The Ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation

Koichiro Ono¹,³, Matthew R. Karolak², Jean de la Croix Ndong¹, Weixi Wang¹, Xiangli Yang¹ and Florent Elefteriou¹,∗

¹Department of Medicine and ²Department of Pharmacology, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA and ³Nihon Koukan Hospital, Department of Orthopaedic, Spinal Surgery Section Kawasaki, Kanagawa, Japan

Received January 25, 2013; Revised March 15, 2013; Accepted April 3, 2013

The severe defects in growth plate development caused by chondrocyte extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) gain or loss-of-function suggest that tight spatial and temporal regulation of mitogen-activated protein kinase signaling is necessary to achieve harmonious growth plate elongation and structure. We provide here evidence that neurofibromin, via its Ras guanosine triphosphatase-activating activity, controls ERK1/2-dependent fibroblast growth factor receptor (FGFR) signaling in chondrocytes. We show first that neurofibromin is expressed in FGFR-positive prehypertrophic and hypertrophic chondrocytes during growth plate endochondral ossification. Using mice lacking neurofibromin 1 (Nf1) in type II collagen-expressing cells, (Nf1col2−/− mutant mice), we then show that lack of neurofibromin in post-mitotic chondrocytes triggers a number of phenotypes reminiscent of the ones observed in mice characterized by FGFR gain-of-function mutations. Those include dwarfism, constitutive ERK1/2 activation, strongly reduced Ihh expression and decreased chondrocyte proliferation and maturation, increased chondrocytic expression of Rankl, matrix metalloproteinase 9 (Mmp9) and Mmp13 and enhanced growth plate osteoclastogenesis, as well as increased sensitivity to caspase-9 mediated apoptosis. Using wildtype (WT) and Nf1−/− chondrocyte cultures in vitro, we show that FGF2 pulse-stimulation triggers rapid ERK1/2 phosphorylation in both genotypes, but that return to the basal level is delayed in Nf1−/− chondrocytes. Importantly, in vivo ERK1/2 inhibition by daily injection of a recombinant form of C-type natriuretic peptide to post-natal pups for 18 days was able to correct the short stature of Nf1col2−/− mice. Together, these results underscore the requirement of neurofibromin and ERK1/2 for normal endochondral bone formation and support the notion that neurofibromin, by restraining RAS-ERK1/2 signaling, is a negative regulator of FGFR signaling in differentiating chondrocytes.

INTRODUCTION

In vertebrates, long bones are formed through endochondral ossification, a highly coordinated process regulated by paracrine and hormonal factors (1,2). This process starts with the condensation of undifferentiated mesenchymal cells that differentiate into chondrocytes, forming the first bone anlagen. Following directional division, these immature chondrocytes form columnar structures which are responsible for overall skeletal longitudinal growth. Subsequent to this proliferation step, chondrocytes exit from the cell cycle and differentiate into hypertrophic chondrocytes that are characterized by their enlarged cell size. Chondrocyte proliferation and bone collar formation during limb development is under the control of Indian Hedgehog (IHH), a cytokine secreted by prehypertrophic chondrocytes (3–6). IHH induces the expression of parathyroid hormone-related protein (PTHRP), another cytokine that keeps proliferating chondrocytes from premature maturation and hypertrophy. Chondrocyte maturation and hypertrophy is also regulated by local and hormonal factors,
including IHH, PTHrP and thyroid hormone (7,8), and is characterized by a switch from the synthesis of collagen type II to collagen type X, and by the expression of genes involved in growth plate catabolism, mineralization and vascularization. Alkaline phosphatase and osteopontin (OPN) contribute to the calcification of the hypertrophic zone (9–12). Matrix metalloproteinase-9 and 13 (MMP-9 and -13) are responsible for matrix degradation and growth factor activation (13), whereas vascular endothelial growth factor promotes capillary invasion into the cartilaginous matrix and eventually the recruitment of monocytes and osteoblasts to the osteochondral border. Receptor activator of nuclear factor kappa-B ligand (RANKL) is secreted by hypertrophic chondrocytes to stimulate the formation of osteoclasts and to promote resorption of the cartilaginous calcified matrix (14–17). This highly coordinated process of endochondral bone formation gives long bones their shape and structure, with two distal cartilaginous growth plates at the epiphyses and a bony region (diaphysis) extending in between, until growth plate closure (18).

The fibroblast growth factors (FGFs) and their receptors (FGFRs) play an important role during skeletal development. Activating mutations in FGFR1 and FGFR2 cause syndromes characterized by craniolensdysostosis (Pfeiffer, Crouzon and Apert syndromes) (19–21), whereas FGFR3 activating mutations are typically associated with achondroplastic (thanatophoric dysplasia) and hypochondroplastic dwarfism (22–24) as well as craniolenssostosis (Muenke syndrome). Because FGFR1-activating mutation (P252R) causes craniolensosostosis, FGFR1 function has been associated primarily with flat bone growth and skull formation. However, FGFR1 is expressed in the growth plate during development and displays a distinct spatial distribution with FGFR3. Activating missense mutations in FGFR1 cause osteoglophonic dysplasia, a ‘crossover’ disorder that has skeletal phenotypes associated with FGFR1, FGFR2 and FGFR3 mutations, including dwarfism (25). FGFR1 may thus contribute to endochondral bone formation; however, this has been very little explored.

FGFR signaling is controlled by extracellular ligands of the FGF and heparin sulfate proteoglycan family, by the cellular location of the receptor following maturation (cell surface or ER), by intracellular crosstalk with other signaling pathways, such as the bone morphogenetic protein (BMP) pathway (26) and by the phosphorylation and ubiquitination status of the receptor which regulate its activity and degradation (27–29). FGFRs transmit signals through the activation of STAT1 and Ras-mitogen-activated protein kinase (MAPK) signaling (30). MAPK activity induced downstream of FGFR3, in particular, is a negative regulator of bone growth. Indeed, constitutive activation of MEK1 in chondrocytes causes STAT1-independent acondroplasia (ACH)-like dwarfism in mice and rescues the growth retardation of FGFR3-deficient mice (31). Accordingly, inhibition of ERK by genetic overexpression of C-type natriuretic peptide (CNP) in chondrocytes counteracts the dwarfism of a mouse model of ACH induced by activated FGFR3 in cartilage (32,33). Lastly, lack of Spred2, an inhibitor of FGF-induced MAPK signaling that binds to Ras and inhibits phosphorylation of Raf-1, causes an ACH-like dwarfism phenotype (34).

The product of the neurofibromin 1 (NF1) gene, neurofibromin, is a large cytoplasmic protein with a small central region that shares homology with guanosine triphosphatase (GTPase)-activating family proteins (GAP) (35). Through its GAP domain, it negatively regulates p21-Ras in multiple cell types (36). Therefore, loss of NF1 function is associated with constitutive activation of Ras and downstream signaling, including ERK1/2. We have shown previously that neurofibromin is expressed in growth plate chondrocytes and that conditional-mutant mice lacking NF1 in chondrocytes (NF1Col2 mice) have a reduced stature postnatally (37). The observations that FGFRs signal through ERK1/2, that neurofibromin negatively regulates ERK1/2, and that mice with constitutive activation of FGFR1 or FGFR3 share a number of endochondral bone formation phenotypes with NF1Col2 mice (38–44), led us to hypothesize that neurofibromin may be an important regulator of FGFR signaling, controlling the dynamics of growth plate elongation, maturation and catabolism during development. We show here that neurofibromin is required for multiple steps of endochondral bone formation during limb development, and provide evidence that the GTPase activity of neurofibromin restrains FGFR-Ras-ERK1/2 signaling in post-mitotic differentiated chondrocytes to allow proper chondrocyte proliferation, maturation and growth plate catabolism.

RESULTS

Neurofibromin expression is enriched in differentiated chondrocytes

We have previously reported the expression of neurofibromin in the bone mesenchymal lineage, including mesenchymal osteochondroprogenitor cells, osteoblasts and chondrocytes (37). To further delineate neurofibromin expression within the growth plate and in the context of chondrocyte differentiation, the expression pattern of neurofibromin was investigated on tissue sections by immunocytochemistry and in differentiating primary chondrocytes in vitro by quantitative RT–PCR. Examination of neurofibromin immunoreactivity in the femoral growth plate of newborn mice (P0) indicated that neurofibromin is not expressed in resting and proliferating chondrocytes, whereas it is highly expressed in prehypertrophic and hypertrophic chondrocytes (Fig. 1A), where FGFR3 (45–48) and FGFR1 are expressed (Fig. 1B). To examine the dynamics of NF1 expression during chondrocyte differentiation, primary rib chondrocytes were extracted by sequential digestions, cultured in high-density micromass conditions, differentiated using ascorbic acid (49) and RNAs were collected at different time points following ascorbic acid induction. Quantitative RT–PCR analyses showed that the expression of Col10a1, a marker gene expressed by differentiated chondrocytes, increased with time, thus attesting for proper in vitro chondrocyte differentiation (Fig. 1C). NF1 mRNA expression increased during chondrocyte differentiation (Fig. 1D), with a pattern similar to the one of Fgfr1 expression (Fig. 1E). NF1 expression was also up-regulated during chondrogenic differentiation of the clonal mesenchymal cell line C3H10T1/2 cells induced by bBMP2 (200 ng/ml, data not shown). In contrast, Fgfr3 expression was rather decreased during chondrocyte differentiation (Fig. 1F). NF1 is thus expressed at late stages of chondrocyte differentiation,
suggesting a role of neurofibromin in chondrocyte maturation and hypertrophy.

Neurofibromin restrains ERK1/2 signaling in chondrocytes

Stimulation of FGFR signaling by FGF ligands or following activating mutation in FGFR3 leads to RAS-ERK pathway activation in chondrocytes (31,32,50,51). Similarly, as neurofibromin is a negative regulator of RAS activity, inactivating mutations in Nf1 lead to constitutive RAS-ERK activation in multiple cell types (52–54); however, such activation and its functional consequence have not been investigated in chondrocytes. To determine whether neurofibromin activity regulates ERK1/2 activity in chondrocytes, we used mice lacking Nf1 specifically in this lineage, generated by crossing transgenic Col2a1-Cre deleter mice with Nf1flox/flox mice (37,55). Longbone epiphyses extracted from newborn Nf1Col22/2 mice showed a 80% reduction in Nf1 mRNA expression compared with wildtype (WT) littermates (Fig.1G), despite the presence of contaminating Col2a1-negative tissues/cells in tissue preparations from mutant Nf1Col22/2 (Nf1flox/flox;Col2a1-Cre) pups. Primary rib chondrocytes extracted from 4-day-old WT and mutant Nf1Col22 pups were then prepared, cultured for 3 days in the presence of ascorbic acid, and assessed for ERK1/2 phosphorylation by western blot analysis. As observed in other lineages, a marked increase in ERK1/2 activation, assessed by western blot analysis, is increased in primary chondrocytes extracted from Nf1Col22 mice compared to WT mice, whereas phosphorylated-p70S6K is not changed (n = 2–3).
prehypertrophic and hypertrophic chondrocytes from 10-day-old \(\text{Nf1}\text{Col2}\) mice compared with WT littermates (see Fig. 5E). These results confirm efficient recombination of the floxed \(\text{Nf1} \) allele by the mouse \(\text{Col2a1-Cre} \) transgene in vivo and in vitro, and show that it leads to reduced \(\text{Nf1} \) expression and ERK1/2 activation in \(\text{Nf1}^{-/-} \) chondrocytes.

Nf1 in prehypertrophic chondrocytes is required for proper chondrocyte proliferation

The activation of ERK1/2 in \(\text{Nf1}^{-/-} \) chondrocytes and in chondrocytes expressing an activated form of FGFR3, along with the overlapping growth plate expression of neurofibromin, FGFR1 and FGFR3 during endochondral bone formation, led us to hypothesize that neurofibromin is a negative regulator of FGFR signaling in mature chondrocytes. To test this hypothesis, we analyzed in detail the progression of bone growth in \(\text{Col2a1-Cre} \) mice during embryonic and post-natal development, and then related the observed phenotypes to known developmental and molecular defects associated with FGFR-mutant mice.

We have previously shown that \(\text{Col2a1-Cre} \) mice, at birth, are morphologically indistinguishable from WT littermates and have comparable body weight. However, size difference appears and becomes significant 5 days after birth and increases progressively thereafter (37). Hematoxylin and eosin (H&E) staining and subsequent growth plate histological analyses at E14 and E15 did not reveal significant difference in the formation of primary ossification centers between WT and \(\text{Col2a1-Cre} \) embryos (Fig. 2A), as observed in mice lacking \(Fgf1 \) in chondrocytes (56) and despite growth plate expression of neurofibromin at this developmental stage (57). No obvious difference in vascular invasion between genotypes could be detected either upon CD31 staining of E16.5 tibias (Fig. 2B). However, starting at P0, the length of both proliferating and hypertrophic zones was significantly shorter in \(\text{Col2a1-Cre} \) mice compared with WT mice, although gross body size differences could not be detected. Shortening of the proliferating zone worsened with time and was most pronounced at 3 weeks of age, at which time point the proliferating zone of \(\text{Col2a1-Cre} \) mice was < 60% of WT mice (Fig. 2C and D). The shortening of the hypertrophic zone, in contrast, was most severe at P0 (Fig. 2C and E). The formation of secondary ossification centers (SOCs), initiated with vascular invasion into hypertrophic chondrocytes in the middle of the distal epiphyses, was delayed in \(\text{Col2a1-Cre} \) mice. At 1 week of age, SOCs were not detected in the proximal tibiae of \(\text{Col2a1-Cre} \) mice, whereas they were already present in WT tibiae, as evidenced by the presence of hypertrophic chondrocytes and red blood cells (Fig. 2C). Similar phenotypes and delay in the formation of SOCs were observed in other bones from \(\text{Col2a1-Cre} \) mice (data not shown), as well as in mice with FGFR3 activating mutation (58,59). Ablation of \(\text{Nf1} \) in chondrocytes thus causes dysregulation of endochondral ossification and results in postnatal growth retardation.

The progressive postnatal reduction in size of the proliferating zone in \(\text{Col2a1-Cre} \) mice suggested that neurofibromin regulates chondrocyte proliferation. To address this hypothesis, the effect of \(\text{Nf1} \) deficiency on chondrocyte proliferation was assessed by in vivo bromodeoxyuridine (BrdU) labeling. At P0, no significant difference was observed in the labeling index of tibial proliferative chondrocytes between \(\text{Col2a1-Cre} \) mice and WT littermates (Fig. 3A). In contrast, chondrocyte proliferation was significantly decreased postnatally at P14 in the tibiae from \(\text{Col2a1-Cre} \) mice compared with WT littermates (Fig. 3B). Since neurofibromin is not detected in proliferative chondrocytes (Fig. 1A), we reasoned that a factor(s) released by post-mitotic \(\text{Nf1}^{-/-} \) prehypertrophic and/or hypertrophic chondrocytes may indirectly affect the proliferative activity of adjacent \(\text{Nf1} \)-negative chondrocytes, in a paracrine manner. In addition, since activation of FGFR3 represses chondrocyte proliferation through its inhibition of IHH signaling (44,60,61), we reasoned that \(\text{Nf1} \) deficiency in prehypertrophic chondrocytes may reduce \(\text{Ihh} \) expression, thus possibly leading to the observed reduced chondrocyte proliferation. To address this hypothesis, gene expression studies were performed using long-bone cartilage tissues excised from \(\text{Col2a1-Cre} \) and WT littermates, and high cell density micromass cultures of primary chondrocytes prepared from WT and \(\text{Col2a1-Cre} \) ribs, differentiated or not in vitro with ascorbic acid (62–64). In agreement with the reduced proliferative index observed in the growth plates of \(\text{Col2a1-Cre} \) mice in vivo, \(\text{Ihh} \) expression was significantly decreased in growth plate cartilage from \(\text{Col2a1-Cre} \) mice compared with WT littermates (Fig. 3C). In micromass cultures, \(\text{Ihh} \) expression was strongly decreased as well, in both immature and differentiated cultures (Fig. 3D). \(\text{Pthrp} \) expression was very low in both chondrocyte cultures and cartilage of both WT and mutant mice (data not shown). These data suggest that suboptimal \(\text{Ihh} \) levels in the growth plates of \(\text{Col2a1-Cre} \) mice may contribute to the observed reduction in chondrocyte proliferation. This phenotype is also in agreement with the increase in chondrocyte proliferation, differentiation and \(\text{Ihh} \) signaling observed in mice deficient for \(\text{Fgf18} \) (65), and with the decrease in \(\text{Ihh} \) observed upon constitutive activation of FGFR3 (44). Despite these supporting evidence, a genetic \(\text{Ihh} \) gain-of-function experiment in \(\text{Col2a1-Cre} \) mice will be necessary to definitively prove the contribution of reduced \(\text{Ihh} \) signaling to the chondrocyte proliferation phenotype of \(\text{Col2a1-Cre} \) mice.

Nf1 is required for proper chondrocyte hypertrophy and apoptosis

The shortening of the hypertrophic zone observed in \(\text{Col2a1-Cre} \) mice can conceivably be caused by a decreased pool of proliferating chondrocytes, defective or premature chondrocyte differentiation, an increase in chondrocyte apoptosis, or by premature/overt catabolism of growth plate cartilage. The results of our gene expression studies indicated that \(\text{Opn} \) expression was increased in differentiated \(\text{(Col10a1-positive)} \) mutant chondrocyte cultures and growth plates (Fig. 3C and D), as observed in chondrocytes treated with FGF9 (66) or in mice with FGFR3 activating mutation (58,67). \(\text{Col10a1} \) expression, however, was decreased in chondrocyte cultures and growth plates from \(\text{Col2a1-Cre} \) pups compared with WT littermates (Fig. 3C and D), as observed in mice with constitutive FGFR3 activation (44,67), but converse to FGF18^{-/-} and FGFR3^{-/-} mice (65). The decreased expression of \(\text{Ihh} \) and \(\text{Col10a1} \) observed in the absence of \(\text{Nf1} \) is thus suggestive of impaired or delayed differentiation.
Both FGFR3 activation (68) and phosphate (63) trigger hypertrophic chondrocyte apoptosis via the activation of ERK. Therefore, we hypothesized that lack of \textit{Nf1} in hypertrophic chondrocytes, by inducing ERK activation, may promote apoptosis and explain, in part, the shortening of the hypertrophic zone observed in \textit{Nf1}Col22/2 pups. Since chondrocyte apoptosis is activated by a caspase-9 mediated mitochondrial pathway (63), we measured caspase-9 activation by western blotting, using high cell density primary chondrocytes micromass cultures from WT and \textit{Nf1}Col22/2 mice. Treatment of ascorbic acid-differentiated chondrocytes with 25 mM phosphate for 2 h did not affect cleavage of caspase 9 in WT cells but clearly induced caspase-9 cleavage into its active form in \textit{Nf1}−/− chondrocytes (Fig. 3E). These results indicate that loss of \textit{Nf1} function in hypertrophic chondrocytes promotes their sensitivity to apoptosis.

\textit{Nf1} is required for proper growth plate catabolism

MMP9 and 13 are expressed by hypertrophic chondrocytes and work synergistically to degrade type I and II collagens (69). In addition, the expression of these two genes in chondrocytes is increased by FGF2 treatment (16,70). We thus examined \textit{Mmp9} and \textit{Mmp13} expression in chondrocyte cultures from WT and \textit{Nf1}Col22/2 mice to address whether shortening of the hypertrophic zone in \textit{Nf1}Col22/2 mice could stem from an MMP-dependent increase or premature growth plate catabolism caused by unrestrained FGFR signaling. In
agreement with the aforementioned observations, we detected a significant increase in the expression of both genes in ascorbic acid-differentiated \textit{Nf1}\textsubscript{Col2}2/2 chondrocytes compared with WT controls (Fig. 4A). These results are also in agreement with the immunoreactivity of MMP9 in the last row of hypertrophic chondrocytes [Supplementary Material, Fig. S1 and (17,69)], with the decrease in \textit{Mmp9} expression observed in mice lacking \textit{Fgfr1} in chondrocytes (56), with the increased hypertrophic chondrocyte zone in \textit{Mmp9}- and \textit{I3}-deficient mice (69), and suggest that neurofibromin, by limiting the
expression of Mmp9 and 13, inhibits growth plate extracellular matrix degradation.

Replacement of growth plate cartilage by the bone matrix is also dependent on matrix degradation by osteoclasts/chondroclasts, as demonstrated by the elongation of the hypertrophic zone and the presence of cartilaginous remnants in mice treated with pharmacological inhibitors of osteoclast activity (bisphosphonates) and in osteopetrotic mutant mice that lack osteoclasts (71). Osteoclast differentiation is dependent on osteoclastogenic cytokines, including RANKL and osteoprotegerin (OPG), produced by bone cells, including osteoblasts and osteocytes. The contribution of chondrocytes to osteoclastogenesis has been less investigated, but recent evidence indicates that matrix embedded cells, including chondrocytes and osteocytes, are essential sources of RANKL in bones (15,72). We have shown that lack of Nf1 in both immature and mature osteoblasts promotes Rankl expression and thus osteoclastogenesis (37,73), and other have reported that ERK1/2 inactivation in chondrocytes and osteoblasts decreases Rankl expression and osteoclastogenesis (74). Thus, as ERK1/2 is constitutively active in Nf1−/− chondrocytes, we reasoned that increased Rankl expression and enhanced osteoclast formation and activity could cause excessive resorption and shortening of the hypertrophic zone in Nf1Col2−/− pups. To address this hypothesis, mature osteoclasts were identified by tartrate-resistant acid phosphatase (TRAP) staining in bone of newborn WT and Nf1Col2−/− mice and their number was quantified at the chondro-osseous border.
A clear increase in the number of TRAP-positive multinuclear mature osteoclasts was observed in the tibial chondro-osseous area of Nf1Col2 mice compared with WT pups (Fig. 4B), similarly to what has been observed in mice characterized by FGFR3 activating mutation (58). In agreement with this phenotype, Rankl and Opn expression was significantly increased in differentiated Nf12/2 primary chondrocytes compared with WT controls, and this increase could be prevented by short-term pre-treatment of the cultures with the ERK1/2 inhibitor U0126 (Fig. 4C).

To address whether the increased osteoclastogenesis and cartilage resorption observed in Nf1Col2 mice had a chondrocytic origin, an ex vivo chondrocyte-monocyte in vitro co-culture system was used. Primary chondrocyte cultures from WT and Nf1Col2 pups were prepared and WT spleen monocytes (used as osteoclast progenitors) were purified and plated on the top of the chondrocytes, in the presence or absence of vitamin D3. As shown in Figure 4D and E, osteoclast area, measured as readout of the osteoclastogenic potential of WT and Nf12/2 chondrocytes, was significantly increased in co-cultures containing Nf12/2 chondrocytes following 5 days of differentiation, even in the absence of vitamin D, compared with cultures containing WT chondrocytes (Fig. 4D and E). Consistent with the increase in osteoclastogenesis observed in Nf1Col2 pups, the amount of calcified bone in the primary spongiosa of newborn Nf1Col2 pups was significantly reduced compared with WT littermates (Fig. 4F). These findings indicate that neurofibromin in differentiated chondrocytes restrains osteoclastogenesis and cartilage matrix degradation in an ERK, MMP9/13 and RANKL-dependent manner.

Figure 5. Neurofibromin restrains ERK-dependent FGFR signaling in chondrocytes. (A and B) Confluent primary chondrocytes from WT or Nf1Col2 mice were serum-starved and harvested following FGF2 (10 ng/ml, 5 min) (A) or EGF (100 ng/ml, 5 min) (B) pulse treatment. Cells were collected at indicated periods of time after treatment. ERK1/2 activation was transient in WT chondrocytes but remained sustained in Nf1−/− chondrocytes in response to FGF2 (A), whereas no difference between genotype was observed following EGF treatment (B). (C) Npr-b expression in rib primary chondrocytes cultures differentiated for 2 weeks, measured by RT-PCR (W, WT chondrocytes, K, Nf1−/− chondrocytes). Npr-b is expressed throughout chondrogenic differentiation in primary chondrocytes from WT and Nf1Col2 mice. (D) Decreased phospho-ERK1/2 status in serum-starved chondrocytes from Nf1Col2 mice following NC-2 treatment for 30 min, measured by western blot analysis (n = 2). (E) Reduced in vivo P-ERK immunoreactivity in the tibial growth plate of Nf1Col2 mice (P10) following daily treatment with NC-2 (300 mg/kg), compared with phosphate buffer saline treatment (n = 2). Gray arrows show the changes in the formation of proliferative columns. White arrows show the immunoreactivity (brown) for p-ERK1/2.
Neurofibromin restrains ERK1/2 signaling downstream of FGFR

The phenotypic and gene expression similarities reported above, between mice characterized by FGFR activation in chondrocytes and Nf1Col2 mice, support the notion that neurofibromin acts as a brake on FGFR signaling in chondrocytes. In such case, we reasoned that ERK1/2 activation upon FGFR stimulation in WT chondrocytes should be controlled and limited in time, whereas it should be prolonged in Nf1-deficient chondrocytes. To address this question, primary chondrocytes extracted from P4 WT and mutant Nf1Col2 pups were prepared, cultured for 7 days and assessed by western analyses for their response to FGF2 pulse-stimulation. Upon FGF2 treatment (10 ng/ml, 5 min), maximal ERK1/2 activation was observed after 5 min of treatment in WT chondrocytes, and activation was progressively dampened at later time points to return close to baseline within 30 min (Fig. 5A). In contrast, in Nf1−/− chondrocytes, ERK activation was detectable in non-treated cultures and remained sustained at the 10 and 30 min time points. As a control, ERK1/2 activation in response to epithelial growth factor (EGF, 100 ng/ml) was similar between WT and Nf1−/− chondrocytes (Fig. 5B). These results thus indicate that neurofibromin is a negative regulator of ERK1/2 activation downstream of FGFR signaling in differentiated chondrocytes.

The CNP analog NC-2 increases bone growth in Nf1Col2 mice

Recombinant forms of CNP have shown promising beneficial effects in pre-clinical models of dwarfism characterized by FGFR3 activation (32,33). CNP is a member of the natriuretic peptide family encoded by Nppc, which, through activating cyclic guanosine monophosphate (cGMP) and PKG, blocks activation of the ERK pathway by inhibiting Raf1 (16,77). If ERK1/2 constitutive activation in Nf1−/− chondrocytes contributes to the observed abnormalities in endochondral bone formation observed in Nf1Col2 mice, we thus reasoned that restraining ERK activation by CNP should correct these defects. To address this hypothesis, we first verified the expression of Npr-B, the receptor for CNP, in differentiating primary chondrocytes from WT and Nf1Col2 chondrocyte cultures. Chondrocytes from both WT and Nf1Col2 mice showed clear expression of Npr-B throughout chondrogenic differentiation (Fig. 5C), as previously described by in situ hybridization (33,78,79). Npr-B expression was detected at every differentiation stages, with a more pronounced expression level in differentiated chondrocytes (2 weeks post-induction). Importantly, Nf1 deficiency did not significantly alter the level of expression of Npr-B. Next, ERK1/2 activation was assessed in WT and Nf1−/− primary chondrocytes treated with increasing doses of NC-2, a stable recombinant form of CNP (see section ‘Material and Methods’). At the three different doses tested, NC-2 strongly suppressed the enhanced ERK1/2 phosphorylation typical of Nf1−/− chondrocytes in vitro (Fig. 5D).

Unlike CNP, which has a half-life of ~3 min, the circulating half-life of NC-2 is ~20 h when injected subcutaneously in mice, making it very useful for in vivo studies. Based on our in vitro proof of concept data, Nf1Col2 mice were treated subcutaneously and daily with vehicle or two doses of NC-2 (100 and 300 mg/kg) during their early postnatal growth period (from birth to 18 days of age). As observed in vitro, NC-2 treatment (300 mg/kg) for 10 days was able to substantially attenuate P-ERK immunoreactivity in the growth plates of Nf1Col2 mice, although the effect of treatment on growth plate structure was not yet very visible, except for a striking improvement in the formation of the proliferating chondrocyte columns (Fig. 5E). In agreement with our previous analyses at an earlier age (37), Nf1Col2 mice displayed, following 18 days of treatment, a 40% reduction in naso-anal length at time of sacrifice compared with WT littermates, whereas Nf1Col2 mice treated with NC-2 displayed a significantly increased body size at both dose concentrations tested compared with vehicle-treated Nf1Col2 mice (Fig. 6A). At endpoint, the difference in body length between vehicle and NC-2-treated Nf1Col2 mice was reduced from 40 to 15%. Growth plate histological analyses indicated that the shortening of the proliferating and hypertrophic zones observed in Nf1Col2 mice were significantly corrected following daily NC-2 treatment, reaching sizes not significantly different from WT littermates (as quantified in Fig. 6B–D). The columnar disorganization of proliferating chondrocytes notable in Nf1Col2 mice was also corrected following NC-2 treatment (Fig. 5E and 6B). These results support the notion that Nf1 controls post-natal endochondral bone formation in an ERK-dependent fashion.

DISCUSSION

FGFRs play a critical role during bone development, as best demonstrated by the various forms of skeletal dysplasia associated with mutations in Fgfr1 and Fgfr3 in mice and humans [see (80) for review]. Over the last 10 years, genetic mouse models have been instrumental to the characterization of FGFR downstream signaling pathways, among which the kinases MEK1 and STAT1 play a predominant role (31,40–42,81–83). In this study, we provide evidence that the Ras-GTPase activity of neurofibromin is required for proper chondrocyte proliferation, hypertrophy and growth plate metabolism, and regulates ERK1/2-dependent FGFR signaling in differentiated chondrocytes.

Loss of Nf1 function in post-mitotic chondrocytes led to the inhibition of chondrocyte proliferation. Both Fgfr3 and Ihh are important genes controlling chondrocyte proliferation during embryonic and postnatal growth (3,4,84). IHH promotes chondrocyte proliferation (85–87) and activation of FGFR3 represses chondrocyte proliferation through its inhibition of IHH signaling (60,61) as well as IHH-independent pathway(s) (88). Because neurofibromin is not detected in proliferative chondrocytes (57) but rather expressed in prehypertrophic chondrocytes (where both FGFR1 and FGFR3 are expressed) and hypertrophic chondrocytes (where FGFR1 is expressed) (56,61), we reasoned that the reduced chondrocyte proliferation observed in Nf1Col2 mice must stem from alteration in the secretion of paracrine factor(s) by prehypertrophic or hypertrophic Nf1−/− chondrocytes. The strongly reduced expression of Ihh in Nf1−/− chondrocyte cultures and growth plates, as well as the common phenotypic growth plate features between Nf1Col2 mice and mice lacking Ihh in type II collagen-expressing chondrocytes (89) lead us to propose...
that neurofibromin is an important regulator of Ihh expression in prehypertrophic chondrocytes. Whether neurofibromin regulates Ihh expression downstream of FGFR3 or FGFR1, or both, in prehypertrophic chondrocytes, and the nature of the signaling pathway between Ras and Ihh transcriptional activation remains to be determined.

The distinct expression patterns of FGFR1 and FGFR3 in the growth plate and the overlapping localization of neurofibromin and FGFR1 in hypertrophic chondrocytes, as well as in the perichondrium (45,46,56,59,90), suggest that neurofibromin controls FGFR1 signaling in hypertrophic chondrocytes. This hypothesis is supported by the strikingly similar phenotypes shared by Nf1Col2+/− mice and mice overexpressing a chimeric FGFR containing the extracellular domain of FGFR3 and replaced with the intracellular domain of FGFR1, under the control of the Col2a1-cre promoter (59). Conversely, mice with Col2a1-cre-driven chondrocyte-specific inactivation of Fgfr1 exhibit phenotypes opposite to Nf1Col2+/− mice, including expansion of their hypertrophic type X collagen-positive zone, reduced Opn and Mmp9 expression and decreased number of TRAP-positive osteoclasts at the chondro-osseous junction at embryonic stages (56). Despite this collection of concordant indirect evidence, genetic crosses between Fgfr- and Nf1-mutant mice will be required to further dissect the intricate regulatory mechanisms linking neurofibromin and FGFR signaling in chondrocytes.

The role of neurofibromin in growth plate development appears to be particularly important during post-natal growth, as Nf1Col2+/− mice are dwarf postnatally but born with a size similar to WT littermates. This suggests that neurofibromin plays a non-redundant and necessary role during the embryonic to post-natal transition period, but does not exclude that its activity is required during embryonic growth plate development and osteogenesis, as supported by the shortening of the hypertrophic zone, the reduced osteogenesis and increased cortical bone porosity that are measurable at birth already. The alterations in gene expression and the length reduction of the hypertrophic zone in Nf1Col2+/− embryos are indicative of altered chondrocyte maturation in the absence of Nf1. The similar in situ staining pattern for Ihh expression between WT and Nf1Col2+/− pups (37) suggests that the reduced expression of Ihh observed in Nf1−/− chondrocyte cultures and in the growth plates of Nf1Col2+/− mice is due to suppression of Ihh gene expression/protein synthesis rather than a reduction in the number of cells expressing Ihh. On the other hand, increased osteoclastogenesis in transgenic mice expressing the Fgfr3 (G369C+) activating mutation has been reported, and the phenotype was attributed to a direct effect of

Figure 6. CNP treatment corrects the growth retardation of Nf1Col2+/− mice. (A) Increased naso-anal length (mm) in Nf1Col2+/− mice treated with two concentrations of NC-2 (∗P < 0.01, n = 7). (B) Representative images of undecalcified femur sections stained by Von Kossa/Van Gieson, from 18-day-old WT and Nf1Col2+/− mice treated with or without NC-2 (300 mg/kg). Scale bar; 50 um. NC-2 treatment corrects the shortened proliferating and hypertrophic zone lengths typical of Nf1Col2+/− mice (∗P < 0.01, n = 7). (C and D) Increased proliferating (C) and hypertrophic (D) femoral zone lengths in WT and Nf1Col2+/− mice following NC-2 treatment for 18 days (∗P < 0.01, n = 7).
FGFR3 activation in osteoclasts (91). Our gene expression and chondrocyte/monocyte coculture data point to chondrocyte-derived RANKL, MMP9 and 13, and possibly OPN as alternative or additional cause(s) of increased osteoclastogenesis and premature cartilage removal in this mouse model and possibly in patients with chondrodysplasia (66,92–95). In addition, the increase in Mmp9 and Mmp13 expression in Nf1−/− chondrocytes, and shortening of the hypertrophic zone in Nf1−/− embryos, are in agreement with previous reports indicating that FGF2 stimulates Mmp9 and Mmp13 expression in chondrocytes (70), and with the elongated hypertrophic zone observed in mice lacking MMP9 and 13 (69). It is also noteworthy that the MMP9 immunoreactivity pattern was distinct from the distribution of osteo/chondrolasts at the osteochondral border, indicating that increased MMP9 activity from both mature osteoclasts and hypertrophic chondrocytes can contribute to the promotion of growth plate catabolism in Nf1−/− mice. These data together thus indicate that neurofibromin activity in hypertrophic chondrocytes is necessary during embryonic development to limit cartilage matrix degradation at the ossification front. It is noteworthy that Rankl and Opn appear both to be direct targets of neurofibromin signaling in chondrocytes, as their expression is reduced upon short-term ERK inhibition. This observation suggests that because of unstrained ERK1/2 activity, both genes are ectopically expressed by Nf1−/− hypertrophic chondrocytes in vivo, hence explaining the increase in genes commonly considered as hypertrophic chondrocyte markers, in the setting of reduced expression of Ihh and Col10a1.

It is at this point still unclear if the shortening of the hypertrophic zone observed in Nf1−/− mice is predominantly caused by altered differentiation of Nf1−/− chondrocytes, their increased sensitivity to apoptosis, or by premature or enhanced growth plate cartilage resorption. Since the mineralized cartilage matrix serves as a template for bone formation and since osteogenesis is coupled to chondrogenesis (6,96,97), it is also possible that the increased growth plate catabolism observed in Nf1−/− mice contributes, along with the low level of chondrocyte-derived HHH, to the reduced osteogenesis and increased cortical bone porosity measured in these mice (37). The fact that the type II collagen-cre transgene inactivates the floxed Nf1 gene not only in chondrocytes, but also in embryonic osteocondroprogenitors (37,56) giving rise to bone marrow osteoblasts in this particular mouse model, however, did not allow us to tease apart the relative contribution of Nf1 in type II collagen-expressing cells to growth plate development versus bone formation. The signaling mechanism whereby neurofibromin controls Rankl, Mmp9 and Mmp13 expression also remains to be identified. Regardless of the respective contribution of Nf1 in osteoblasts and chondrocytes, these data identify Nf1 as a necessary component for normal growth plate homeostasis during development, regulating chondrocyte proliferation, differentiation, apoptosis and growth plate catabolism (Fig. 7).

Mutations in Nf1 in patients with neurofibromatosis type I cause various bone abnormalities, of which two of the more severe are tibial pseudarthrosis (non-union following fracture) and dystrophic scoliosis. NF1 patients are haploinsufficient for Nf1 and, as observed in Nf1−/− mice, do not present with a significant reduction in size, although they are on average slightly shorter (see (98) for review). The clinical presentation of the NF1 focal dysplasia and results from genetic mouse models support a model whereby somatic NF1 loss of heterozygosity in a subset of bone marrow osteocondroprogenitors causes the focal and dystrophic skeletal maladies in NF1 (37,99–101). The severity of the bone growth phenotype in Nf1−/− mice contrasts, however, with the nearly normal body size of NF1 patients and suggests that NF1 loss-of-function in chondroprogenitors or chondrocytes during early development is not the cause of the moderate size reduction seen in NF1 patients. Our results suggest, however, that loss of neurofibromin function in growth plate osteocondroprogenitors might contribute to the severe delay of fracture healing observed in some of these patients, as bone repair requires the timely transition through endochondral bone formation steps, where developmental genes are reactivated in adults. If this is verified, the ability of the NPR-B agonist NC-2 to blunt ERK chronic activation typical of Nf1−/− chondrocytes and to reverse the chondrocyte phenotypes of Nf1−/− mice might translate to beneficial outcomes in the treatment of NF1 pseudoarthrosis. Lastly, although the majority of known cases of chondrodysplasia is caused by mutations in FGFR1 or FGFR3, this study raises the possibility that some of the ACH cases with no mutation detected in these two receptors could stem from somatic inactivating mutations of Nf1.

Figure 7. Model summarizing the role of neurofibromin during growth plate development. Neurofibromin, expressed in prehypertrophic and hypertrophic chondrocytes, restrains Ras-ERK1/2-dependent FGFR signaling, thereby promoting chondrocyte proliferation and maturation, and inhibiting growth plate catabolism to maintain proper growth plate homeostasis.

MATERIAL AND METHODS

Animals and drugs

All procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Vanderbilt University Medical Center. WT and Nf1−/− mice were generated by crossing Nf1flx/flx mice and Nf1flx/+ mice; α1(II) collagen-Cre mice (55,102). Nf1flx/flx mice and Nf1flx/flx mice; α1(II) collagen-Cre mice were used as WT and cKO, respectively. NC-2 (100 or 300 mg/kg) or phosphate buffer saline vehicle were injected daily and subcutaneously from birth for 18 days. NC-2 is composed of the human CNP22 sequence,
preceded by six amino acids from the propeptide, fused to the C-terminus of the Fc domain of human immunoglobulin G1 by using an intervening glycine-rich linker (GGGGS)2. The compound binds specifically to the NPR-B receptor and stimulates intracellular production of cGMP with an EC₅₀ of 60 nm (data not shown).

Cell culture
Primary chondrocytes were extracted from the rib cages of P0 (newborn) mice. The cartilaginous part of the rib was dissected and the soft tissue was removed, then digested by collagenase D (3 mg/ml, Roche, Nutley, New Jersey, USA) and trypsin/ethylenediamine-tetraacetic acid (EDTA) (0.625 × 10⁻³%, Gibco, Grand Island, NY, USA) in serum-free Dulbecco’s Modified Eagle Medium (DMEM) medium (Invitrogen, Grand Island, NY, USA) for 1 h. Digestion medium was then discarded and samples were further digested overnight at 37°C (103). The extracted cells were filtered through 40-µm nylon mesh (BD Bioscience, Bedford, MA, USA), collected by centrifugation and used as primary chondrocytes. Primary chondrocyte cell cultures were maintained in DMEM+/+, DMEM supplemented with 10% FBS, 100 IU/ml penicillin, and 100 µg/ml streptomycin (Cellgro, Manassas, VA, USA) in a humidified, 5% CO₂ incubator at 37°C. After reaching confluence, primary chondrocytes were lifted using 0.25% trypsin (Invitrogen, Grand Island, NY, USA), and replated into experimental wells. To induce differentiation, cells were treated 50 µM of 1,25(OH)₂ vitamin D₃ (Sigma, St Louis, MO, USA) and 5 mM β-glycerophosphate (Sigma, St Louis, MO, USA). For micromass culture, 15 × 10⁵ cells/ml (LSM, MP Biomedicals, Solon, OH, USA) and plated (5 × 10⁵ cells/ml) on confluent primary chondrocytes in 10% FBS. After 4 h of incubation, 2 ml of DMEM+/+ was slowly added. FGF2 (10 ng/ml, R&D systems, Minneapolis, MN, USA) and EGF (100 ng/ml, R&D systems, Minneapolis, MN, USA) were used to stimulate primary chondrocytes. Osteoclastogenesis assays were performed with spleen-derived osteoclast precursors cocultured with rib-derived primary chondrocytes. Osteoclast precursor cells were separated from the single-cell suspension of whole spleens by a ficoll gradient (LSM, MP Biomedicals, Solon, OH, USA) and plated (5 × 10⁵ cells/ml) on confluent primary chondrocytes in DMEM+/+ (104). Osteoclastogenesis was induced following treatment with 10⁻⁸ M of 1,25(OH)₂ vitamin D₃ (Sigma, St Louis, MO, USA) (105).

RT–PCR, genomic PCR and qPCR
Total RNA was extracted using TRIzol (Invitrogen, Grand Island, NY, USA), and cDNAs were synthesized following DNase I treatment using the high-capacity cDNA reverse-transcription kit (Applied Biosystems, USA). Quantitative PCR (qPCR) were performed by using TaqMan gene expression assays or SYBR green qPCR. The probe and primer sets for Rankl (Mm0041908_m1), Opg (Mm0041906_m1), Ihh (Mm0043613_m1), Runx2 (Mm00501578_m1), Tssap (Mm00475834_m1), Fgfr1 (Mm00438930_m1), Fgfr3 (Mm00433294_m1) and the normalizer Hprt (Mm00446968_m1) were obtained from Applied Biosystems (Foster City, CA, USA). The primers were: Mmp9 (forward; GCCCTACAGCGCCCCCTACT, reverse; AGACACGCCCTTTGCTGAACA), Opn (forward; CTCCTTGGCCACAGAATG, reverse; TGGGCAACAGGATGACA), Coll1α1 (forward; GGCGACAGTATTACGACC CAAAGT, reverse; GAAATACGACACCCCCCTCAG), Nfatc1 (forward; GTTGGAGTAAAGACCTTTTG, reverse; CTGCCCCAGCTCCCCCG). The primers were Npr-b (forward; GTGACATGACCCCGACCTT, reverse; CCGTGGCTCTGATGAAGT), Gapdh (forward; ACCACAGTC- CATGCCATCAC, reverse; TCCACACCTTTGTGCTGTGA). Specificity of amplification was verified by the presence of a single peak on the dissociation curve. Specific amplification conditions are available upon request. For genotyping, genomic DNA was isolated from tail tips by sodium hydroxide digestion, and PCR was performed using primers P1, P2 and P4, as described by Zhu et al. (55), resulting in a 280 bp Cre-mediated recombination band and a 350 bp non-recombined band. The a(III) collagen-Cre transgene was detected using the forward primer: GAGTTGATA GCTGCGCTGGTGGCAGATG and reverse: TCC TCTTGCCTCTAGGGCCTCTGCA to generate a 700 bp band.

Histology
Paraformaldehyde-fixed samples were decalcified in 0.5 M EDTA (pH 8.0) overnight or up to 1 week, depending on the age of the mice, and then dehydrated in graded series of ethanol, cleared in xylene and embedded in paraffin. Five micrometers sagittal sections were cut and stained with H&E. Immunohistochemistry was performed according to standard protocols using an antibody against Neurofibromin (sc-67, Santa Cruz, Santa Cruz, CA, USA), Phospho-p44/42 MAPK (Erb1/2, Thr202/Tyr204, E10 mouse mAb #9106, Cell Signaling, Boston, MA, USA), MMP9 (ab38898, Abcam, Cambridge, MA, USA) or a non-immune IgG antibody, followed by horseradish peroxidase detection of the secondary antibody. In vivo proliferation assays were performed following i.p. injection with BrdU (0.1 mg/g) 2 h prior to sacrifice. Embryos were then harvested and processed for embedding and sectioning. BrdU was detected with a BrdU staining kit (Invitrogen, Grand Island, NY, USA) following the manufacturer’s instructions. TRAP staining was performed by using the leukocyte acid phosphatase staining kit (Sigma, St Louis, MO, USA). Histomorphometric measurements were performed using the Bioquant Analysis System (BIOQUANT image analysis corporation, Nashville, TN, USA). Fgfr1 in situ hybridization was performed on 5 µm sagittal paraffin sections. Sections were stored at 4°C until hybridization. The Fgfr1 probe used is a 706 bp fragment of the 3’ Fgfr1 UTR (sequence available upon request). Anti-sense [³²P]-uridine triphosphate (Perkin Elmer, Waltham, MA, USA) probes were synthesized for hybridization.

Western blotting
Lysate from primary chondrocytes were prepared in RIPA buffer containing protease and phosphatase inhibitors (Roche, Nutley, New Jersey, USA). Proteins were separated by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose membrane. The membranes were then immunoblotted with indicated primary
antibodies, followed by incubation with a horseradish peroxidase-coupled anti-rabbit IgG antibody (sc-2004, Santa Cruz, Santa Cruz, CA, USA). Protein bands were visualized via chemiluminescence. Primary antibodies used for immunoblotting were ERK1/2 (#9102), phospho Erk1/2 (#9111), p70S6K (#9202), phospho p70S6K (#9205) and Caspase-9 antibodies (#9504, Cell Signaling, Boston, MA, USA).

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

We thank Alexion for providing NC-2 and related pharmacokinetic and dynamic data, Dr Douglas Mortlock (Vanderbilt University, Nashville, TN, USA) for sharing the Fgfr1 in situ probe and Sameena K. Campbell for editing the manuscript.

Conflict of Interest statement. None declared.

FUNDING

This work was supported by a grant of the Department of Defense NFRP grant (W81XWH-09-01-2070).

REFERENCES

promote apoptosis but do not alter chondrocyte proliferation in
69. Stickens, D., Behonick, D.J., Ortega, N., Heyer, B., Hartenstein, B., Yu,
Altered endochondral bone development in matrix metalloproteinase
70. Nishida, T., Kubota, S., Aoyama, E., Janune, D., Maeda, A. and
Takigawa, M. (2011) Effect of CCN2 on FGFR2-induced proliferation
and MMP9 and MMP13 productions by chondrocytes. Endocrinology, 152,
4232–4241.
Dissociation of angiogenesis and osteostageostasis during endochondral
72. Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-Hora, M.,
(2011) Evidence for osteostage regulation of bone homeostasis through
73. Elefteriou, F., Benson, M.D., Sowa, H., Starbuck, M., Liu, X., Ron, D.,
in osteostabost reveals a nutritional basis for congenital skeletal dysplasia.
74. Matsushita, T., Chan, Y.Y., Kawanami, A., Balmes, G., Landreth, G.E.,
Stickens, D., Behonick, D.J., Ortega, N., Heyer, B., Hartenstein, B., Yu,
et al. (2001) FGF23 production in osteostabosts. J. Clin. Invest., 107,
2327–2338.
75. Garofalo, S., Kliger-Spatz, M., Cooke, J.L., Wolstin, O., Lunstrum, G.P.,
Dwarfism and early death in mice lacking C-type natriuretic peptide.
76. Chusho, H., Tamura, N., Ogawa, Y., Yasoda, A., Suda, M., Miyazawa,
77. Yang, X. (2012) Chondrocytic Atf4 regulates osteoblast differentiation
in vitro and chondrocyte proliferation and hypertrophic differentiation. Dev.
Cell., 3, 441–449.
78. Razzake, M.S., Soegiarto, D.W., Chang, D., Long, F. and Lanske, B.
(2005) Conditional deletion of Indian hedgehog from collagen type
II transgenic mice results in abnormal endochondral bone formation.
Developmental expression of two murine fibroblast growth factor
80. Su, N., Sun, Q., Li, C., Lu, X., Qi, H., Chen, S., Yang, J., Du, X., Zhao,
L., He, Q. et al. (2010) Gain-of-function mutation in FGFR3 in mice
leads to decreased bone mass by affecting both osteostageostasis and
(Osteostagene) efficiently in the absence of osteostabost. In Vivo., 19,
335–341.
82. Rittinger, S.R., Matsumoto, H.N., McKee, M.D., Nanci, A., An, X.R.,
lacking osteostabost show normal development and bone structure but
display altered osteostageostasis in vitro. J. Bone Miner. Res., 13,
1101–1111.
83. Chellaiy, A.A., Kizer, N., Biswas, R., Alvarez, U., Strauss-Schoenberg, J.,
Osteostagene deficiency produces osteostagene dysfunction due to reduced
and CD44 regulate the actions of osteostabost on osteostagene motility.
Calcif. Tissue Int., 72, 197–205.
85. Lanske, B., Amling, M., Neff, L., Guidacci, J., Baron, R. and
Kronenberg, H.M. (1999) Ablation of the PTH/PTHrP gene or the PTH/
PTHrP receptor gene leads to distinct abnormalities in bone
86. Wang, W., Lian, N., Ma, Y., Li, L., Gallant, R.C., Elefteriou, F. and
Yang, X. (2012) Chondrocytic ATF4 regulates osteostageostasis and
87. Elefteriou, F., Kolanczyk, M., Schindeler, A., Viskochil, D.H., Hock,
J.M., Schorry, E.K., Crawford, A.H., Friedman, J.M., Little, D.,
Peloton, J. et al. (2009) Skeletal abnormalities in neurofibromatosis
149A, 2327–2333.
88. Stevenson, D.A., Zhou, H., Ashrafii, S., Messiaen, L.M., Carey, J.C.,
inactivation of NF1 in fetal pseudarthrosis. Am. J. Hum. Genet., 79,
143–148.
89. Kolanczyk, M., Kossler, N., Kuhnisch, J., Lavitas, L., Stricker, S.,
Wilkening, U., Manjuival, I., Fratzi, P., Sparre, R., Herrmann, B.G. et al.
(2007) Multiple roles for neurofibromin in skeletal development and
90. Wu, X., Chen, S., He, Y., Rhodes, S.D., Mohammad, K.S., Li, X., Yang, X.,
hematopoietic microenvironment is critical to the pathological fracture
repair in murine models of neurofibromatosis type 1. PloS ONE, 6, e24917.
(2000) Col2a1-directed expression of Cre recombinase in differentiating
chondrocytes in transgenic mice. Genesis, 26, 145–146.
92. Garrett, S.W., Mechler, J., Mason-Savas, A., MacKay, C.A., Mailhot, G.,
Marks, S.C. Jr and Odgren, P.R. (2005) In vitro chondrocyte
differentiation using costochondral chondrocytes as a source of primary
rat chondrocyte cultures: an improved isolation and cryopreservation
method. Bone, 37, 530–544.
93. Boyum, A. (1968) Isolation of mononuclear cells and granulocytes from
cHumans. Isolation of mononuclear cells by one centrifugation, and of
granulocytes by combining centrifugation and sedimentation at 1 g.
94. Masuyama, R., Stockmans, I., Torrens, S., Van Looveren, R., Maes,
receptor in chondrocytes promotes osteostageostasis and regulates