4). The measurement of muscle weight and size from age-matched mice also revealed a slight but non-significant reduction in the calculated muscle cross-sectional area (data not shown). Moreover, fibre number counts of whole quadriceps sections did not reveal any significant difference between mouse genotypes (Supplementary Material, Fig. S2).

Although from the immunofluorescence analysis, there are clear changes in both the apparent amounts and the localization of DGC components (Fig. 3). Quantification of actual protein levels by western blotting suggest that most of the changes observed by immunofluorescence are due to either loss of protein by degradation (in the case of \textit{mdx}) or redistribution of protein within the muscle fibre rather than any actual increase in protein synthesis in the case of Dag1Y890F/Y890F/\textit{mdx} (Fig. 4). As expected from their respective genotypes, Dp427 dystrophin was absent from \textit{mdx} and Dag1Y890F/Y890F/\textit{mdx} mice, and pY890 β-dystroglycan was not detectable in Dag1Y890F/Y890F or Dag1Y890F/Y890F/\textit{mdx} mice. While there

Figure 1. Generation of a Dag1Y890F targeting construct. (A) Schematic representation of the genomic locus (1), targeting construct (2), targeted locus both with (4) and without (3) cre recombined excision of the neomycin resistance cassette are shown. Restrictions sites for Southern blotting are shown: Kl, KpnI; El, EcoRI. Flank and Neo PCR primers used to determine whether the neomycin resistance cassette (PGK Neo) has been excised are represented by arrows. LoxP sites flanking PGK Neo are depicted by arrowheads. The location of the probe used for Southern blotting is indicated. Scale bar = 1 kb. (B) A representative Southern blot of restriction-digested genomic DNA from four different ES cell clones probed with the probe indicated in A is shown. Whether the band corresponds to a WT allele or a targeted allele is indicated. (C) Chromatograms of sequences from progeny with the genotypes indicated on the left are shown, and the A to T point mutation corresponding to Y890F is indicated with an asterisk. (D) 2% agarose gel electrophoresis of SnaBI and Hincl II digested PCR products used to genotype progeny for the Y890F and \textit{mdx} point mutations, respectively; genotypes of the samples are shown beneath. (F) Western blotting of quadriceps femoris samples from WT (+/+), heterozygote (+/Y890F) and homozygote (Y890F/Y890F) mice using antibodies against non-phosphorylated β-dystroglycan (β-DG), tyrosine phosphorylated β-DG (pY β-DG) and tubulin as a loading control. Representative immunofluorescence localization of tyrosine phosphorylated β-DG in sections of quadriceps femoris from WT (+/+; G), heterozygote (+/Y890F; H) and homozygote (Y890F/Y890F; I) mice.
was an apparent change in unphosphorylated β-dystroglycan levels in the different mice, this was to be expected as both of the antibodies most commonly used to detect β-dystroglycan (43DAG/8D5 and MANDAG2) have Y890 in their epitope (6) (Supplementary Material, Fig. S5) so are sensitive to the Y890F substitution. Attempts to generate antisera against a Y890F substituted peptide were not successful. Moreover, it is well documented that β-dystroglycan levels are reduced in mdx though not absent (see 17 for example). As expected, utrophin levels appear increased in mdx mice; however, western blot analysis suggests an increase in Dag1Y890F/Y890F and Dag1Y890F/Y890F/mdx mice too (Fig. 4A). Urophin is apparent at NMJ in all mice (Fig. 3 and Supplementary Material, Fig. S1), but despite the apparent upward trend in total utrophin levels in Dag1Y890F/Y890F, mdx and Dag1Y890F/Y890F/mdx (Fig. 4C), a redistribution of utrophin to the sarcolemma is only apparent in mdx (Fig. 3 and Supplementary Material, Fig. S1).

In vitro analysis of pY890 β-dystroglycan

Western blotting of mouse muscle with an antibody against pY890 β-dystroglycan (antibody 1709) (5) revealed as expected a complete absence of β-DG phosphorylation on tyrosine 890 in muscle samples (Fig. 4), this not only verified the genetic change at the protein level, but provided further evidence for the specificity of our pY890 antiserum 1709 (see also Supplementary Material, Fig. S5). However, to further confirm the fate of phosphorylated β-DG in muscle cells, we carried out surface biotinylation experiments to...
determine the role of β-dystroglycan phosphorylation in the internalization process. Previous analysis of dystroglycan function by microscopy in Cos-7 cells has revealed a phosphorylation-dependent internalization of β-dystroglycan in response to constitutive Src activation (7). In order to more rigorously determine the role of dystroglycan phosphorylation on tyrosine 890 in this process, we analysed the fate of dystroglycan in normal immortalized H2k myoblast cells (18) over time using a cell surface biotinylation assay. We monitored non-phosphorylated β-dystroglycan with the monoclonal antibody MANDAG2 (19), which is sensitive to the phosphorylation of β-dystroglycan at Y890 (6), and monitored β-dystroglycan phosphorylated at Y890 with antibody 1709 (5), which is specific for Y890 phosphorylated dystroglycan and does not detect unphosphorylated β-dystroglycan (Supplementary Material, Fig. S5). Following cell surface biotinylation, in contrast to non-phosphorylated β-dystroglycan which was detected on the membrane only and not in the internalized fraction, tyrosine phosphorylated β-dystroglycan was detected at the cell surface and in the cytosol (Fig. 5). Furthermore, there was a time-dependent decrease in the amount of cell surface phosphorylated β-dystroglycan and a concomitant increase in cytosolic phosphorylated β-dystroglycan (Fig. 5). These data suggest, therefore, that the phosphorylation of β-dystroglycan on tyrosine 890 is a signal for the internalization and potentially the degradation of β-dystroglycan. In support of this, the immunofluorescence localization of intracellular vesicles containing β-dystroglycan with either MANDAG2 or 1709 antibodies revealed differing cellular distributions with respect to each other and to transferrin receptor containing endocytic vesicles (Supplementary Material, Fig. S6). These findings demonstrate that in normal myoblasts, phosphorylated dystroglycan is found in larger vesicles consistent with its internalization upon phosphorylation. These larger vesicles do not

Figure 3. Restoration of DGC components in Dag1^{Y890F/Y890F}/mdx muscle. Immunofluorescence localization to the sarcolemma of the DGC components, α- and β-dystroglycan, α-sarcoglycan, sarcospan, dystrophin and utrophin, was unaltered in Dag1^{Y890F/Y890F} mice. As expected, all DGC components were significantly reduced from the sarcolemma of mdx muscle, where laminin localization was unaltered and utrophin showed an increased extra-synaptic localization. In Dag1^{Y890F/Y890F}/mdx mice, however, there was a clear restoration of all DGC components examined, even in the absence of dystrophin, but with a concomitant loss of utrophin staining from the sarcolemma. Some mdx muscle fibres show internal fluorescence, which is likely to be non-specific uptake of secondary antibody by necrotic fibres. Scale bar = 50 μm.
Colocalize with early endosomal antigen 1 nor with lysotracker, and these vesicles are distinct from transferrin containing vesicles (Supplementary Material, Fig. S6). This suggests that the internalization of phosphorylated dystroglycan occurs via an endocytic process that is independent of clathrin and is potentially trafficked via a novel route/compartment.

Preventing dystroglycan phosphorylation on tyrosine 890 confers partial protection against contraction-induced injury in dystrophic mice

Given the marked improvement in histopathology and the clear restoration of DGC components in mdx mice expressing Y890F dystroglycan, we examined the extent of any functional improvement in mouse muscle. To assess the functional benefit of preventing dystroglycan phosphorylation on tyrosine 890, TA muscles from anaesthetized Dag1Y890F/Y890F/mdx were subjected to a protocol of 10 eccentric (lengthening) contractions in situ. The protocol induced a 10% stretch during each of 10 maximal isometric contractions stimulated 2 min apart. Isometric tetanic force was measured prior to each stretch and expressed as a percentage of baseline isometric force.

Gene-targeted Dag1Y890F/Y890F mice did not demonstrate a drop in isometric force during the eccentric contraction protocol (data not shown) which is similar to WT mice (20). When Dag1Y890F/Y890F mice were crossed with mdx mice, a modest but highly significant improvement in resistance to eccentric contraction-induced injury was seen compared with mdx control mice of the same age ($P = 0.006$; Fig. 6). Specifically, Dag1Y890F/Y890F/mdx mice were significantly stronger than control mice after eccentric contractions 5, 6 and 7 ($P = 0.025$, 0.025 and 0.040, respectively; Fig. 6). Maximum isometric-specific force produced by Dag1Y890F/Y890F/mdx mice was 13.5 ± 0.745 N/cm² which was not significantly different from mdx control mice. There was also no significant difference in the force-frequency curves between Dag1Y890F/Y890F/mdx and mdx mice (Supplementary Material, Fig. S4) or TA muscle size (Supplementary Material, Table S1).

The physiological studies described above demonstrate that the Y890F substitution not only reduces muscle damage and restores DGC components at the sarcolemma, but can also contribute to a modest but significant improvement in resistance to eccentric contraction in mdx muscle.

Preventing dystroglycan phosphorylation on tyrosine 890 increases levels of plectin in the sarcolemma of dystrophic mice

Given the role of dystroglycan as an adhesion receptor and scaffold for several cytoskeletal anchoring proteins (4), we...
might hypothesize that the most likely candidate to contribute to the dystroglycan Y890F-mediated rescue of the mdx phenotype would be utrophin. As discussed above, utrophin is naturally up-regulated in DMD and mdx muscle (15,16), is known to bind to dystroglycan (6) and is itself protective when over-expressed in mdx muscle (21). However, utrophin was not localized to the sarcolemma in Dag1Y890F/Y890F/mdx muscle (Fig. 3 and Supplementary Material, Fig. S1). Therefore, improvement in the dystrophic phenotype, i.e. decreased number of centrally located nuclei, reduction in serum creatine kinase levels and the improvement in resistance to eccentric contraction-induced injury, which was observed by preventing dystroglycan phosphorylation on tyrosine 890 cannot be attributed to an increase in sarcolemmal utrophin. Plectin is a cytolinker protein predominantly found in skeletal muscle where it is localized at the sarcolemma, z-disks and mitochondria (22). Plectin is also up-regulated in dystrophin-deficient muscle (22). Plectin interacts with β-dystroglycan at multiple sites in the cytoplasmic domain (22); therefore, its interaction may not be affected directly by the phosphorylation of β-dystroglycan or by the substitution of Y890 to phenylalanine. We therefore investigated whether plectin could be providing the link between dystroglycan and the actin cytoskeleton in the absence of dystrophin in the Dag1Y890F/Y890F/mdx muscle. Samples of WT, Dag1Y890F/Y890F, mdx and Dag1Y890F/Y890F/mdx muscle were examined for the expression and localization of plectin (Fig. 7). Consistent with our previous findings (22), plectin immunolocalization at the sarcolemma is low in WT muscle but increased in mdx muscle where it appears to preferentially stain regenerating fibres, i.e. those with centrally located nuclei. Surprisingly however, in Dag1Y890F/Y890F muscle, plectin staining of the sarcolemma appeared to be increased uniformly when compared with WT muscle (Fig. 7A and B). Furthermore, the increase in plectin staining was also observed at the sarcolemma of Dag1Y890F/Y890F/mdx muscles when compared with mdx muscle (Fig. 7C and D). However, total plectin levels revealed by western blotting (Fig. 7E) may not accurately reflect specific changes in individual isoforms, as it is known that plectin 1f is the predominant isoform localized to the costameres at the sarcolemma (22), whereas plectin isoforms 1, 1d and 1b are associated with nuclei, Z discs and mitochondria, respectively (23).

Our findings support the hypothesis that the phosphorylation of dystroglycan on Y890 is a key event in the aetiology of the dystrophic phenotype in the mdx mouse and that plectin is a candidate to maintain the link between the extracellular matrix and the cytoskeleton in the absence of dystrophin.

DISCUSSION

This study demonstrates that the preventing phosphorylation of a key tyrosine residue on murine dystroglycan, Y890, ameliorates many of the main pathological symptoms associated with dystrophin deficiency in the mdx mouse. Muscle degeneration/regeneration was reduced as shown by a decrease in the number of centrally located nuclei; myofibre integrity was increased with a 50% reduction in serum creatine kinase levels, while there was also a restoration of DGC components to the sarcolemma and an improvement in the resistance to eccentric contraction-induced injury. The Y890F mutation alone did not appear to have any detrimental side effects, with the only observed change from WT being a slight reduction in fibre diameter and an increase in plectin staining at the sarcolemma. The overt health of the Y890F knock-in mice, and the significant improvement in dystrophic pathology observed when crossed onto an mdx background, identifies dystroglycan phosphorylation as a potential therapeutic target and provides a new paradigm for the treatment of DMD. Although, in this study, we have used a genetic approach to remove an important phosphorylation site in dystroglycan, future therapeutic approaches would be aimed at targeting the signalling pathways that lead to the phosphorylation of dystroglycan or the subsequent degradation process.

The potential for the therapeutic restoration of dystroglycan function to the sarcolemma has been assessed previously, but without success. The restoration of dystrophin or utrophin in mdx mice, by genetic, viral or chemical means, is able to restore dystroglycan and other DGC components and effect a significant rescue of the dystrophic phenotype, indeed a number of therapeutic strategies are predicated on the success of this approach. In these cases, however, a ‘corrected’ dystrophin (exon skipping strategies), a replacement dystrophin (gene and cell based approaches) or a dystrophin homologue (utrophin up-regulation) is required to achieve a functional rescue (see 24,25 for recent reviews). In all these cases, there was an attempt to restore a fully functional DGC with appropriate connections between extracellular matrix and sarcolemmal cytoskeleton. Other approaches have attempted to restore the
DGC by different means, including transgenic overexpression of Dp71 a short 3′ product of the Dmd gene that includes the WW domain that provides interactions with dystroglycan (10,11) or by simply overexpressing dystroglycan in order to increase the amount at the sarcolemma (12). High-level overexpression of Dp71 in mdx mice increases DGC components at the sarcolemma but does not result in the redistribution/down-regulation of utrophin, nor does it improve other aspects of the dystrophic pathology (10,11). At first sight, these data appear paradoxical, but if one considers that the level of utrophin up-regulation present is not different from mdx, which in itself cannot be fully protective as there is a dystrophic phenotype. Utrophin clearly does exert some protective function, as knockout of utrophin in mdx leads to a much more severe phenotype (26,27). However, even in the presence of some utrophin and with an increase in other DGC components, Dp71 cannot make connections to the cytoskeleton and therefore does not stabilize the sarcolemma (10,11). As the authors of both these studies discuss, the restoration of the DGC is by Dp71 binding to dystroglycan and a reduction of DGC component degradation. From our studies, we would further surmise that this is due to the protective effect of Dp71 binding to β-dystroglycan via the PPPY motif and reducing tyrosine phosphorylation and as a consequence dystroglycan degradation. By similar reasoning, we hypothesize that simply overexpressing dystroglycan also fails to rescue the dystrophic mdx phenotype in the same manner. While elevated levels of both α- and β-dystroglycans and a significant increase in the sarcolemmal localization of these proteins have been achieved in muscle by transgenic overexpression, there was not a concomitant increase in utrophin or sarcoglycan, nor was there any improvement in dystrophic pathology (12). In this case, there may be three factors which taken together explain the failure of increased dystroglycan to rescue the dystrophic phenotype: first is that even though dystroglycan levels are increased, possibly because there is not a coordinated up-regulation of sarcoglycans and other DGC proteins, the complexes formed at the sarcolemma are not competent to stabilize the sarcolemma.

Figure 7. Plectin staining is increased at the sarcolemma of Dag1Y890F/Y890F/ mdx mice. Immunofluorescence localization of plectin (A–D) revealed an expected increase in sarcolemmal staining in mdx mice, most often associated with regenerating fibres where plectin staining also localizes around the central nuclei (C). However, there was also a significant localization of plectin to the sarcolemma in Dag1Y890F/Y890F mice (B) which was maintained at a similar level in Dag1Y890F/ Y890F/ mdx mice (D). Quantification of plectin levels by western blotting in WT, Dag1Y890F/Y890F (Y), mdx (m) or Dag1Y890F/Y890F/ mdx (Y/m) mice (E and F) revealed a slight increase in plectin levels in Dag1Y890F/Y890F mice in keeping with the immunohistochemistry (B); however, this increase was not significant (mean ± SEM, n = 4). Scale bar = 50 µm.
Second, as in the case of Dp71 overexpression, there is no increase in a cytolinker protein such as utrophin that can provide the link to the extracellular matrix; and third, while dystroglycan levels are increased, dystroglycan may be turned over rapidly if it could be susceptible to phosphorylation-mediated degradation. In the present study, in contrast, dystroglycan is expressed at normal levels from its own promoter, tyrosine 890 has been substituted to phenylalanine so cannot be phosphorylated. Although utrophin levels do not remain elevated, plectin expression/localization at the sarcolemma is increased providing a stabilizing link from dystroglycan to the cytoskeleton. The data presented here describe the rescue of the dystrophic phenotype achieved in mdx by changing a single-phosphorylation site in dystroglycan, represents a new paradigm in the aetiology and potential treatment of DMD.

We hypothesized that the phosphorylation of dystroglycan targets it for degradation. Previous work from the Lisanti group had identified Src, but not other Src family kinases or FAK, as capable of phosphorylating dystroglycan on Y890 (28), and that pY890 dystroglycan was internalized into vesicular structures that localized with cSrc when dystroglycan and cSrc were co-expressed in COS-7 cells (7). Furthermore, the immunofluorescence localization of pY890 β-dystroglycan in normal mouse muscle revealed a punctate staining pattern in the interior of the fibres and not at the sarcolemma as seen with non-phosphorylated dystroglycan (7). Using a membrane-targeted β-dystroglycan cytoplasmic domain construct, they also demonstrated that the β-dystroglycan construct was targeted to late endosomes dependent on the Src phosphorylation of Y890 (7). These data are consistent with our own findings in myoblast cells (Fig. 5) that only endogenous phosphorylated β-dystroglycan is internalized from the membrane. The fate of internalized phosphorylated β-dystroglycan, it has not been demonstrated whether α-dystroglycan is also internalized, is presumed to be proteasomal degradation—along with other DGC components that are internalized in mdx and DMD. Based on this premise, it has been proposed that blocking the ultimate step in the pathway, namely the proteasome, might be able to restore DGC components to the sarcolemma (8). Treatment with proteasomal inhibitors does indeed restore dystroglycan and other DGC components to the membrane and in appropriate models can be demonstrated to improve muscle pathophysiology in: mdx mice, explants from DMD and BMD patients and in sapje a zebrafish model of DMD (8,9,29–31). Our mouse genetic model also suggests that blocking the first step in the pathway, namely the tyrosine phosphorylation of β-dystroglycan, also has specific and beneficial effects in improving the dystrophic phenotype. Consequently, appropriate therapeutic agents that inhibit Src kinase may also prove to be beneficial in treating DMD. Like proteasomal inhibitors, however, clinically approved tyrosine kinase inhibitors, mostly in use as anticancer agents, have significant side effects. However, having identified druggable targets at two different points in a pathway leading to the loss of dystroglycan and DGC function in DMD, it should be possible to apply combinatorial therapies to achieve synergistic effects at much lower doses thus alleviating the side effects.

Utophin up-regulation occurs spontaneously to a certain extent in DMD (32,33) and also in mdx (15,16) where it has a clear protective effect (26,27). Furthermore, the forced expression of utrophin ameliorates the dystrophic phenotype in mdx, whether via a transgene (21), or by enhancing promoter activity pharmacologically (34). Moreover, as noted above, Dp71 overexpression in mdx protects the DGC and maintains levels of utrophin seen in mdx alone. By stabilizing dystroglycan and other DGC components at the sarcolemma, we therefore expected to achieve a rescue of the dystrophic phenotype in part by the actions of utrophin in anchoring the DGC to the sarcolemma. As our data show, however, utrophin levels were not maintained in mdx expressing Y890F dystroglycan, but instead, plectin levels were up-regulated. This unexpected finding raises some interesting questions: when the DGC is restored by preventing dystroglycan phosphorylation, what are the mechanisms that lead to the preferential increase in plectin rather than utrophin at the sarcolemma and how can plectin apparently affect such a rescue of the mdx phenotype? From the phenotypes of epidermolysis bullosa simplex with muscular dystrophy, we know that mutations in plectin contribute to sarcolemmal integrity (35–37), and that plectin is enriched at the sarcolemma in DMD (38) and plectin 1f specifically in the costameres of mdx mice (22). More recently, a mutation in exon 1f of plectin has been shown to give rise to an autosomal recessive limb girdle muscular dystrophy (LGMD2) phenotype independently of any dermatological symptoms (39). Therefore, plectin, like utrophin, is one of the family of large cytolinker proteins that contribute to sarcolemmal integrity and are naturally up-regulated, or redistributed, in a protective role in dystrophic muscle. From this brief review of plectin function in muscle, it is clear that plectin is already contributing to muscle architecture and is naturally up-regulated in dystrophic conditions. But why plectin and not utrophin localization to the sarcolemma in our Y890F/ mdx model? Part of the answer may lie in the nature of the mutation that was introduced into dystroglycan in this study. Changing the WW domain interaction motif PPPY to PPPF would not be predicted to support efficient binding of the utrophin WW domain (6,40,41). Our previous biochemical analysis of plectin, dystrophin and dystroglycan interactions (22), reveals the ability of plectin to bind to two sites on dystroglycan, including one that overlaps with the dystrophin WW domain interaction site, but importantly is not itself a WW domain interaction as plectin does not contain a WW domain. As previously published, in the mdx mouse, plectin can bind to dystroglycan through both interaction sites including the c-terminal PPYY motif (22). Plectin up-regulation is likely to be more effective at rescuing the dystrophic phenotype in mdx/Y890F mouse because dystroglycan is protected from degradation, whereas in mdx it is not, and plectin is unable to stabilize the sarcolemma. In the Y890F mouse, the ability of dystrophin to interact with the mutated PPPF motif is also weakened allowing increased plectin binding. In the mdx/Y890F mouse where dystroglycan phosphorylation is prevented and is therefore stabilized at the sarcolemma, plectin interaction/recruitment at the sarcolemma is further enhanced leading to a partial rescue of the dystrophic phenotype. The scheme put forward in our 2007 publication (see Figure 10 in 22) to explain the role of plectin in mdx mouse, also fits well with the role of plectin in our mdx/Y890F mouse model. We cannot rule out a role for increased utrophin levels in the rescue of the mdx phenotype; however, it is
unlikely that these alone are sufficient. It is possible that interactions between plectin and utrophin could replace interactions between plectin and dystrophin, but this is not supported by available utrophin localization data in the Dag1Y890F/1Y890F or Dag1Y890F/1Y890F\textsubscript{mdx} muscle. More detailed examination of the interactions between plectin, dystroglycan and utrophin are clearly warranted.

Thus, we have developed a new model of muscular dystrophy that for the first time not only reveals the importance of dystroglycan phosphorylation in the aetiology of muscular dystrophy, but also provides a new rationale for therapeutic intervention in Duchenne muscular dystrophy. Whether combinatorial drug treatment using both proteasomal and tyrosine kinase inhibitors would provide sufficient therapeutic benefit on its own remains to be tested; however, the promising genetic (this study) and pharmacological (8,9,29–31) interventions suggest at the very least that these approaches could be powerful adjuncts to other therapies such as exon skipping or utrophin up-regulation.

MATERIALS AND METHODS

Generation of a Dag1Y890F targeting construct

To generate the targeting vector a 9.8 kb XhoI–EcoRI fragment that included a portion of intron 1 and the entire exon 2 of the Dag1 gene was subcloned from bacterial artificial chromosome clone bmQ433-E3 (GeneService) into similarly digested pBluescript SK(+) vector. The A to T nucleotide change (underlined) corresponding to the Y890F substitution was introduced by site-directed PCR mutagenesis using the forward primer 5′- ATACCGATCACCCCCTCCGTTG TCCCCCT-3′ and reverse primer 5′- AGGAGGGGTGATA CGGTATGGGGTCATGT-3′ and the GeneTailor™ site-directed mutagenesis System (Invitrogen). A BclI site in intron 1 was used to insert the phospho-glycerate kinase (PGK) neomycin resistance selection cassette flanked by loxP sites. In addition, HpaI and XhoI sites in the vector backbone, outside the region of homology, were used to insert a PGK DTA cassette for negative selection. The final targeting vector (Fig. 1A) was verified by restriction digest and direct sequencing.

After the linearization of the targeting vector using XhoI, ES cell electroporation and blastocyst injection were performed by the Mouse Engineering Service of the University of Sheffield (MESUS).

Verification of the correct recombination event within neomycin resistant protamine-Cre (42), ES cell clones were performed by Southern analysis of EcoRI- and KpnI-digested genomic DNA using a probe located within intron 1 (Fig. 1A). WT chromosomes resulted in a 16.4 kb EcoRI fragment and a 6.8 kb KpnI fragment (Fig. 1A and B). Properly targeted chromosomes produced a smaller 5.8 kb EcoRI fragment resulting from the presence of an additional EcoRI site within the neomycin resistance cassette and a larger 8.6 kb KpnI fragment resulting from the insertion of the 1.8 kb neomycin cassette (Fig. 1A and B). Genomic DNA from positive clones and subsequent progeny was also amplified and sequenced to confirm the presence of the point mutation (Fig. 1C). In male chimaeras, when PC3 ES cells differentiate into spermatids, Cre recombinase is expressed and results in the excision of the floxed PGK-Neo cassette (42). Excision of the Neo cassette was confirmed in this chimaera and subsequent progeny by PCR using one set of primers that flank the loxP sites as follows: forward primer 5′-TTGATTCTCCAGCA-3′ and reverse primer 5′-CCTGGCCCTAATAATTGAT-3′ giving rise to the following products: 104 bp in WT progeny (+); 177 bp in progeny with the neo cassette excised (Neo−) but retaining a single loxP site and 1872 bp (not shown) in progeny where the neo cassette is still intact (Neo+, Fig. 1D) and another that utilize the same forward primer and a reverse primer located in the neo gene 5′-ATCGCCTCTATCGCCTTCT-3′ giving rise to a 499 bp product where the neo cassette is still intact and no product in WT and neo-excised progeny (Fig. 1D).

Chimaeric animals were then bred to heterozygosity by crossing with C57Bl6 mice. Sequencing of the Dag1 gene in targeted heterozygotes demonstrated equal proportions of both the WT adenine and MUT thymidine bases specifying the p.Y890F substitution (Fig. 1C). Breeding to homozygous WT or MUT genotypes was confirmed by PCR amplification, restriction enzyme digestion and agarose gel electrophoresis (Fig. 1E, see Genotyping section below). Homozygous WT, heterozygous Dag1Y890F/1Y890F and homozygous Dag1Y890F/1Y890F (MUT) mice at the specified ages were used in subsequent studies. To examine the effect of the Y890F mutation on muscle pathology in dystrophin-deficient muscular dystrophy Dag1Y890F/1Y890F mice were backcrossed with Dmdmdx/mdx mice (Generous gift from Steve Laval, Newcastle) for four generations. Mice homozygous for the Y890F mutation and either homozygous or hemizygous for the mdx mutation (Dag1Y890F/1Y890F/Dmdmdx/mdx or Dag1Y890F/1Y890F/Dmdmdx/mdx) were crossed to generate double homozygous offspring of both sexes (Dag1Y890F/1Y890F/Dmdmdx/mdx) and Dag1Y890F/1Y890F (Dmdmdx/mdx) and male mice that were hemizygous for the mdx mutation and heterozygous for the Y890F Dag1 mutation (Dag1Y890F/1Y890F/Dmdmdx/mdx) for use in our subsequent studies.

All animals were maintained in a high health status facility at the University of Sheffield according to the UK Home Office guidelines with access to food and water ad libitum. All animal studies were approved by both the ethical committee at the University of Sheffield and the UK Home Office.

Genotyping

Mouse ear biopsies were lysed overnight at 55°C in tail lysis buffer (50 mm Tris–HCl, pH 8.5; 2 mM EDTA, pH 8; 0.5% Tween; 300 mg/ml Proteinase K) and used for genotyping by PCR. Genotyping for Dag1Y890F/1Y890F mutants was performed by PCR amplification of a 107 bp fragment of the Dag1 gene using the forward primer 5′-ATACCGATCACCCCCCTCCGTTGT TCCCCCT-3′ and reverse primer 5′-ACGGAGGGGTGATA CGGTATGGGGTCATGT-3′ and the GeneTailor™ site-directed mutagenesis System (Invitrogen). A BclI site in intron 1 was used to insert the phospho-glycerate kinase (PGK) neomycin resistance selection cassette flanked by loxP sites. In addition, HpaI and XhoI sites in the vector backbone, outside the region of homology, were used to insert a PGK DTA cassette for negative selection. The final targeting vector (Fig. 1A) was verified by restriction digest and direct sequencing.

Downloaded from https://academic.oup.com/hmg/article-abstract/21/20/4508/656417 by guest on 28 November 2018
Histology and pathophysiology

Samples of quadriceps muscle were dissected from 4–6-week-old animals and processed for haematoxylin and eosin staining as described previously (43). Similarly prepared 6 μm cryosections were also labelled for individual components of the DGC using the following antibodies: anti-αDG (VIA4–1) (1:50, 4°C, Upstate Biotechnology), anti-βDG (Mandag2, 1:10, 4°C), anti-αSG (1:100, 23°C, Novocastra), anti-βSG (1:50, 23°C, Novocastra), anti-laminin-α2 (1:100, 23°C, ENZO life sciences), anti-utrophin (Rab5 rabbit polyclonal c-terminal, 1:4000, 23°C), anti-pan plectin #46 (1:200, 4°C, a gift from Gerhard Wiche, Vienna), anti-dystrophin (DYS1, 1:20 4°C, Novocastra), anti-sarcospan (PGM2, 1:50 4°C, BioServUK Ltd, UK). The PGM2 Rabbit polyclonal antibodies to murine Sspn were raised using a synthetic peptide (Sspn amino acids 3–16, GenBank accession P04714, SI-Biologics Ltd, UK). Antibodies were affinity purified from rabbit serum before use.

A mouse on mouse kit was used with all primary mouse antibodies (M.O.M.™ Kit, Vector Labs, Burlingame, CA, USA) and the manufacturer’s protocol was followed. Sections were mounted in Hydromount (National Diagnostics, Atlanta, GA, USA) containing 1% DABCO (Sigma-Aldrich). Fluorescence was visualized using a ZEISS AXIOSKOP 2 microscope and images were captured using QCapture software.

The number of fibres with centrally placed nuclei was determined by staining sections of quadriceps muscle with an anti-laminin-α2 antibody (as above) to delineate individual fibres with DAPI counterstain to visualize nuclei. Central nuclei were counted using cell counter in Image J 64. Analysis and statistical data were calculated in Graphpad Prism. Sections of mouse quadriceps were stained for NADH to determine the oxidative fibre type as described previously (44).

Sarcoleminal integrity

Levels of serum creatine kinase were measured in duplicate using a commercial CK ELISA kit (Usen Life Science Inc., Wuhan, PR China) according to the manufacturer’s instructions. The plate was read at 450 nm on a FLUOStar Optima plate reader (BMG-LABTECH Gmbh, Ortenberg, Germany) and data expressed as U/l.

In vivo muscle physiology

Mice were surgically prepared as described previously (20,45). Isometric force measurements were made from TA muscle, and maximum isometric tetanic force (P�) was determined from the plateau of the force–frequency curve (20). After completing the final isometric contraction, the muscle was allowed to rest for 5 min before the eccentric contraction protocol was initiated. A tetanic contraction was induced using a stimulus of 120 Hz for 700 ms. During the last 200 ms of this contraction, the muscle was stretched by 10% of L0 at a velocity of 0.5 L0s⁻¹ and relaxed at −0.5L0s⁻¹. The isometric tension recorded prior to the first stretch was used as a baseline. The muscle was then subjected to 10 eccentric contractions separated by a 2 min rest period to avoid the confounding effect of muscle fatigue. The isometric tension prior to the first stretch was recorded and expressed as a percentage of the baseline tension (20). The mouse was then euthanized and the muscle was carefully removed and weighed.

In vitro assays and western blotting

Cell surface biotinylation assays

H2k-tsA58 mouse myoblasts (18) maintained as described previously (46), were placed on ice, washed three times in chilled PBS and incubated for 30 min with 0.5 mg/ml Sulfo-NHS-SS-Biotin (Thermo Scientific) in PBS on ice. Cells were washed three times with serum-free media to remove uncoupled biotin and returned to 37°C to allow endocytosis to proceed. At various time points, cells were placed on ice and washed twice in chilled MesNa stripping buffer (50 mM Tris–HCl, pH 8.6, 100 mM NaCl, 1 mM EDTA), followed by three times 20 min washes in chilled MesNa stripping buffer with 0.2% BSA (w/v) and 100 mM MesNa (Sigma) added fresh. Cells were then washed in chilled PBS containing 500 mM iodoacetamide (Sigma) and left on ice for 10 min, before being washed a further three times in chilled PBS before lysis in radioimmunoprecipitation buffer (6). As a control for stripping, the experiment was repeated as above, except the cells were not incubated at 37°C but were stripped immediately after biotinylation and washing with serum-free media. Samples were analysed by SDS–PAGE and western blotting for phosphorylated and non-phosphorylated β-dystroglycan and transferrin receptor as control. SDS–PAGE and western blotting of muscle samples was carried out as below and described previously (6,22,47).

Quantification of muscle proteins

Hamstring muscle was snap frozen in liquid nitrogen and stored at −80°C prior to use. Approximately 100 mg of tissue was weighed, ground to a powder under liquid nitrogen, resuspended in RIPA buffer (6) at a ratio of 1 ml per 100 mg of tissue and homogenized in a dounce homogenizer for 10 strokes. Samples were incubated on a roller for 30 min at 4°C, before sonicating and centrifuging at 15 000g for 15 min. Supernatant was resuspended in Laemmli sample buffer, boiled for 10 min and 30 μl was run out on 4–15% Criterion TGX polyacrylamide gels (BioRad). Following transfer and blotting as above, chemiluminescence signals were imaged on a Chemidoc XRS+ (BioRad). Quantification was carried out in Image Lab software (BioRad) using volume measurements for each band with rolling disk background subtraction (diameter 10 mm). Values were normalized against concanavalin A lectin signal and represented as a ratio of the average WT signal for each antibody: primary antibodies: β-DG (43Dag1 1:50, Vector Labs), pY β-DG (1709 1:1000), utrophin (Rab5 rabbit polyclonal c-terminal 1:5000), plectin (#46 1:3000, a kind gift from Gehard Wiche), dystrophin (DY5 1:100, Novacasta) and concanavalin A lectin biotin conjugate (1:2500, Vector Labs); secondary antibodies: peroxidase-conjugated anti-mouse raised in goat (1:10 000, Sigma-Aldrich), peroxidase-conjugated anti-rabbit raised in goat (1:20 000, Sigma-Aldrich) and peroxidase-conjugated extravidin (1:10 000, Sigma-Aldrich).

Unless otherwise stated, statistical significance was ascertained using a one-way ANOVA analysis with a threshold of
SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

We are grateful to Lynne Williams and Mohammad Rogha-
nian for expert technical assistance, to Steve Laval (Newcastle) for mdx mice and to Gerhard Wiche (Vienna) for plectin antisera.

Conflict of interest statement. None declared.

FUNDING

This work was supported by the Medical Research Council (G0701129 to S.J.W. and G.M.).

REFERENCES

