Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease

Liza M. Sutton, Shaun S. Sanders, Stefanie L. Butland, Roshni R. Singaraja, Sonia Franciosi, Amber L. Southwell, Crystal N. Doty, Mandi E. Schmidt, Katherine K.N. Mui, Vlad Kovalik, Fiona B. Young, Weining Zhang and Michael R. Hayden*

Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada

Received August 24, 2012; Revised October 5, 2012; Accepted October 11, 2012

INTRODUCTION

Palmitoylation, the dynamic post-translational addition of the lipid, palmitate, to proteins by Asp-His-His-Cys-containing palmitoyl acyltransferase (PAT) enzymes, modulates protein function and localization and plays a key role in the nervous system. Huntingtin-interacting protein 14 (HIP14), a well-characterized neuronal PAT, has been implicated in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disease associated with motor, psychiatric and cognitive symptoms, caused by a CAG expansion in the huntingtin gene (HTT). Mice deficient for Hip14 expression develop neuropathological and behavioural features similar to HD, and the catalytic activity of HIP14 is impaired in HD mice, most likely due to the reduced interaction of HIP14 with HTT. Huntingtin-interacting protein 14-like (HIP14L) is a paralog of HIP14, with identical domain structure. Together, HIP14 and HIP14L are the major PATs for HTT. Here, we report the characterization of a Hip14l-deficient mouse model, which develops adult-onset, widespread and progressive neuropathology accompanied by early motor deficits in climbing, impaired motor learning and reduced palmitoylation of a novel HIP14L substrate: SNAP25. Although the phenotype resembles that of the Hip14+/− mice, a more progressive phenotype, similar to that of the YAC128 transgenic mouse model of HD, is observed. In addition, HIP14L interacts less with mutant HTT than the wild-type protein, suggesting that reduced HIP14L-dependent palmitoylation of neuronal substrates may contribute to the pathogenesis of HD. Thus, both HIP14 and HIP14L may be dysfunctional in the disease.

*To whom correspondence should be addressed. Tel: +1 6048753535; Fax: +1 6048753819; Email: mrh@cmmt.ubc.ca

© The Author 2012. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
The YAC128 mouse model recapitulates many neuropathological and behavioural features of HD, including striatal volume loss, enkephalin-expressing medium spiny neuron (MSN) loss in the striatum and motor and cognitive dysfunction (18).

Palmiotylation is mediated by palmitoyl acyltransferases (PAT), a class of enzymes that possess a signature cysteine-rich, DHHC-containing catalytic domain (DHHC-CR; 19,20). There are 23 mammalian PATs with distinct but overlapping substrate specificities (19,21,22). HIP14 was the first identified mammalian PAT and regulates the palmiotylation and trafficking of several synaptic proteins, including HTT, SNAP25, GAD65, PSD-95 and synaptotagmin I (23,24). Several lines of evidence point to the involvement of HIP14 in the pathogenesis of HD. The interaction between HTT and HIP14 is reduced in the presence of the HD mutation and not only is HTT a substrate for HIP14 but wild-type HTT (but not mutant HTT) enhances HIP14 PAT activity (11,25). Loss of Hip14L expression in mice results in the development of early-onset striatal degeneration and deficits in motor coordination and neuronal palmitoylation that are reminiscent of features of HD (11). HIP14 is dysfunctional in YAC128 mice, likely due to its reduced interaction with HTT and its altered localization (11). Taken together, these data point to aberrant palmitoylation of neuronal substrates as a potential mechanism contributing to the pathogenesis of HD.

Huntingtin-interacting protein 14-like (HIP14L or ZDHHC13) was identified in a database search for HIP14 homologs but has not been well characterized (24). HIP14L shares identical domain structure and 57% sequence similarity with HIP14 in humans (7,24), and these two PATs are the major PATs for HTT (in vitro) (25). HIP14L is ubiquitously expressed, and one reported mutation of the Hip14L gene results in a wide range of physiological disturbances in mice (26). The mice, in which a nonsense mutation was introduced into exon 12 of the Hip4l gene (Hip14L^{g₂₅₈}) by N-ethyl-N-nitrosourea mutagenesis and truncated HIP14L before the catalytic domain, exhibited severe phenotypes, including shortened life span (20% survival at 12 months), 50% reduced body weight at all ages, skin and hair abnormalities, including alopecia, bone abnormalities, including osteoporosis and kyphosis and systemic amyloidosis. However, the consequences of the HD mutation and not only is HTT a substrate for HIP14, revealed that both PATs contain seven ankyrin repeats within the ankyrin domain, a region that distinguishes them from the other PATs and mediates protein–protein interactions (7). The DHHC-CR domain lies between TM4 and TM5. HIP14L is unique among mammalian PATs because it contains a DQHC sequence within the DHHC-CR domain, as opposed to the canonical DHHC motif. This is unlikely to impair its PAT activity because it has been shown to palmitoylate HTT, GAD65, IgG kappa light chain and Gp78 <i>in vitro</i> (25–27).

Pairwise sequence alignment of the mouse HIP14L and HIP14 proteins indicates that they share 63% sequence similarity and 46% sequence identity. A conservation plot of these two sequences illustrates that they are most similar at the N-terminal ankyrin domain (ANK1-ANK3) and in the DHHC-CR catalytic domain, consistent with their role in catalysis (Fig. 1B).

Interaction of HIP14L with HTT is reduced in the presence of the HD mutation

Because HIP14L is a major PAT for HTT (25) and has identical domain structure to HIP14, we hypothesized that, like HIP14, HIP14L may also be a HTT-interacting protein. Co-immunoprecipitation (co-IP) assays were performed following overexpression of HIP14L and an N-terminal fragment of HTT (N548-HTT) in COS cells. HIP14L interacted with wild-type 15Q HTT, but significantly less with mutant 128Q HTT, confirming HIP14L as an HTT interactor which may play a role in the pathogenesis of HD (Fig. 2). Consistent with previous observations, HIP14L also interacted less robustly with mutant HTT (24).

Expression of Hip14l in mouse tissues

The normal tissue distribution of Hip14l in wild-type mice was determined by a quantitative RT-PCR (qRT-PCR) assay using primers located in exons 4 and 5. Due to the absence of a reliable antibody for HIP14L, protein levels were not assessed. In adult wild-type mice at 3 months, Hip14l mRNA expression was detected in whole brain, in all peripheral tissues tested (heart, muscle, kidney, spleen, liver and lung; Fig. 3A) and was detected in whole brain, in all peripheral tissues tested (heart, muscle, kidney, spleen, liver and lung; Fig. 3A) and in all brain regions tested (Fig. 3B). This corroborates previous data in mice and humans, which indicate that Hip14l expression is ubiquitous (http://biogps.gnf.org; 26). The Hip14l mRNA expression pattern is similar to human HIP14 mRNA, in that there is higher expression in the brain, heart, muscle and kidney than in the lung and liver (24).

Generation of Hip14l^{−/−} mice

To determine the role of HIP14L in the CNS and to determine whether, like HIP14, it plays a role in the pathogenesis of HD, a Hip14l-deficient mouse (Hip14l^{−/−}) was generated. A gene trap strategy was employed, in which the gene trap vector was inserted into intron1 of Hip14l (Supplementary Material, Fig. S1). Hip14l gene trap transgenic mice were backcrossed from the 129/Ola strain to the FVB strain background.
H1p414l/2 mice exhibit progressive neuropathological deficits and HD-like striatal pathology

Because H1p414l/2 mice display developmental neuropathology, we assessed brain and cerebellar weights of H1p414l/2 mice, beginning at 1 month of age. No difference in brain and cerebellar weights of H1p414l/2 mice was observed at 1 month when compared with wild-type littermates. Longitudinal analysis of brain and cerebellar weights from 1 to 12 months revealed a highly significant effect of genotype and age on the two measures (brain: two-way ANOVA genotype: \(P < 0.0001 \), age: \(P < 0.0001 \), interaction: \(P = 0.063 \); cerebellum: two-way ANOVA genotype: \(P < 0.0001 \), age: \(P < 0.0001 \), interaction: \(P = 0.99 \); Fig. 4A and B). Brain and cerebellar weights of H1p414l/2 mice were reduced in adulthood from 3 months (4.8% for brain weight and 6.2% for cerebellar weight) to 12 months of age (9.1% for brain weight and 6.4% for cerebellar weight). A trend towards a significant interaction of age and genotype for brain weight indicates that the loss in brain weight in the H1p414l/2 mice is likely to be progressive.

The brain regions classically associated with HD pathology are the striatum and cortex. Stereological assessment of the striatum and cortex in the H1p414l/2 mice revealed a pattern that was similar to the changes observed for brain weight. No difference was observed in the striatal and cortical volumes of H1p414l/2 mice at 1 month of age when compared with wild-type littermates, and striatal and cortical volumes...
were progressively reduced from 3 months of age (5.7% for striatal volume and 8.4% for cortical volume) to 12 months of age (9.8% for striatal volume and 8.3% for cortical volume; striatum: two-way ANOVA genotype: $P = 0.0001$, age: $P = 0.072$; interaction: $P = 0.0005$; cortex: two-way ANOVA genotype: $P = 0.0001$, age: $P = 0.0093$; interaction: $P = 0.0040$; Fig. 4C and E). Striatal neuronal count was reduced by 15.8% ($P = 0.0028$) in the Hip14L$^{−/−}$ mice at 6 months of age, indicating that the striatal volume loss was due to neuronal cell death (Fig. 4D).

HD affects other regions of the brain in addition to the striatum and cortex (16). A recent study shows the most discriminatory brain regions in the YAC128 HD mouse model when compared with wild-type mice included subcortical grey matter regions and white matter regions that were reduced in volume, whereas hippocampus was reliably unchanged (29). Consequently, we performed stereological assessment of the globus pallidus, thalamus, corpus callosum and hippocampus in the Hip14L$^{−/−}$ mice. In the Hip14L$^{−/−}$ mice, all these structures are reduced in volume (11). Female Hip14L$^{−/−}$ mice were studied because no significant difference was found between genders in previously analyzed neuropathological parameters. Hip14L$^{−/−}$ mice displayed a significant reduction in volume of the thalamus (two-way ANOVA genotype: $P = 0.0003$, age: $P = 0.38$; interaction: $P = 0.51$) and corpus callosum (two-way ANOVA genotype: $P < 0.0001$, age: $P < 0.0001$; interaction: $P = 0.32$) at 3 and 6 months and a significant reduction in volume of the globus pallidus at 6 months (two-way ANOVA genotype: $P = 0.05$, age: $P = 0.42$; interaction: $P = 0.044$). Hippocampal volumes remained unchanged at 3 and 6 months (two-way ANOVA genotype: $P < 0.34$, age: $P = 0.045$; interaction: $P = 0.76$; Fig. 4F–I).

In HD, the most severely affected striatal neuronal population is the met-enkephalin/dopamine receptor-2-expressing MSNs of the indirect pathway, whereas the substance P/DR1-expressing MSNs of the direct pathway remain largely unaffected until late stages of the disease (30). Striatal neurochemistry was assessed in the Hip14L$^{−/−}$ mice at 6 months of age. Dopamine- and cAMP-regulated phosphoprotein of Mr 32 000 (DARPP-32), which is a marker of the GABAergic MSNs that comprise 90% of the striatum, was reduced by 32% in the Hip14L$^{−/−}$ mice at 6 months of age. Dopamine- and cAMP-regulated phosphoprotein of Mr 32 000 (DARPP-32), which is a marker of the GABAergic MSNs that comprise 90% of the striatum, was reduced by 32% in the Hip14L$^{−/−}$ mice at 6 months of age. Dopamine- and cAMP-regulated phosphoprotein of Mr 32 000 (DARPP-32), which is a marker of the GABAergic MSNs that comprise 90% of the striatum, was reduced by 32% in the Hip14L$^{−/−}$ mice at 6 months of age.
Figure 3. Normal tissue distribution of Hip14l in adult mice and loss of Hip14l expression in gene trap mice. Hip14l mRNA expression in (A) adult tissues and (B) brain regions at 3 months, as assessed by qRT-PCR (Cb = cerebellum; Cx = cortex; Hc = hippocampus; Str = striatum). Expression was calculated relative to β-actin (n = 3). (C) Absence of Hip14l mRNA in brain, liver and kidney of Hip14l gene trap (+/-) mice when compared with wild-type mice (+/+) by qRT-PCR at 3 months of age. Expression was calculated relative to β-actin (n = 3).

Hip14l/−/− mice are hypoactive, display motor learning deficits and motor impairment

To determine whether the significant widespread CNS pathology observed in **Hip14l/−/−** mice was associated with behavioural changes, the mice were subjected longitudinally to a number of motor and cognitive tasks. Spontaneous locomotor activity was assessed at 3, 6 and 12 months of age. **Hip14l/−/−** mice were hypoactive when compared with wild-type mice from 3 to 12 months (Fig. 6A–D). RMA revealed a significant effect of genotype on the majority of parameters recorded: ambulatory time (RMA genotype: \(P < 0.0001 \), age: \(P = 0.062 \); interaction: \(P = 0.0001 \), age: \(P = 0.21 \); interaction: \(P = 0.79 \)), resting time (RMA genotype: \(P < 0.0001 \), age: \(P = 0.13 \); interaction: \(P = 0.062 \)) and vertical time (RMA genotype: \(P < 0.0001 \), age: \(P = 0.95 \); interaction: \(P = 0.017 \)). No effect of genotype was observed for velocity (RMA genotype: \(P = 0.30 \), age: \(P = 0.0047 \); interaction: \(P = 0.78 \); data not shown).

Balance and motor coordination of **Hip14l/−/−** mice were assessed on the accelerating rotarod task at 3–12 months. Initially, mice were trained on a fixed speed rotarod for 3 days. RMA revealed a trend towards a significant effect of genotype on rotarod training (RMA genotype: \(P = 0.070 \), trial: \(P < 0.0001 \); interaction: \(P = 0.21 \)). The **Hip14l/−/−** mice spent significantly less time on the rotarod on Day 1 when compared with wild-type mice, according to the post hoc analysis (Fig. 6E), indicating that the **Hip14l/−/−** mice have a motor learning impairment. On the accelerating rotarod task, the performance of **Hip14l/−/−** mice did not differ significantly from that of the wild-type controls indicating no obvious impairment of motor coordination (RMA genotype: \(P = 0.45 \), age: \(P < 0.0001 \); interaction: \(P = 0.63 \); Fig. 6F). To further investigate motor coordination in the **Hip14l/−/−** mice, they were subjected to a climbing task. At 2 months of age, **Hip14l/−/−** mice performed 65% fewer climbing events (\(P = 0.0004 \)) and spent 41% less time climbing (\(P = 0.065 \); data not shown) than wild-type controls (Fig. 6H). **Hip14l/−/−** mice showed no difference in the number of rearing events (\(P = 0.92 \)) or time taken to start climbing (\(P = 0.80 \); data not shown), indicating that reduced climbing in **Hip14l/−/−** mice was not the result of reduced motivation to climb.

Palmitoylation of neuronal substrate, SNAP25, is reduced in Hip14l/−/− mice

To determine whether the loss of Hip14l results in the loss of palmitoylation of proteins in the brain, we assessed the palmitoylation status of selected neuronal substrates, including HTT and those that were reduced in the **Hip14l/−/−** mice: PSD-95 and synaptosomal-associated protein-25 (SNAP25). Although HTT is a HIP14L substrate in vitro, HTT palmitoylation was unchanged in **Hip14l/−/−** brain (\(P = 0.13 \), Fig. 7A and B). Because HIP14 and HIP14L are the predominant PATs for HTT, it is likely that HIP14 is compensating for the loss of HIP14L in **Hip14l/−/−** brain to palmitoylate HTT. Consistent with in vitro data, PSD-95 palmitoylation was unchanged in **Hip14l/−/−** brain when compared with wild type, indicating that HIP14 and HIP14L have some different substrates (\(P = 0.28 \), Fig. 7C and D; 11). Interestingly, there was a 33% reduction in SNAP25 palmitoylation in **Hip14l/−/−** brains (\(P = 0.031 \)), indicating that SNAP25 is a HIP14L substrate in vivo (Fig. 7E and F).

DISCUSSION

In this study, we provide evidence that HIP14L is important in the CNS and its dysfunction may play a role in the pathogenesis of HD. We characterized regions of sequence similarity in the functional domains of HIP14L and HIP14, and we showed that, like HIP14, the interaction between HIP14L and mutant HTT is impaired. Loss of **Hip14l** expression in vivo led to the development of adult-onset, widespread and progressive...
Figure 4. *Hip14l*−/− mice display post-natal widespread and progressive neuropathological deficits. (A and B) Brain and cerebellar weights of *Hip14l*−/− mice were unchanged from wild-type littermate controls at 1 month of age and were significantly reduced from 3 to 12 months relative to wild-type controls (WT). (C and E) Striatal and cortical volumes were unchanged in *Hip14l*−/− mice when compared with wild-type littermate controls at 1 month of age and were significantly and progressively reduced from 3 to 12 months relative to WT controls. n = 1 month: brain and cerebellar weights: 11 (WT), 10 (*Hip14l*−/−); 1 month: striatal and cortical volumes: 16–17 (WT), 16–18 (*Hip14l*−/−); 3 months: 16–17 (WT), 15–16 (*Hip14l*−/−); 6 months: 15–18 (WT), 14–15 (*Hip14l*−/−); 9 months: 13–15 (WT), 12–14 (*Hip14l*−/−); 12 months: 15–17 (WT), 11–14 (*Hip14l*−/−); mixed sex. Data were analyzed by two-way ANOVA. (D) Striatal neuronal count was reduced in *Hip14l*−/− mice by 15.8% at 6 months. n = 5 (WT), 8 (*Hip14l*−/−). Data are represented as mean ± SEM and were analyzed by Student’s t-test. *Hip14l*−/− mice displayed a significant reduction in volume of (G) thalamus, (H) corpus callosum at 3 and 6 months and of the (F) globus pallidus at 6 months. (I) Hippocampal volume remained unchanged at 3 months. n = 3 months: 9–10 (WT), 8–9 (*Hip14l*−/−); n = 6 months: 8–9 (WT), 7–8 (*Hip14l*−/−); females. All data are represented as mean ± SEM and were analyzed by two-way ANOVA. Significance of t-test or post hoc Bonferroni comparisons of genotype is indicated by * (P < 0.05), ** (P < 0.01), *** (P < 0.001).
neuropathology that was associated with early motor deficits in climbing, impaired motor learning and reduced palmitoylation of a novel HIP14L substrate: SNAP25. This phenotype is similar to the Hip14−/− mice and also resembles that of the YAC128 HD mice. Comparison of Hip14l−/− and YAC128 HD mice

Hip14l−/− mice displayed a pattern and time course of neuropathology similar to the YAC128 mice (Table 1). Loss of brain volume and striatal volume occurs at 3 months of age, and both mice develop HD-like striatal neurochemical profiles by 6 months of age (18,29,30). Similar brain regions are affected in both mice: cortex, globus pallidus, thalamus and corpus callosum volumes are reduced and hippocampal volumes remain unchanged (29). In contrast, Hip14l−/− mice also showed reduced cerebellar weight that is not observed in the YAC128 HD mice. Hip14l−/− mice share some behavioural features with the YAC128 mice (Table 1). Both mice display motor learning deficits in rotarod training, motor deficits in climbing and both develop hypoactivity, albeit later in the YAC128 mice (18,31,32). Unlike the YAC128 mice, no motor coordination deficits on the rotarod task were detected in the Hip14l−/− mice (31). The normal rotarod performance of the Hip14l−/− mice may be explained by the low sensitivity of this apparatus to detect basal ganglia dysfunction (32,33). Changes in palmitoylation status of neuronal proteins are observed in both Hip14l−/− (SNAP25) and YAC128 (HIP14, HTT and GLT-1) mice (11,12,34).

Comparison of HIP14L and HIP14 protein sequence

Important functional sequences tend to be evolutionarily conserved and, as expected, this is seen in the high sequence similarity between the DHHC-CR domains of HIP14L and HIP14 (Fig. 1). The striking similarity between mouse HIP14L and HIP14 in the N-terminal half of the ankyrin domain (ANK repeats 1–3) suggests that this region may contain sequences important to some shared function between these closely related PATs. Conversely, the C-terminal half of the ankyrin...
domain, where the sequences diverge, is likely to confer unique functions on HIP14 and HIP14L. The critical role of the ankyrin domain of HIP14 in substrate binding has been reported previously for HTT (24,25). From limited palmitoylation substrate studies, it is apparent that HIP14L and HIP14 share some, but not all neuronal substrates (11,22). The distinct regions of high and low similarity identify segments of the ankyrin domain to be investigated for their contribution to binding shared and unique substrates of these two PATs.

Figure 6. *Hip14*−/− mice are hypoactive, display impaired motor learning and motor deficits. On the spontaneous locomotor task, *Hip14*−/− mice were significantly hypoactive when compared with wild-type mice (WT) in the following measures: (A) ambulatory time, (B) distance travelled, (C) resting time and (D) vertical time. n = 12 (WT), n = 9 (*Hip14*−/−); mixed sex. (E) *Hip14*−/− mice were trained for 3 days on the fixed rotarod and displayed impaired motor learning because they spent less time on the rotarod on Day 1 when compared with wild type. n = 20 (WT), 20 (*Hip14*−/−); mixed sex. (F) *Hip14*−/− mice were tested on the accelerating rotarod task at 3, 6, 9 and 12 months of age to test motor coordination. Performance was not significantly impaired when compared with WT. n = 15 (WT), 18 (*Hip14*−/−); mixed sex. (G) *Hip14*−/− mice displayed a trend towards reduced body weight, which is progressive. n = 18 (WT), 19 (*Hip14*−/−); mixed sex. (H) *Hip14*−/− mice climbed less than WT mice at 2 months of age. n = 12 (WT), 11 (*Hip14*−/−). Data are represented as means ± SEM and were analyzed by RMA or Student’s t-test. Significance of t-test or post hoc Bonferroni comparisons of genotype is indicated by *(P < 0.05), ***(P < 0.01), ***(P < 0.001).
Comparison of Hip14l^{−/−} to Hip14^{−/−} mice

Hip14^{−/−} mice displayed a pattern of neuropathology similar to Hip14^{−/−} mice, but it was adult onset and progressive in manner, rather than occurring during embryonic development as in the Hip14^{−/−} mice (Table 1). Both mouse lines show reduced brain weight and significant volume loss in striatum, cortex, globus pallidus, thalamus, cerebellum and corpus callosum and loss of enkephalin-expressing MSNs of the striatum. Hip14^{−/−} mice display additional volume loss in the hippocampus that was not detected in the Hip14l^{−/−} mice (11).

Hip14l^{−/−} mice displayed some behavioural deficits distinct from Hip14^{−/−} mice (Table 1). They showed hypoactivity rather than hyperactivity from 3 months of age, motor learning deficits at 3 months and no motor coordination deficits on the rotarod task from 3 to 12 months. Motor impairment was detected in the Hip14l^{−/−} mice on the climbing task at 2 months of age, a parameter not measured in the Hip14^{−/−} mice. As mentioned previously, the apparent absence of motor impairment in the Hip14l^{−/−} on the accelerating rotarod task may be due to the lack of sensitivity of this apparatus to detect basal ganglia dysfunction (32,33).

Like the Hip14^{−/−} mice, Hip14l^{−/−} mice showed normal HTT palmitoylation in the brain (11). In vitro evidence indicates that HIP14 and HIP14L are the major PATs for HTT; thus, in the absence of one, the other may compensate (22). No change in Hip14 expression was detected in Hip14l^{−/−} brain at the transcript level (data not shown), but it may be that HIP14 compensates for the loss of HIP14L by either increased protein expression or PAT activity. Unlike Hip14^{−/−} mice, no change in PSD-95 palmitoylation was observed in Hip14l^{−/−} brain, which is consistent with in vitro observations that PSD-95 is not a HIP14L substrate (22). It still remains possible that HIP14 or another PAT might also be compensating for the loss of HIP14L in this case (11,35). SNAP25 palmitoylation was reduced in the brain of Hip14l^{−/−} mice, like Hip14^{−/−} mice. This deficit was present at 6 weeks of age, prior to the detection of neuropathology, suggesting that this is an upstream event that could contribute to neuronal dysfunction, rather than being a consequence of neuronal death. It is unlikely that reduced SNAP25 palmitoylation alone underlies the phenotype of the Hip14l^{−/−} mice, but it may be that changes in palmitoylation of multiple, as yet unidentified, substrates contribute to this phenotype. SNAP25 has not previously been recognized as a HIP14L substrate because in vitro data only showed a mild trend ($P = 0.1$) towards a 50% increase in SNAP25 palmitoylation in the presence of HIP14L (22). This discrepancy in SNAP25 palmitoylation by HIP14L between in vivo and in vitro paradigms may reflect the fact that HIP14L is not a PAT for SNAP25 in all cellular circumstances. For example,
Table 1. Comparison of phenotypes in Hip14l−/−, Hip14−/− and YAC128 HD mice

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Hip14l−/−</th>
<th>Hip14−/−</th>
<th>YAC128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain weight</td>
<td>Decrease at 9 months (18)</td>
<td>Decrease at 12 months (29)</td>
<td>Decrease at 9 months (18)</td>
</tr>
<tr>
<td>Striatal neuronal count</td>
<td>Decrease at 3 months (29)</td>
<td>Decrease at 12 months (29)</td>
<td>Decrease at 3 months (29)</td>
</tr>
<tr>
<td>DARPP-32 and enkephalin staining</td>
<td>Decrease in volume of cortex, thalamus, globus pallidus, corpus callosum, hypothalamus</td>
<td>Decrease in volume of cortex, thalamus, globus pallidus, corpus callosum, cerebellum</td>
<td>Decrease in volume of cortex, thalamus, globus pallidus, corpus callosum, cerebellum</td>
</tr>
<tr>
<td>Other brain regions</td>
<td>Decrease in volume of cortex, thalamus, globus pallidus, corpus callosum, cerebellum</td>
<td>Decrease in volume of cortex, thalamus, globus pallidus, corpus callosum, cerebellum</td>
<td>Decrease in volume of cortex, thalamus, globus pallidus, corpus callosum, cerebellum</td>
</tr>
<tr>
<td>Motor function</td>
<td>Impaired motor learning (Young, unpublished)</td>
<td>Impaired motor learning (Young, unpublished)</td>
<td>Impaired motor learning (Young, unpublished)</td>
</tr>
<tr>
<td>Cognitive function</td>
<td>Normal motor learning</td>
<td>Normal motor learning</td>
<td>Normal motor learning</td>
</tr>
<tr>
<td>Palmitoylation</td>
<td>Decrease in HIP14, HTT and GLT-1 palmitoylation (11,12,34)</td>
<td>Decrease in PSD-95 and SNAP25 palmitoylation</td>
<td>Decrease in HIP14, HTT and GLT-1 palmitoylation (11,12)</td>
</tr>
<tr>
<td>Behavioral, neuropathological and palmitoylation deficits of the three mouse models. For Hip14−/− mice, italicized text indicates how phenotype differs with YAC128 HD mice.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contribution of HIP14L and HIP14 to the pathogenesis of HD

The adult-onset, progressive neuropathology, motor deficits and palmitoylation deficits of the Hip14l−/− mouse are highly reminiscent of the YAC128 HD mouse model and human HD (16,18). HTT palmitoylation is reduced in the YAC128 mice, but unchanged in Hip14−/− and Hip14L-deficient mice (11,12), suggesting that both HIP14 and HIP14L may be dysfunctional in HD. Thus, reduced HIP14- and HIP14L-dependent palmitoylation of neuronal substrates may underlie some of the features of HD, strongly supporting the concept that aberrant palmitoylation contributes to neuropsychiatric diseases.

Comparison of Hip14l−/− and Hip14R425X mutant mice

The phenotypes observed in this study for the Hip14l−/− mice do not match those reported by Saleem et al. for the Hip14R425X mutant mice, which included deficits in survival, body weight, hair, skin and bone and generalized amyloidosis (26). In contrast to the Hip14R425X mice that were reported to carry a loss of function allele, Hip14l−/− mice did not display reduced survival, skeletal deficits or amyloid deposition. The Hip14l−/− mice did develop hair pathology (periocular alopecia) and 10% reduced body weight at 12 months of age (Fig. 6G), but these phenotypes were much milder than the severe alopecia and 50% reduced body weight reported for...
the *Hip14l*R425X mice. The authors stated that a *Hip14l* gene trap mouse (generated with the identical construct used in our study) exhibited the same phenotypes as the *Hip14l*R425X mice, but unfortunately only skin histology data were presented, making it difficult to compare it with the *Hip14l*−/− data presented here.

The background strain is known to modulate the severity of phenotypes in mice; thus, the phenotypic differences observed in these two studies may be strain related (41–43). The *Hip14l*R425X and *Hip14l* gene trap mutants in Saleem *et al.* were on a BL/6 × 129 mixed background and our *Hip14l* −/− mice were on an FVB background.

The *Hip14l*R425X mouse contains a nonsense mutation located in exon 12 of the *Hip14l* gene. This mutation is predicted to truncate the protein at residue 425 (hence R425X), just prior to the DHHC-CR catalytic domain (aa426–476) and accordingly abolishes the enzymatic activity. The ankyrin domain and the first four transmembrane domains are retained, suggesting that the truncated protein should be membrane bound. The ankyrin and DHHC-CR domains of Akr1, the yeast homolog of HIP14 and HIP14L, are able to carry out Akr1 function, even when expressed from separate mRNAs, provided they are membrane tethered (38). Thus, it is possible that rather than leading to loss of function, *Hip14l*R425X is acting in a dominant-negative manner. *Hip14l*R425X may bind substrates, but would be unable to palmitoylate them, leading to their mislocalization. By sequestering substrates, *Hip14l*R425X may also prevent HIP14, and HIP14L R425X and lack of compensation by other mRNAs, provided they are membrane tethered (22,44). This dominant-negative function of HIP14L R425X and lack of compensation by other PATs was expected to result in an exacerbated phenotype as compared to the loss of *Hip14l* function alone.

The *Hip14l*−/− mouse described herein lacks any *Hip14l* mRNA expression and is therefore a genuine model of complete *Hip14l* deficiency. A mouse model with a potential dominant-negative mutation does not represent a mouse model with complete deletion of *Hip14l* function. Thus, our model unambiguously represents the biochemical, neuropathological, behavioural and pathological phenotypes resulting from the absence of *Hip14l*.

MATERIALS AND METHODS

HIP14L and HIP14 sequence comparison

The conservation plot was generated by EMBOSS Plotcon (45) with a window size of 50 amino acids and other parameters at default values using a sequence alignment of mouse HIP14L (NP_082307.1) and HIP14 (NP_766142.2) as input. The Plotcon similarity score is calculated from the pairwise amino acid substitution score from the EBLOSUM62 substitution matrix as a factor of window size and number of sequences compared and was normalized to a maximum of 1.

Antibodies

The antibodies used in this study were HTT rabbit polyclonal antibody [BKP1 (46); 1:30 for immunoprecipitation (IP)], HTT mouse monoclonal antibody (MAB2166, Millipore, 1:1000 for IP), GFP goat polyclonal antibody (G095, Applied Biological Materials, 1:100 for IP), GFP rabbit polyclonal antibody (sc8334, Santa Cruz, 1:200 for immunoblotting), SNAP25 mouse monoclonal (SM181, Covance, 1:125 for IP), SNAP25 rabbit polyclonal (111002, Synaptic Systems, 1:1000 for immunoblotting), PSD-95 rabbit polyclonal (in-house, 1:85 for IP) and PSD-95 mouse monoclonal (MA1-25629, Thermoscientific, 1:1000 for immunoblotting). Fluorescently conjugated secondary antibodies for immunoblotting were streptavidin Alexa Fluor 680 conjugate (1:10,000, Invitrogen), Alexa Fluor 680 donkey anti-mouse antibody (1:10,000, Invitrogen) and goat anti-mouse and goat anti-rabbit IRDye800CW conjugate antibodies (1:10,000; Rockland, Gilbertsville, PA, USA).

Cell culture and transfection

All reagents for cell culture were purchased from Invitrogen unless stated otherwise. Human N548-HTT in pCIneo, either wild type (15Q) or mutant (128Q), were co-transfected in COS-7 cells with either human HIP14L-GFP in pCIneo or human HIP14-GFP in pCIneo (23) using FuGENE6 (Roche), according to the manufacturer’s instructions. Cells were harvested after 24 h for co-IP experiments described below.

Cell lysis and co-IP

Cells were homogenized on ice in one volume 1%SDS/TEEN [TEEN: 50 mM Tris pH 7.5, 1 mM EDTA, 1 mM EGTA, 150 mM NaCl, T× Complete protease inhibitor cocktail (Roche), 200 mM sodium vanadate, 200 mM PMSF and 5 mM zVAD] prior to dilution in four volumes 1% TritonX-100/TEEN for further homogenization and incubation for 5 min on ice. Samples were sonicated to shear DNA, and the insoluble material was removed by centrifugation at 14 000 revolution per minute (rpm) for 15 min. Samples were immunoprecipitated with protein G sepharose beads (GE Healthcare) and goat polyclonal GFP antibody (see the Antibodies section).

Immunoblotting

Proteins in both the cell lysates and immunoprecipitates were heated at 70°C in 1 × NuPAGE LDS sample buffer (Invitrogen) with 10 mM DTT for co-IPs and 100 mM DTT for palmitoylation assays before separation by SDS-PAGE. After transfer of the proteins onto nitrocellulose membranes or Immobilon-PVDF-FL membrane (for co-IPs), immunoblots were performed using the indicated primary antibody and the corresponding secondary antibody as described in the Antibodies section. Fluorescence was scanned and quantified with Odyssey Infrared Imaging system (Li-COR Bioscience) as described in (25). Odyssey Infrared imaging offers a very wide quantitative linear range, and all fluorescence signals used for quantitation were within the linear range of detection.

Generation of *Hip14l*-deficient mice

AC0492 embryonic stem cells (E14Tg2a.4; from parental line 129P2/OlaHsd) harbouring a gene trap vector in intron 1 of...
the Hip14l gene (Zdhkc13) were purchased from BayGenomics and microinjected into C57BL/6 mice (BayGenomics database http://www.genetrap.org/). Chimeric mice were backcrossed with FVB/NJ mice for five generations (N5). Mice were genotyped by PCR with primers flanking the 5′ integration site: a common forward primer within the endogenous gene (5′- CTCCCAGTCTTTGTTCTTACACT-3′) and a reverse primer specific to the gene trap vector (pGT0lxr; 5′- GAACTTCCCCAGGCTTACTAC-3′) to and the endogenous gene (5′- GAGCAGCGCATCATCAGGATC-3′), resulting in PCR products of 374 bp for the mutant allele and 680 bp for the wild-type allele. All animal procedures were approved by the University of British Columbia Committee on Animal Care (protocol numbers A07-0106 and A12-0063).

Quantitative PCR (qRT-PCR)

Total RNA was extracted from dissected tissue, frozen and stored at −80°C using the RNeasy mini kit (Qiagen, 74104). RNA was treated with DNase I (Invitrogen) to remove residual genomic DNA. cDNA was generated using the SuperScript® III First-Strand Synthesis System (Invitrogen) from 1 μg RNA with oligo-dT primers. Mouse Hip14l primers were obtained from Primerbank (http://pga.mgh.harvard.edu/primerbank/index.html) and were located in exon 4 and 5: Hip14l forward: 5′-TGGGTGGTGACCTAAAT TCAACT-3′ and reverse: 5′-GCACCCGTGCTGGAGCAATA -3′. Mouse actin forward: 5′-ACGGCCAGGCTCATCA CTATTG-3′ and reverse: 5′-CAAGAAGGAAGGCTGG AAAAGA-3′. qRT-PCR was performed using Power SYBR Green PCR master mix (Applied Biosystems, 4367659) in the ABI 7500 instrument (Applied Biosystems). The relative gene expression, normalized to mouse actin, was calculated using the ΔΔC_T method.

Neuropathology

Neuropathological assessments for brain and cerebellar weights, striatal and cortical volumes and striatal neuron number were conducted as previously reported (18), with the tester blind to the genotype. DARPP-32 and enkephalin staining and quantification were performed as described in (11). Corpus callosum volume was determined in every eighth NeuN-stained section from Bregma 1.18 mm to −0.94 mm with cortex and striatum as dorsal and ventral boundaries. The hippocampal volume was determined in every eighth NeuN-stained section, spanning from Bregma −0.94 mm to −2.8 mm. The globus pallidus volume was determined in every eighth NeuN-stained section, spanning from bregma 0.02 mm to −1.7 mm with the internal capsule as the medial boundary, striatum as the lateral boundary and an imaginary line from the anterior commissure to the internal capsule was used as the ventral boundary. The thalamus volume was determined in every eighth NeuN-stained section from Bregma −0.94 to −2.54 mm as previously described (47). Volumes were calculated using the Cavalieri principle.

Behaviour analysis

All behaviour testing was performed with the tester blind to the genotype.

Accelerating rotarod was used to assess the motor coordination (UGO Basile, Comerio, Italy) as previously described (18). Mice were trained during three 120 s trials daily for three consecutive days on a fixed 18 rpm rotarod. Latency to the first fall and number of falls per trail were scored, and the average of the three trials was reported. For longitudinal rotarod performance, mice were tested on a rotarod accelerating from 5 to 40 rpm over 300 s. Latency to fall was scored, and the average of the three trials was reported.

Spontaneous activity was assessed using the Med Associates activity monitor system (Med Associates Inc., St Albans, VT, USA) as described in (11). Mice were given transgel (Charles River) and acclimated to the room for at least 1 h prior to testing, and the testing did not commence until 1 h after the beginning of the dark cycle. The chamber was cleaned with ethanol and allowed to dry between each animal. Each mouse was placed in the centre of the testing chamber. A number of automated readouts were recorded for 60 min, binned at 5 min intervals.

Climbing was assessed as previously described (32). Briefly, mice were placed in a closed-top wire mesh cylinder (10 × 15 cm) on the tabletop, and spontaneous activity was recorded with a video camera for 5 min. The time from when a mouse’s fourth foot left the table top to the time when the first foot was replaced on the table top was scored as time spent climbing and as a climbing event. The sum of climbing time, number of climbing events, latency to climb and number of rearing events in the 5 min trial was scored.

IP-acyl-biotin exchange (ABE) palmitoylation assay

Brains were harvested and immediately snap-frozen in liquid nitrogen and then stored at −80°C. In brief, frozen half brains were homogenized into 5 ml lysis buffer (150 mM NaCl, 50 mM Tris, 5 mM ethylenediaminetetraacetic acid, pH 7.4) with 50 mM N-ethylmaleimide (NEM). Proteins of interest were immunoprecipitated from lysates (250–500 μl) overnight with Protein G Dynabeads (Invitrogen) using specific antibodies (as listed above). Acyl-biotin exchange (ABE) chemistry was applied as described in (22,48). Male brains were used at 6 weeks of age for Hip14l^{−/−} and wild-type littermate controls. Data were analyzed using the Wilcoxon matched pair non-parametric test.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

The authors would like to thank Nagat Bissada, Tess Lengyell, Amanda Spreew, Mark Wang and the Histology Core Lab (Child and Family Research Institute, Vancouver, BC) for technical assistance, Dr Kevin McElwee (UBC) for advice on hair follicle experiments and Dr Dale Martin for advice on the manuscript.

Conflict of Interest statement. None declared.
FUNDING
This work was supported by the Canadian Institutes of Health Research (www.cihr-irsc.gc.ca; operating grant number GPG-102165 to M.R.H., and a Doctoral Research Award to S.S.S.); Michael Smith Foundation for Health Research (www.msfrf.org; Junior Graduate Scholarship to S.S.S. and post-doctoral fellowship to R.R.S.); Ripples of Hope Pfizer (2011 Trainee Award in Rare Diseases to L.M.S.) and CHDI Foundation, Inc. (chdifoundation.org; operating grant to M.R.H.). The funders had no role in study design and analysis, decision to publish or preparation of the manuscript.

REFERENCES