Differentiation of epidermal keratinocytes is dependent on glucosylceramide:ceramide processing

Nicole Amen1, Daniel Mathow1, Mariona Rabionet1,2, Roger Sandhoff1,2, Lutz Langbein3, Norbert Gretz4, Carsten Jäckel5, Hermann-Josef Gröne1,* and Richard Jennemann1,∗

1Division of Cellular & Molecular Pathology, 2Lipid Pathobiochemistry and 3Genetics of Skin Carcinogenesis, German Cancer Research Center, D-69120 Heidelberg, Germany 4Medical Research Center Mannheim, University of Heidelberg, Mannheim, Germany 5Clinical Biochemistry, University Hospital Munich, LMU University Munich, Munich, Germany

Received February 12, 2013; Revised and Accepted June 3, 2013

Skin barrier function is primarily assigned to the outer epidermal layer, the stratum corneum (SC), mainly composed of corneocytes and lipid-enriched extracellular matrix. Epidermal ceramides (Cers) are essential barrier lipids, containing ultra-long-chain (ULC) fatty acids (FAs) with a unique ω-hydroxy group, which is necessary for binding to corneocyte proteins. In the SC, Cers are believed to derive from glucosylated intermediates, namely glucosylceramides (GlcCers), as surmised from human Gaucher’s disease and related mouse models.

Tamoxifen (TAM)-induced deletion of the endogenous GlcCer-synthesizing enzyme UDP-glucose:ceramide glucosyltransferase (UGCG) in keratin K14-positive cells resulted in epidermal GlcCer depletion. Although free extractable Cers were elevated in total epidermis and as well in SC, protein-bound Cers decreased significantly in Ugcgf/fK14CreERT2 mice, indicating glucosylation to be required for regular Cer processing as well as arrangement and extrusion of lipid lamellae. The almost complete loss of protein-bound Cers led to a disruption of the water permeability barrier (WPB). UGCG-deficient mice developed an ichthyosis-like skin phenotype marked by impaired keratinocyte differentiation associated with delayed wound healing. Gene expression profiling of Ugcg-mutant skin revealed a subset of differentially expressed genes involved in lipid signaling and epidermal differentiation/proliferation, correlating to human skin diseases such as psoriasis and atopic dermatitis.

Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ), a Cer-sensitive transcription factor was identified as potential mediator of the altered gene sets.

INTRODUCTION

The skin permeability barrier primarily resides in the outermost anucleated layers of the epidermis, i.e. the stratum corneum (SC). This barrier, preventing dehydration, and serving as a protective sheath against mechanical insult and infection, is believed to derive from the interplay of proteins in the corneocyte membrane with lipids (1). Corneocytes are surrounded by a lipid-coated lamellar matrix composed of ceramides (Cers), cholesterol and free fatty acids (FAs) which occur in almost equimolar ratios and allow for the arrangement into lamellar sheets (1,2). Cers are synthesized in the endoplasmic reticulum (ER) and then translocated to the Golgi where UDP-activated glucose is added on the cytosolic surface by action of the enzyme UDP-glucose ceramide glucosyltransferase (UGCG) (3,4). The resulting glucosylceramides (GlcCers) are the dominant glycosphingolipids (GSLs) synthesized by keratinocytes (KCs) and comprise ca. 4% of the total lipid mass in the epidermis (5). The lipophilic anchor of epidermal GlcCers contains a unique ultra-long-chain (ULC) amide-linked FA with 28–36 carbon atoms (6). The ULC-FAs are typically ω-hydroxylated (ωh) to give the so-called OS class of GlcCers, accounting for an essential part of the skin barrier. GlcCers are thought to act as intracellular carriers of these strongly hydrophobic Cers and...
are a major component of lamellar bodies (LBs) (7–9). LBs fuse with the apical plasma membrane at the interface of the *stratum granulosum* (SG)–SC to exocytose their lamellar content, together with structural proteins, enzymes and antimicrobial peptides into the extracellular space (10,11). By the action of enzymes such as β-glucocerebrosidase and ceramidase, Cers and glucose as well as FAs and free sphingoid bases are released from GlcCer-precurors. The αh-group of ULC-(Glc)Cers enables their esterification to an additional FA, predominantly linoleic acid (C18:2, α-h-6), to give the EOS subclass of (Glc)Cers. Transferesterification to proteins of the cornocyte membrane [i.e. involucrin (IVL), envoplakin (EVPL), periplakin (PPL) and loricrin (LOR)] leads to protein-bound Cers and to the formation of the cornified lipid envelope (12–15). EOS as well as protein-bound species including their corresponding GlcCer-precurors establish the extremely hydrophobic extracellular lipid lamellae of the SC and thereby the skin barrier (16,17).

An earlier study using mice with constitutive *Ugcg* deletion in the epidermis (*Ugcgf/fK14Cre* mice) highlighted the importance of Cer-glucosylation. Mutant mice lost the water permeability barrier (WPB) and died postnatally at day P5 (18). However, the exact molecular and cellular contribution of OS- and specifically protein-bound Cers for the built-up and stability of the WPB could not be determined (18). In addition, the differentiation and function of UGCG-deficient epidermis and its function in clinically relevant pathophysiological states e.g. wound healing have not been elucidated.

We generated inducible *Ugcg*^f/fK14CreERT2^ mice to circumvent the problem of early death experienced with *Ugcgf/fK14Cre* mice. Tamoxifen (TAM)-induced *Ugcg* gene deletion in basal layer KCs resulted in a significant decrease in epidermal GlcCers and, in contrast to newborn mice, to an almost complete loss of protein-bound Cers 3 weeks after initiation of TAM induction. Subsequent loss of epidermal differentiation and barrier homeostasis was evidenced by an increase in transepidermal water loss (TEWL) and pH as well as by KC hyperproliferation and disor- dered differentiation to give a severe ichthyosiform skin phenotype. Wound closure and reepithelialization was significantly delayed in mutant vs. control mice. The increase in Cers upon *Ugcg* deletion led to an increase of PPARβ/δ and induction of potential target genes involved in epidermal proliferation and differentiation.

RESULTS

Ugcg^f/fK14CreERT2^ mice lack epidermal GlcCers and protein-bound Cers upon TAM induction

To study the role of Cer-glucosylation in the epidermis of adult mice (Fig. 1A), TAM-inducible *Ugcg*^f/fK14CreERT2^ mice were generated (Fig. 1B and Supplementary Material, Fig. S1). *Ugcg* gene deletion was identified by Southern blot analysis in basal layer KCs resulted in a significant decrease in epidermal GlcCers and, in contrast to newborn mice, to an almost complete loss of protein-bound Cers 3 weeks after initiation of TAM induction. Subsequent loss of epidermal differentiation and barrier homeostasis was evidenced by an increase in transepidermal water loss (TEWL) and pH as well as by KC hyperproliferation and disordered differentiation to give a severe ichthyosiform skin phenotype. Wound closure and reepithelialization was significantly delayed in mutant vs. control mice. The increase in Cers upon *Ugcg* deletion led to an increase of PPARβ/δ and induction of potential target genes involved in epidermal proliferation and differentiation.

Lipid lamellae of LBs in *Ugcg*-mutant SC are discontinuous

Transmission electron micrographs of ventral skin sections evidenced normal oval-shaped LBs and lipid lamellae in the SC of control epidermis (Fig. 3A). Instead, in *Ugcg*-mutant skin LBs displayed an irregular tubular shape containing irregular lamellar lipid structures (Fig. 3B). In the extracellular space, lipid sheaths (deriving from LBs) were discontinuous in *Ugcg*^f/fK14CreERT2^ mice when compared with controls (Fig. 3). GlcCer depletion leads to hyperkeratosis and WPB breakdown alleviated by hair follicle stem cell-driven epidermal regeneration. *Ugcg*^f/fK14CreERT2^ mice were easily distinguishable from controls in the third week of TAM induction (1 mg TAM/injection/week) displaying sticky fur, dark tail skin and pruritus (data not shown). Dry, flaky skin became visible at the end of the third induction week (Fig. 4A). A hyperstratified and hyperkeratotic mutant epidermis was observed (Fig. 4B) with a ~5-fold increase in epidermal thickness (Fig. 4C). Significant weight loss of mutants was observed in parallel with increasing TEWL at the end of week 3 (Fig. 4D and E), indicating the onset of WPB disruption. GlcCer-deficient mice sufficiently compensated high epidermal water loss with increased water uptake from that time point on (Fig. 4F). In addition to the extremely high water evaporation from mutant skin, both a significant decrease in the body temperature (Fig. 4G) and weight loss occurred upon 6 h water deprivation (Supplementary Material Fig. 6a–e). Impaired barrier function was further indicated by significantly elevated SC pH (pH 6.1 *Ugcg*^f/fK14CreERT2^ vs. pH 5.1 *Ugcg* controls) (Fig. 4H), which is an important regulator of SC cohesion and desquamation in healthy skin (19). TEWL, water uptake, body weight and Cre-activity were monitored over 3 months in order to investigate whether *Ugcg*-mutant skin recovered from WPB loss (Supplementary Material, Fig. 7a–d). TEWL and water uptake constantly decreased, but remained significantly elevated in *Ugcg* mutants when compared with controls. Cre-activity was demonstrated in the epidermis for all investigated time points (with highest intensity in the second and fourth week upon induction). However, the infundibulum lost positivity ~8–10 weeks after TAM induction (Supplementary Material, Fig. 7d). Accordingly, hyperkeratosis...
persisted in particular at locations with low hair follicle density, e.g. ear and paw, implying the action of K14-negative hair follicle stem cells in epidermal barrier restoration. Hyperproliferation was documented by an increased number of Ki67-positive cells in basal, para- and lower suprabasal layers of the epidermis (Supplementary Material, Fig. S8a, a′). Immune cell activation upon epidermal barrier loss resulted in an increase of dendritic cells/macrophages in dermis and lower epidermis of mutant mice (Supplementary Material, Fig. S8b, b′). However, no significant difference in granulocytes and mast cells was detected between both groups (Supplementary Material, Fig. S8c, c′).

Keratinocyte differentiation is disturbed

Epidermal differentiation is achieved by a complex signaling and remodeling process in which basal KCs migrate upwards and continuously differentiate until they go into stepwise apoptosis and finally shed off during desquamation (20). Immunofluorescence (IF) microscopy was used to characterize KC maturation. Keratin K14 was normally expressed in the basal layer KCs in control skin but was additionally present in all suprabasal layers of GlcCer-deficient skin, indicating abnormal KC differentiation (Fig. 5A). Keratin K10 was expressed in the differentiated KCs of the stratum spinosum (SS) and SG layers in control skin. In mutants, K10 was distributed in the normal manner, including the 5-fold multilayered epidermis (Fig. 5B). Keratin K6 was present in all viable epidermal layers in the mutant, but absent in control skin, reflecting the hyperproliferative state of GlcCer-deficient epidermis (Fig. 5C). The abnormal KC differentiation was further demonstrated by numerous nuclear remnants in SC layers of Ugcg-mutant skin (Fig. 5A–C, E, F). Altogether, the epidermis of Ugcg mutants appeared as a disorganized hyperproliferative layer.

To closer examine the epidermal integrity of mutant skin, junction proteins such as tight junctions (TJs) and desmosomes were investigated. TJ protein claudin 1 (CLDN1) and the desmosomal cadherins desmoglein 1 and 2 [DSG1/2; the antibody used labels both isoforms; (21)] were detectable in all viable epidermal layers in controls—with DSG2 in the basal and DSG1 in the suprabasal strata. The mutant skin showed a slightly weaker punctuate staining which was more concentrated at the cell margins of the large hyperproliferative cells and was practically absent in the basal layer (Fig. 5D and E) indicating a reduction of DSG2. Quantitative differences of CLDN1 and DSG1/2 were corroborated by western blotting in GlcCer-depleted epidermis (Fig. 6A), in accord with the leakiness of the epidermal junction barrier. Furthermore, the desmosomal catenin desmoplakin (DSP), was strongly expressed in all viable strata in mutant epidermis, demonstrated by its typical punctuate diffuse staining pattern in the basal and spinous layers, which was more concentrated at cell membranes in the upper layers (Fig. 5F). In addition to the leakiness of the SC lipid barrier, these results suggest deficient junction formation (CLDN1 and DSG2) to also contribute to the epidermal barrier loss.

Formation of the cornified envelope (CE) is delayed

The cornified envelope (CE) is formed during corneocyte maturation. Its formation relies to a major part on the synthesis and cross-linking of both structural proteins such as IVL and LOR with EVPL and small proline-rich proteins (SPRRPs) as well as lipids (20). The plasma membrane gets gradually replaced

Figure 1. Generation of UgcgK14CreERT2 mice. (A) Inhibition of glucosylceramide (GlcCer) biosynthesis in murine epidermis was achieved by deletion of glucosylceramide synthase (UGCG) specifically in keratin K14 expressing cells upon TAM-induced Cre-recombinase activation (B). (C) Tissue specificity of Ugcg gene recombination was confirmed by southern blot analysis. Besides skin, recombinations were detected in tongue, esophagus and forestomach. Positivity of the dermis resulted from K14-positive recombinant cells of epidermal appendages (e.g. hair follicle outer root sheath keratinocytes).
by a scaffold of these proteins (IVL-EVPL, LOR-SPRRPs) which form ester bonds to ω ULC-FAs from Cers, generating an insoluble rigid CE as the first barrier against water loss (6,14).

Keratohyalin granules (KGs) of the SG contain large F-granules (profilaggrin (proFLG)) and small L-granules (LOR). These granules are storage vesicles for major corneocyte and CE proteins. In controls, proFLG and filaggrin (FLG) were normally located in the outer SG and SC, whereas in mutant epidermis F-granules were present in almost all suprabasal layers showing highest intensity in the SC (Fig. 6B). KGs were more numerous and larger in size throughout SS and SG layers of mutant epidermis when compared with controls, suggesting a defect in (pro)FLG synthesis and processing. Immunoblots supported these results: monomeric (1 FLG) and dimeric Flg (2 FLG) as well as polymeric Flg (FLG2) were reduced, whereas other proFLG peptides of abnormal chain lengths accumulated in mutant epidermis (Fig. 6A). During early CE assembly, IVL shifts from the cytosol to be aligned along the plasma membrane of keratinocytes. At the SG/SC interface, this membrane gets gradually replaced by a CE, indicated in control epidermis by the polarized staining pattern of IVL (Fig. 6C). Instead, the latter was strongly expressed in the cytosol of late SS and SG KCs (Fig. 6C), indicating a delay in IVL processing when compared with controls. Western blotting supported these results revealing a reduced protein level of IVL (Fig. 6A). LOR is the major compound of the CE (80–85% of total CE weight) and initially expressed late during CE formation. In control skin, LOR expression appeared late at the SG/SC interface, whereas mutants displayed an earlier strong cytosolic as well as diffuse nuclear staining (Fig. 6D), indicating a mislocalization and delay in LOR processing. Western blot results evidenced a reduction in LOR expression in mutant epidermis (Fig. 6A). The disarray in terminal KC differentiation (into anuclear corneocytes) was additionally apparent by the detection of nuclei (DAPI staining) in SC KCs (Fig. 6B–D; white arrows).

Figure 2. Epidermal lipid analysis and organization. The epidermal SL composition in control and mutant skin regarding (A, A′) free extractable and (B) protein-bound SLs was investigated by thin-layer chromatography (TLC) and quantified by MS (C–F). (A, A′, top) Orcinol staining of GSLs in (A) crude extracts and (A′) after alkaline treatment revealed a significant reduction of glucosylceramides (GlcCers), the by-far most prominent GSLs in the epidermis. (A, A′, bottom) Copper staining of free extractable ceramides (Cers) showed quantitative differences in the Cer-pattern of Ugcg−/−K14CreERT2 and controls. (B) Protein-bound Cers were drastically reduced in Ugcg-deficient epidermis. TLC results were corroborated by quantitative MS analysis (C–F) and proofed that all GlcCers (C, NS, AS, EOS) and protein-bound species (F) were significantly reduced in Ugcg-mutant epidermis, whereas free extractable Cers (D) significantly increased in mutant tissue as compared to controls. (E) Within the sphingomyelins (SMs), non-hydroxy fatty acid (FA)-containing SMs (OS and EOS) increased. Surprisingly, C16 α-hydroxylated fatty acid-containing species (AS) drastically decreased. (G) Alterations in the lipid constitution were reflected by an abnormal lipid lamellar structure of mutant stratum corneum (SC). Lentil-like lipid aggregates within the lamellae of corneocytes were seen by Nile Red staining. (E)OS, (esterified) ω-hydroxylated FA-containing Cers; NS, non-hydroxy FA-containing Cers; AS, α-hydroxy FA-containing Cers; *P < 0.05; **P < 0.01; ***P < 0.001; n = 4; mean values ± SD are shown.
Wound healing of full thickness skin wounds is delayed in GlcCer-depleted skin and skin grafts

Wound healing experiments were performed in control and GlcCer-deficient skin and skin grafts to investigate whether re-epithelialization is affected by the KC differentiation defect. Wound closure of full thickness skin wounds (5 mm in diameter) was significantly delayed at all investigated time points in mutant skin (Fig. 7A and B; Supplementary Material, Fig. S9a–d). Upon wounding, KC proliferation (Supplementary Material, Fig. S9e) as well as dendritic cell and macrophage infiltration were increased in wound sites of Ugcg-mutant skin (Supplementary Material, Fig. S9f). Giemsa-positive cells were not different in control and UGCG-deficient skin during the early wound healing phase, whereas on day 6 mast cells remained significantly elevated in mutant skin (Supplementary Material, Fig. S9g). IF staining for keratins of KC differentiation, K14 (early) and K10 (late) revealed that reepithelialization was complete in controls at day nine, whereas wounds in GlcCer-deficient skin were still open and incomplete (Fig. 7C and D). To exclude effects of a systemic factor on the delay in wound closure, transplantation experiments were conducted. Control mice with grafted skin of either wild-type or Ugcg^{−/−}K14^{CreERT2} litters were TAM-induced 5 weeks upon transplantation, when skins were fully adapted and hair growth was observed (Supplementary Material, Fig. S10). Wound healing experiments in isografted skins were performed 3 to 4 weeks upon TAM induction and had a similar outcome regarding K14 and K10 expression at day 9 of healing (Fig. 7E and F) as reported for control and Ugcg^{−/−}K14^{CreERT2} mice.

Gene expression analysis reveals alterations of genes involved in lipid homeostasis and KC development

In order to identify differentially expressed genes and enriched molecular networks resulting from epidermal Ugcg gene deletion, we conducted gene expression profiling and subsequent gene ontology (GO) enrichment analyses. Using the Genomatix single-probe approach, a total set of 362 differentially regulated transcripts was found from which 168 were induced and 194 were suppressed in the mutant epidermis (FDR = 0).

As described, UGCG-deficient mice showed alterations in epidermal lipid composition and KC differentiation. GO-enrichment of altered genes disclosed related processes such as lipid metabolism (GO:0006629, GO:0008610, GO:0044255) and epidermal differentiation processes (GO:0008544, GO:0031424, GO:0009611, GO:050678) (Supplementary Material, Table S5). Differentially expressed genes corresponding to these specific GO terms are illustrated in Figure 8A and B.

Genes encoding for enzymes involved in lipid metabolism were found to be induced on the mRNA level. A subset of these enzymes is particularly involved in the SL pathway promoting Cer synthesis such as (i) desaturase 2 (Dgds2, FC 3.5), which catalyzes Cer formation from dihydroceramide, (ii) neutral sphingomyelinase (Smpd3, FC 2.5), which catalyzes Cer formation from plasma-membrane derived SM (lysosomal acidic sphingomyelinase was not affected), (iii) sphingosine-1-phosphate phosphatase 2 (Sppp2, FC 2.6), which generates Sph from Sph-1-P, and (iv) CerS3 (encoded by the gene Lass3, FC 1.7), which catalyzes the synthesis of ceramides (Fig. 8A and B).

To summarize, the identified gene subsets corroborate the observed phenotypes resulting from Ugcg gene deletion at the molecular and cellular level.
molecular level. Furthermore, the results obtained by gene expression profiling (Fig. 8A–C) and western blotting (Fig. 8D) suggest PPAR\(\beta\)/\(\delta\) and FABP5 as potential transcriptional regulators of epidermal development. Thus, we propose that alterations in Cer homeostasis affect a PPAR\(\beta\)/\(\delta\)-mediated signaling cascade as one likely mechanism for hyperproliferation in Ugcg-mutant epidermis (Fig. 9).

DISCUSSION

Epidermal deficiency of UGCG, the enzyme catalyzing the initial step of GSL biosynthesis, caused early death of constitutive UGCG-deficient (Ugcg\(^{−/−}\)) mice, preventing detailed mechanistic insight into the molecular and cellular actions of GlcCers in the epidermis. Inducible Ugcg\(^{−/−}\)K14CreERT2 mice were generated to investigate the role of GlcCers in cell differentiation and epidermal barrier formation. TAM induction of Ugcg\(^{−/−}\)K14CreERT2 mice led to Ugcg gene deletion in epidermis as well as in tongue, esophagus and forestomach, where K14-promotor activity had previously been described (26).

Epidermal barrier homeostasis secures optimal protection against environmental stressors and allows for efficient adaptation by the autonomous regulation of epidermal differentiation, cohesion and desquamation. Epidermal barrier function has mainly been attributed to the SC, composed of lipid-embedded corneocytes and a lipid-enriched extracellular matrix (2), as well as to TJ proteins preventing paracellular diffusion and transport (27). Disturbance of one of those factors may lead to severe dermatoses such as ichthyoses, atopic dermatitis and psoriasis (28–31). In our study, UGCG deficiency in skin caused loss of GlcCers, whereas free-extractable Cers (NS, AS, OS, EOS)
accumulated. However, almost all protein-bound Cers were lost, supporting protein-bound GlcCers as precursors of protein-bound Cers (32). These changes in lipid composition were accompanied by severe ichthyosiform skin abnormalities. Disruption of the epidermal barrier was evidenced by elevated skin surface pH and water loss; the latter affected temperature regulation in mutant mice. Adult Ugcg mutants compensated high water efflux with increased water intake from the onset of barrier loss. In humans, dehydration is a lethal risk factor for infants suffering from congenital harlequin ichthyosis (HI), a severe skin disease based on a gene mutation of the lipid transporter ABCA12, which is important for the shuttling of GlcCers into LBs (33). In these patients, GlcCer accumulation and Cer loss caused similar barrier defects as observed in GlcCer deficiency in our study, underlining the importance of GlcCer-dependent Cer processing for normal barrier function.

The SC of Ugcg mutants appeared as a thick rigid layer of partially undifferentiated corneocytes. The disorder in corneocyte maturation was further associated with altered processing of the terminal differentiation markers LOR, and (pro)FLG. Strong cytosolic and nuclear localization of LOR was observed in mutant skin and is a feature of LOR keratoderma, such as Vohwinkel’s syndrome (34). Furthermore, FLG depletion is characteristic for atopic skin of patients with Flg gene mutations (35,36). Deficient proteolytic cleavage of proFLG was evidenced by western blot, showing diffusive bands of FLG-like intermediates, and reduced levels of polymeric (FLG 2), tri- (3 FLG) and dimeric (2 FLG) FLG precursors. FLG 2 is a 250 kDa FLG polymer, which was found to be reduced in skin of atopic dermatitis patients and in mice fed with essential FA-deficient diet (37), both displaying a similar phenotype as induced Ugcg^{f/fK14CreERT2} mice. Loss of monomeric FLG might not only hinder keratin condensation in corneocytes (38), but also impair its degradation into water-retaining amino acids (e.g. histidine, glutamine, arginine) and their derivatives (e.g. trans-urocanic acid) within the SC, promoting further dehydration. The latter directly affects an increase in SC pH, which was indeed higher in mutants than in controls. Many enzymes secreted together with the lipids into the SG/SC interface are typically found in the endosomal/lysosomal compartments and have an acidic activity optimum. Elevation of the SC pH impairs activity of such enzymes involved in lipid metabolism (e.g. β-glucocerebrosidase, sphingomyelinases, phospholipases) (39–41) and protein shedding (e.g. kallikreins) (42,43), thereby contributing to hypercornification and disturbed barrier function.
Epidermis devoid of GSLs showed severe hyperkeratosis and loss of the WPB. GlcCer-depleted skin of adult mutants had a drastic reduction in protein-bound Cers which was in contrast to newborn constitutive Ugcgf/fK14Cre mice, in which protein-bound Cers were not altered at P5 yet (18). Newborn mice died before one cycle of epidermal turnover was completed, explaining the discrepancy between the constitutive and inducible Ugcg deficiency model. Loss of protein-bound Cers upon UGCG depletion in adult mice, however, supports protein-bound GlcCers as their metabolic precursors. Nevertheless, EOS-Cers were not lost in GlcCer-deficient skin, but instead accumulated, indicating no direct involvement of UGCG for their biosynthesis. The loss of GlcCers in Ugcg^{fK14CreERT2} mice resulted in a significant increase in corresponding Cers (OS and EOS) when compared with controls. These results show that GlcCers serve as essential intermediates, carrying and directing Cer transport and processing (18,44).

However, the increase in Cers (by ca. 4500 pmol/mg epidermal dry weight) in Ugcg mutants cannot only be accounted for by the loss of GlcCers (by ~670 pmol/mg epidermal dry weight) in these mice. Cer accumulation might result from enhanced Cer_{de novo} synthesis at the ER and/or from Cer-recycling in the salvage pathway (conversion of SMs into Cers), as a compensatory mechanism for barrier loss (45,46). Based on enhanced mRNA expression of the membrane-bound neutral sphingomyelinase (<i>Smpd3</i>), one may assume an increase in SM recycling leading to increased Cer levels which could also explain the unchanged and even reduced levels of NS- and AS-SMs species, respectively.

Long-chain (LC) and very-long-chain-Cers (C16–C24) can influence the cell fate as evidenced in studies of human cancers and cancer cell lines, showing increased levels of specific NS-Cers (C16, C24, C24:1), promoting apoptosis and tumor progression (47–50). In Ugcg mutants, all epidermal NS-Cers significantly accumulated and might be responsible for both increased apoptosis and proliferation of GlcCer-deficient KCs.

Ugcg-deficient mice developed hyperkeratosis indicated by K6 expression and increased numbers of Ki67-positive cells. However, the increase in Cers (by ca. 4500 pmol/mg epidermal dry weight) in Ugcg mutants cannot only be accounted for by the loss of GlcCers (by ~670 pmol/mg epidermal dry weight) in these mice. Cer accumulation might result from enhanced Cer_{de novo} synthesis at the ER and/or from Cer-recycling in the salvage pathway (conversion of SMs into Cers), as a compensatory mechanism for barrier loss (45,46). Based on enhanced mRNA expression of the membrane-bound neutral sphingomyelinase (<i>Smpd3</i>), one may assume an increase in SM recycling leading to increased Cer levels which could also explain the unchanged and even reduced levels of NS- and AS-SMs species, respectively.

Long-chain (LC) and very-long-chain-Cers (C16–C24) can influence the cell fate as evidenced in studies of human cancers and cancer cell lines, showing increased levels of specific NS-Cers (C16, C24, C24:1), promoting apoptosis and tumor progression (47–50). In Ugcg mutants, all epidermal NS-Cers significantly accumulated and might be responsible for both increased apoptosis and proliferation of GlcCer-deficient KCs.
KCs, including the lower suprabasal layers. Additionally, an epidermis-wide distribution of K14 was noticed, which in control epidermis was restricted to the basal layer. Also cell–cell junction proteins, such as the TJ protein CLDN1 and desmosomal cadherin DSG2, were aberrantly expressed, decreased in the lower layers or (for DSP) widely retained. These alterations were apparently due to an alteration in basal KC differentiation, thereby contributing to delayed wound healing in GlcCer-depleted skin.

Infiltrating macrophages and dendritic cells are normally recruited upon chemotactic stimuli synthesized by KCs (51). Accordingly, GlcCer-depleted KCs themselves might have activated and attracted immune cells as a stress response to impaired epidermal integrity. During wound healing, a tight regulation of the inflammatory phases is important for efficient cutaneous tissue repair, whereas excessive or chronic inflammation can lead to impaired wound healing (e.g. diabetic wounds) (51). Although mutant skin was slightly inflamed at the onset of wounding, the immune response upon wounding was similar to controls and did not alter granulation tissue formation. The lack of K14- and K10-positive cells in wound tissue rather evidenced a defect in reepithelialization as the cause for delayed wound closure. To exclude the possibility of a systemic effect of factors such as water and electrolyte loss as well as low body temperature on wound closure, wound healing experiments were performed in whole skin isografts from Ugcgf/fK14CreERT2 mice (E and F), a similar WH delay as in non-transplanted skin was observed upon TAM induction. d, dermis; e, epidermis; wc, wound center; asterisks indicate hair follicles; scale bars, 0.5 cm (A); 200 μm (C–F).

Figure 7. Wound healing is delayed in Ugcgf/fK14CreERT2 mice. Wounds were monitored (A) and wound sizes measured (B) at different time points during wound healing (WH). Wound closure was significantly delayed in mutant skin (n = 3 each; shown is one representative experiment out of three with similar results). (C and D) At day 9 of WH, control wounds were fully reepithelialized as demonstrated by keratin 14 (K14) and keratin 10 (K10) staining. In contrast, reepithelialization was significantly delayed in wounds of mutant mice. In transplanted skin from Ugcgf/fK14CreERT2 mice (E and F), a similar WH delay as in non-transplanted skin was observed upon TAM induction. d, dermis; e, epidermis; wc, wound center; asterisks indicate hair follicles; scale bars, 0.5 cm (A); 200 μm (C–F).
potent activators (NS/AS-Cers) of the nuclear receptor PPARß/δ in KCs (22), mediating cell growth and survival (24). PPARß/δ upregulation, both on the mRNA- as well as the protein-level, might explain the hyperproliferative state of KCs in Ugcg-mutant skin, mediated by intracellular accumulating Cers (NS, AS) (48). This was additionally corroborated by enhanced mRNA levels of potential PPARß/δ target genes involved in proliferation and cell survival such as growth factors (e.g. Epgn, Hbegf) and the lipid chaperone Fabp5 (24, 25). The array and western blot data provide a logic explanation for the observed epidermal hyperproliferation. However, it cannot be excluded that elevated proliferation and delayed keratinocyte differentiation in mutant epidermis had been a consequence of decreased levels of EOS-GlcCers and increased Cer synthesis. EOS-GlcCers have been shown to promote KC maturation, enhancing keratinization and CE formation (52–54).

Additionally, gene expression profiling uncovered major alterations in epidermal differentiation complex (EDC) genes such as small proline-rich proteins (Sprpr’s, FC 3.2–5.7) and repentin (Rptn, FC 3.0) (55). A significant induction was also found for the hyperproliferation markers keratin K6 [Krt6b (FC 3.9) and Krt6a (FC 5.5)] and the tissue kallikreins Klk14 (FC 3.9) and Klk8 (FC 2.8) (Fig. 8B) which belong to the group of secretory serine proteases, involved in the regulation of skin desquamation (56). Upregulation of the EDC genes, keratins K6 and KLKs, has been associated with hyperproliferative/inflammatory skin diseases such as psoriasis and atopic dermatitis (57–59) and additionally reflected the diseased state of GlcCer-depleted skin. A caveat may be considered, when interpreting the gene expression data, that one cannot unequivocally dissect causes and consequences of keratinocyte hyperproliferation by this approach.

We conclude that Ugcg deletion led to deficiency of epidermal GlcCers and foremost to an increase of free extractable Cers and vH-SMs. Sequential Cer-processing was blocked, indicated by drastic reduction of protein-bound Cers. Our data support the idea that Cer-glucosylation is pivotal for a regular transport and vH-esterification of Cers to the CE and a prerequisite for barrier formation by transesterification to corneocyte proteins. GlcCer-depletion in basal KCs affected KC maturation, hampered cornification and wound reepithelialization. Correlates to several human skin diseases can be inferred such as ichthyosis (33, 60) and atopic dermatitis (30).
MATERIALS AND METHODS

Generation of K14CreERT2 knock-in mice

An ~4.5 kb fragment of the K14-promoter region was amplified by PCR using proof-reading polymerase (PFU, Promega, Heidelberg, Germany). The primers were designed to introduce a KpnI and SstII site at the 5-prime end as well as an ATG start codon and an EcoRV site at the 3-prime end of the PCR product. A second PCR was performed amplifying a ~4.5 kb fragment including the complete coding sequence of K14 as well as a PacI and NheI site needed for cloning of the PCR fragment. The correctness of both PCR products was proven by sequence analysis. The 5-prime homology arm was inserted via KpnI/EcoRV in frame into a modified cloning vector containing an iCre-, an ERT2- and a FRT-flanked neomycin selection cassette (Supplementary Material, Fig. S1a). The 3-prime homology arm was inserted into PacI/NheI at the 3-prime end of the neomycin cassette. The targeting construct was then ligated via SstII/ClaI into a cloning vector containing a PGK-DTA cassette (Supplementary Material, Fig. S1a) in order to enhance the efficiency of the homologous recombination in embryonic stem (ES) cells. E14 ES cells were transfected in the presence of the SstII-linearized K14-targeting vector and cultivated and genotyped as described (61). As revealed by southern blot analysis using digoxigenin-labeled probes, 4 out of 384 ES cell clones were correctly targeted (Supplementary Material, Fig. S1b and S1c). Positive stem cells were injected into blastocysts and resulting chimeras were mated with C57Bl6 mice. Germ-line transmission was indicated by agouti-like color of the fur from the offspring which were additionally genotyped by PCR and Southern blot analysis as previously described (18) (primers are listed in Supplementary Material, Table S1).

Epidermal lipid extraction and analysis

At the beginning of TAM induction, mice were shaved on the back and hairs were completely removed using depilation cream. Three weeks upon induction, hairless skins were incubated in thermolysin buffer (500 mg/ml) at 37°C for 2 h and epidermis was separated from dermis as previously reported (15). The epidermis was lyophilized, powdered and dry weight was determined. Ten to 50 mg of epidermis was extracted with 2 ml of chloroform/methanol/distilled water (30:60:8 v/v) by volume under sonication at 50°C for 15 min. Extracts were centrifuged at ~2000g for 10 min and supernatants were collected.

Figure 9. Schematic representation of processes induced upon Ugcg deletion and subsequent Cer-accumulation. We hypothesize that elimination of GlcCer synthesis in mutant epidermis leads to Cer accumulation and induction of proliferation and dedifferentiation processes mediated by the peroxisome proliferator-activated receptor β/δ (PPARβ/δ), fatty acid binding protein 5 (FABP5) and potential target genes encoding for proteins such as heparin-binding EGF-like growth factor (HBEGF), epigen (EPGN) and fatty acid binding protein 5 (FABP5) itself.
Lipid extraction of the stratum corneum (SC)

SC of depilated ventral skin parts was isolated using cyanoacrylate glue-stripping and extracted with n-hexane/CH$_3$OH 95:5 v/v as described (65,66). The pellet was extracted three times with dimethylformamide at 50°C for 15 min. The amount of Cers was related to the respective total protein content of each sample.

Determination of TEWL and skin surface pH

TEWL was monitored using a Tewameter TM300 (Courage-Khazaka Electronics, Cologne, Germany) as reported (18). SC pH was measured with a skincheck pH Meter (PCE, Meschede, Germany).

Determination of body temperature

Body temperature was measured using a rectal thermometer (Almemo (R) 2390-1, sensor: ZA 9040-FS, Aihlborn, Holzkirchen, Germany).

X-Gal staining

LacZ-Rosa26 reporter mice (kindly provided by G. Schütz, DKFZ-Heidelberg) were crossed with K14CreERT2 mice and Cre-activity was monitored in offsprings before and upon TAM induction. Skin cryosections (5 μm) were stained with 5-bromo-4-chloro-3-indolyl-n-galactosidase (X-gal) as previously reported (67,68).

Light microscopy and immunohistochemistry

Skin samples were either formalin fixed (4%) overnight at 4°C, dehydrated and paraffin embedded or frozen in isopentane precooled with liquid nitrogen for cryosectioning. For light microscopy, paraffin sections of 3 μm were deparaffinized and stained by hematoxylin & eosin (HE, Chroma, Köngen, Germany) or with antibodies against HR3 and Ki67 as described (18). Giemsa staining was performed on deparaffinized sections (10 min, RT) using Giemsa azur eosin methylene blue solution (Merck). Then sections were rinsed with 1% acetic acid, sequentially placed in 96% ethanol, 2-propanol (2 × 2 min) and xylool (~1 min) and mounted with Vitro-Clud (Langenbrink, Emmen- gingen, Germany). For indirect IF microscopy, paraffin sections were subjected to antigen retrieval using 10 mM sodium citrate pH 6 at 96°C for 3–5 min and permeabilization with 0.1% Triton X-100 in PBS at RT for 5 min prior to incubation with primary antibodies at RT for 1 h (Table 1). For the detection of CLDN1, cryosections of 5 μm were fixed in acetone at RT for 10 min followed by incubation with primary antibodies at RT for 1 h (Table 1). Incubation with secondary antibodies was performed at RT for 30 min in parallel with DAPI (20 ng/ml, Sigma) for nuclear staining (Table 2). All stainings were analyzed using a Biorevo Z-9000 fluorescence microscope (Keyence, Neu-Isenburg, Germany).

Electron microscopy

Freshly dissected skin sections were fixed with ruthenium tetroxide solution (Serva, Heidelberg, Germany) and further treated as described (18).

Staining for neutral and phospholipids with Nile Red

Neutral and phospholipids were analyzed as previously reported (69). Cryosections (5 μm) were air-dried, embedded with freshly prepared Nile Red (5 mg/ml in 75% glycerol) and visualized with the fluorescence microscope.

Protein isolation and western blotting

Epidermis and dermis were separated upon incubation in 0.5 mM sodium thiocyanate (pH 6.8, in 0.1 mM di-sodium hydrogen phosphate) for 30 min on ice as reported (70). Epidermis samples were placed in digitonin lysis buffer and further processed as previously described (15).

Wound healing experiments and isografting

Three weeks upon the start of TAM induction, mice were anesthetized with isoflurane (2.5 vol.%) and a full-thickness
on the back of acceptor mice and edges were covered with a semi-

animals (control littermates) were resected. Grafts were sewed

shortly placed in sterile ice-cold PBS, while skins from acceptor

excised from donor animals (control and Ugcg f/f/K14CreERT2),

Deisenhofen, Germany) and full thickness skin (4

was performed in 7- to 8-week-old male mice (20–25 g). They

frozen in liquid nitrogen for immunohistochemistry. Isografting

was performed in 7- to 8-week-old male mice (20–25 g). They

were anesthetized with tribromoethanol (Avertin, Sigma-Aldrich,

Deisenhofen, Germany) and full thickness skin (4 × 4 cm) was

excised from donor animals (control and Ugcg f/f/K14CreERT2),

shortly placed in sterile ice-cold PBS, while skins from acceptor

animals (control littermates) were resected. Grafts were sewed on

the back of acceptor mice and edges were covered with a semi-

permeable dressing (3 M, Neuss, Germany). Transplants were

fully adapted within 2–3 weeks upon grafting. TAM induction

started 5 weeks upon grafting using the same TAM protocol as
described for Ugcg f/f/K14CreERT2 mice. Wounds were applied in

the ninth week upon grafting and monitored until reepithelializa-
tion was complete in control mice.

RNA isolation and gene expression profiling

Full thickness skins of Ugcg f/f/K14CreERT2 and control mice (n = 3,
each) were excised using biopsy punches 8 mm in diameter (Stiefel GmbH). RNA was directly extracted (71) and DNase-
treated using the Ambion® Turbo DNA-free kit (Life Technolo-
gies (Ambion), Darmstadt, Germany). The RNA integrity was
validated with the Agilent Bioanalyzer 1000 and 100 ng of
total RNA were further processed using the Ambion® WT Ex-
pression Kit (Life Technologies (Ambion)) in order to synthe-
size cDNA, cRNA and finally ss cDNA. The ss cDNA was
fragmented and labeled with the WT Terminal Labeling and
Controls Kit (Affymetrix, Santa Clara, USA) and hybridized onto GeneChip Mouse Gene 1.0 ST Arrays according to the manu-
ufacturer’s instructions (Affymetrix). The experiment was per-
formed as independent triplicates. The microarray chips were
scanned with a GeneChipTM scanner 3000. Quality control
and clustering analyses were carried out using the MADMAX
(Management and Analysis Database for Multi-platform micro-
Array eXperiments) platform (https://madmax.bioinformatics.
nl, University of Wageningen, Netherlands). For these steps,
the CEL files were RMA normalized (72) using the R statistical
package (version 2.14.0.) and bioconductor version 2.9. The data
were analyzed using Genomatix ChipInspector (for calculating
the fold changes) and Genomatix Pathway System (GePS) (Gen-
omatix Software GmbH, München, Germany). These tools

punched biopsy, 5 mm in diameter, was taken from the upper
back (using disposable biopsy punches from Stiefel GmbH, Wa-
iblingen, Germany). Wound size, TEWL and body weight of
animals were documented over 9–10 days until wounds in

were analyzed using Genomatix ChipInspector (for calculating
the fold changes) and Genomatix Pathway System (GePS) (Gen-
omatix Software GmbH, München, Germany). These tools

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Gene name</th>
<th>Host a – clonality b</th>
<th>Application c (dilution)</th>
<th>Supplier (clone)</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Actin</td>
<td>Actb</td>
<td>rb–p</td>
<td>WB (1:200)</td>
<td>Santa Cruz</td>
<td>sc-1616-R</td>
</tr>
<tr>
<td>Claudin-1</td>
<td>Cldn1</td>
<td>rb–p</td>
<td>WB (1:1000)</td>
<td>Thermo Scientific</td>
<td>RB-9209</td>
</tr>
<tr>
<td>Desmoglein 1/2</td>
<td>Dsg 1/2</td>
<td>m–m</td>
<td>Paraffin (1:10)</td>
<td>provided by H. Heid, Progen, DG3.10</td>
<td>–</td>
</tr>
<tr>
<td>Desmplakin</td>
<td>Dsp</td>
<td>m–m</td>
<td>Paraffin (pure)</td>
<td>provided by H. Heid, Progen, DP447</td>
<td>–</td>
</tr>
<tr>
<td>Fatty acid binding protein 5</td>
<td>Fabp5</td>
<td>g–p</td>
<td>WB (1:2000)</td>
<td>R&D Systems</td>
<td>AF 1476</td>
</tr>
<tr>
<td>(Pro-) Filaggrin</td>
<td>Flg</td>
<td>rb–p</td>
<td>WB (1:1000)</td>
<td>Covance</td>
<td>PRB-417P</td>
</tr>
<tr>
<td>HR3</td>
<td>–</td>
<td>r–m</td>
<td>Paraffin (1:50)</td>
<td>Acris, Hiddenhausen, Germany</td>
<td>–</td>
</tr>
<tr>
<td>Loricin</td>
<td>Lr</td>
<td>rb–p</td>
<td>WB (1:100)</td>
<td>Covance</td>
<td>PRB-140C</td>
</tr>
<tr>
<td>Keratin K6</td>
<td>Krt6</td>
<td>gp–p</td>
<td>Paraffin (1:100)</td>
<td>Provided by L. Langbein</td>
<td>–</td>
</tr>
<tr>
<td>Keratin K10</td>
<td>Krt10</td>
<td>gp–p</td>
<td>Paraffin (1:100)</td>
<td>Provided by L. Langbein</td>
<td>–</td>
</tr>
<tr>
<td>Ki67</td>
<td>MKi67</td>
<td>r–m</td>
<td>Paraffin (1:200)</td>
<td>Dako (TEC-3)</td>
<td>M7249</td>
</tr>
<tr>
<td>Peroxisome proliferation-activated receptor δ</td>
<td>Ppard</td>
<td>rb–p</td>
<td>WB (1:500)</td>
<td>Thermo Scientific</td>
<td>PA1-823A</td>
</tr>
</tbody>
</table>

a g, goat; gp, guinea pig; m, mouse; rb, rabbit; r, rat.
b m, monoclonal; p, polyclonal.
c Cryo, cryosections; IHC, immunohistochemistry; Paraffin, paraffin sections; WB, western blot.

Table 1. Primary antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Host a – clonality b</th>
<th>Application c (dilution)</th>
<th>Supplier (clone)</th>
<th>Order number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa FluorR 488 anti-rb</td>
<td>d</td>
<td>IHC (1:500)</td>
<td>Invitrogen</td>
<td>A21206</td>
</tr>
<tr>
<td>Alexa FluorR 546 anti-r</td>
<td>g</td>
<td>IHC (1:500)</td>
<td>Invitrogen</td>
<td>A11081</td>
</tr>
<tr>
<td>Cy3TM anti-gp</td>
<td>d</td>
<td>IHC (1:500)</td>
<td>Abcam</td>
<td>ab102370</td>
</tr>
<tr>
<td>Cy3TM anti-m</td>
<td>d</td>
<td>IHC (1:500)</td>
<td>Jackson Dianova</td>
<td>715-165-150</td>
</tr>
<tr>
<td>Cy3TM anti-rb</td>
<td>d</td>
<td>IHC (1:500)</td>
<td>Jackson Dianova</td>
<td>715-165-152</td>
</tr>
<tr>
<td>Biotinylated anti-r</td>
<td>rb</td>
<td>Paraffin (1:200)</td>
<td>Vector Laboratories</td>
<td>BA-4001</td>
</tr>
<tr>
<td>Goat-HRP</td>
<td>d</td>
<td>WB (1:1000)</td>
<td>Santa Cruz</td>
<td>sc-2020</td>
</tr>
<tr>
<td>Mouse-HRP</td>
<td>g</td>
<td>WB (1:1000)</td>
<td>Santa Cruz</td>
<td>sc-2005</td>
</tr>
<tr>
<td>Rabbit-HRP</td>
<td>g</td>
<td>WB (1:1000)</td>
<td>Santa Cruz</td>
<td>sc-2004</td>
</tr>
</tbody>
</table>

a d, donkey; g, goat; gp, guinea pig; m, mouse; rb, rabbit; r, rat.
b IHC, immunohistochemistry; Paraffin, paraffin sections; WB, western blot.

c application, b application, c application, d application, e application.
FUNDING
as Gabi Schmidt, Claudia Schmidt, Silke Prätzel-Wunder
We thank Martina Volz, Ulrike Rothermel, Sylvia Kaden as well
ACKNOWLEDGEMENTS
HMG
Many of the data presented here were obtained by screening a cDNA library constructed from neonatal mouse epidermis and performing differential display. rDNA was applied to identify significantly regulated genes.

utilize a single probe approach which allows pre-selection of differentially expressed genes. A cut-off of 0% false discovery rate (FDR) was applied to identify significantly regulated genes. Selected genes were further validated by qRT-PCR (Supplementary Material, Fig. S11 and Table S6) and western blot (Fig. 8D).

All gene expression data are deposited in NCBI's Gene Expression Omnibus (73); (www.ncbi.nlm.nih.gov/geo/; Accession No. GSE47789).

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.

REFERENCES