Unveiling a common mechanism of apoptosis in β-cells and neurons in Friedreich’s ataxia

Mariana Igoillo-Esteve1, Ewa Gurgul-Convey3, Amélie Hu2, Laila Romagueira Bichara Dos Santos4, Baroj Abdulkarim1, Satyan Chintawar2, Lorella Marselli5, Piero Marchetti5, Jean-Christophe Jonas4, Décio L. Eizirik1, Massimo Pandolfo2 and Miriam Cnop1,6,*

1ULB Center for Diabetes Research and, 2Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium, 3Institute of Clinical Biochemistry, Hannover Medical School, Hannover 30625, Germany, 4Institut de Recherche Expérimentale et Clinique, Pôle d’Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels 1200, Belgium, 5Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy and 6Division of Endocrinology, Erasmus Hospital, 1070, Brussels, Belgium

*To whom correspondence should be addressed at: ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070 Brussels, Belgium. Tel: +32 25556305; Fax: +32 25556239; Email: mcnop@ulb.ac.be

Abstract

Friedreich’s ataxia (FRDA) is a neurodegenerative disorder associated with cardiomyopathy and diabetes. Effective therapies for FRDA are an urgent unmet need; there are currently no options to prevent or treat this orphan disease. FRDA is caused by reduced expression of the mitochondrial protein frataxin. We have previously demonstrated that pancreatic β-cell dysfunction and death cause diabetes in FRDA. This is secondary to mitochondrial dysfunction and apoptosis but the underlying molecular mechanisms are not known. Here we show that β-cell demise in frataxin deficiency is the consequence of oxidative stress-mediated activation of the intrinsic pathway of apoptosis. The pro-apoptotic Bcl-2 family members Bad, DP5 and Bim are the key mediators of frataxin deficiency-induced β-cell death. Importantly, the intrinsic pathway of apoptosis is also activated in FRDA patients’ induced pluripotent stem cell-derived neurons. Interestingly, cAMP induction normalizes mitochondrial oxidative status and fully prevents activation of the intrinsic pathway of apoptosis in frataxin-deficient β-cells and neurons. This preclinical study suggests that incretin analogs hold potential to prevent/delay both diabetes and neurodegeneration in FRDA.

Introduction

Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by a guanine-adenine-adenine (GAA) trinucleotide repeat expansion in the first intron of the FXN gene, encoding the mitochondrial protein frataxin (1). This expansion interferes with frataxin transcription by heterochromatin silencing (1,2). FRDA patients have 5–35% of normal frataxin levels, and this is the cause of the mitochondrial and pathophysiological features of the disease (3). FRDA is characterized by progressive gait ataxia, muscle weakness, dysarthria and sensory loss (4). In addition to the neurological phenotype, FRDA patients have high prevalence of hypertrophic cardiomyopathy (4,5), glucose intolerance and diabetes (6,7).

The main neuropathological features are loss of large proprioceptive primary sensory neurons in the dorsal root ganglia, atrophy of the posterior columns and the spinocerebellar tracts in the spinal cord, severe neuronal loss in the dentate nucleus in the cerebellum and distal axonal loss in the pyramidal tracts, with variable involvement of visual and auditory pathways (8,9). We have recently
Frataxin deficiency in β-cells enhances mitochondrial hydrogen peroxide and hydroxyl radical formation

We have previously demonstrated that frataxin deficiency induces mitochondrial dysfunction and sensitizes β-cells to free fatty acid (FFA)- and ER stress-induced apoptosis (10). In other cell types, frataxin deficiency enhances oxidative stress (1,25,27). To determine if this is also a characteristic of frataxin-deficient β-cells, we knocked down frataxin in clonal rat INS-1E β-cells (Fig. 1) using one of our previously validated siRNAs (10). Frataxin silencing increased mitochondrial ROS production in frataxin-deficient β-cells (Fig. 1A–C) and enhanced the expression of mitochondrial superoxide dismutase (SOD2, Fig. 1D). This enzyme catalyzes the dismutation of superoxide radicals to H2O2 and oxygen. We therefore examined whether mitochondrial H2O2 production is increased, using the specific fluorescent H2O2 sensor HyPer. Oxidation of HyPer, selectively targeted to the mitochondria (HyPerMito, Fig. 1E), was significantly increased in frataxin-deficient β-cells in control condition and after treatment with the FFA oleate or the ER stressor brefeldin (Fig. 1E). In contrast, cytosolic H2O2 formation, monitored by HyPerCyto oxidation, was not modified by frataxin deficiency (Fig. 1F). H2O2 is converted into the highly reactive hydroxyl radical (OH·) in the presence of ferrous iron via the Fenton reaction (28). Using the fluorescent dye 3′-(p-hydroxyphenyl) fluorescein (HPF), enhanced OH· formation was detected in frataxin-deficient β-cells (Fig. 1G). We also examined whether frataxin silencing modifies the thiol/disulfide mitochondrial redox equilibrium, by targeting the redox-sensitive biosensor roGFP to the mitochondria (mt-roGFP1). This biosensor, which is much less pH-sensitive than HyPerMito (29), reports the mitochondrial glutathione (GSH) redox state, reflecting the cellular capacity to reduce oxidized protein-thiols via the thiol-based redox couple GSH/GSSG (30). In line with our observation of enhanced mitochondrial ROS production in frataxin deficiency, frataxin silencing increased mitochondrial GSH oxidation (Fig. 1H). In summary, frataxin deficiency induces mitochondrial oxidative stress and apoptosis in β-cells.

Oxidative stress contributes to apoptosis in frataxin-deficient β-cells

We next used chemical and genetic approaches to examine whether increased oxidative stress mediates β-cell death. Apoptosis induced by frataxin silencing was partially prevented by the cell-permeable SOD/catalase mimetic MnTMPyP (31–33) and the superoxide anion scavenger Tiron (34) in control condition and after oleate (Fig. 2A and F) or brefeldin treatment (Fig. 2D). These results were confirmed by western blot for cleaved caspase-3 (Fig. 2B and C). MnTMPyP also protected frataxin-deficient rat islet cells from oleate-induced apoptosis (Fig. 2E and Supplementary Material, Fig. S1). Mitochondrial overexpression of the H2O2-inactivating enzyme catalase increased catalase activity by around 20-fold (6 ± 2 units in control cells versus 135 ± 21 units in mitochondrial catalase overexpressing cells, n = 6–11, P < 0.001 by paired t-test). Mitochondrial catalase overexpression significantly reduced the sensitivity of frataxin-deficient β-cells to brefeldin (Fig. 2G). Thus, mitochondrial oxidative stress is a key mechanism for β-cell apoptosis in FRDA.

Frataxin deficiency activates the intrinsic pathway of apoptosis in β-cells

Mitochondrial cytochrome c release is a hallmark of activation of the intrinsic pathway of apoptosis. Frataxin silencing induced
cytochrome c release in control condition and after oleate treatment (Fig. 3A and B). Treatment with the ROS scavenger MnTMPyP prevented cytochrome c release (Fig. 4), showing that oxidative stress contributes to the activation of the intrinsic pathway of apoptosis under frataxin deficiency. We next examined the pro- and anti-apoptotic proteins of the Bcl-2 family controlling this apoptosis pathway (20,21,35,36). Frataxin silencing in β-cells induced the mRNA expression of the pro-apoptotic BH3-only sensitizer DP5, as well as the BH3-only activators Bim and Puma (Fig. 3C). At the protein level, frataxin deficiency induced the Bim isoforms BimL and BimS, the latter being the most pro-apoptotic Bim splice variant (37) (Fig. 3D and E; Supplementary Material, Fig. S2A and B). For DP5 and Puma there are no good antibodies available. Frataxin silencing also activated the BH3-only sensitizer Bad by dephosphorylation (Fig. 3D and E). Frataxin deficiency did not impair the expression of the anti-apoptotic proteins Bcl-XL or Bcl-2 in control condition or after oleate treatment (Supplementary Material, Fig. S2C–E). Instead, Bcl-XL protein expression was induced after frataxin silencing (Supplementary Material, Fig. S2C and D), possibly as a protective mechanism to prevent β-cell demise. Taken together, these results indicate that frataxin deficiency leads to upregulation or
activation of pro-apoptotic Bcl-2 proteins but not to downregulation of pro-survival ones.

The pro-apoptotic Bcl-2 proteins Bad, DP5 and Bim mediate apoptosis in frataxin-deficient β-cells

We next examined whether Bad, DP5, Bim or Puma mediate cell death in frataxin-deficient cells. To this end, we silenced frataxin in clonal β-cells, alone or combined with Bad, DP5, Bim or Puma siRNAs, achieving more than 50% knockdown (Supplementary Material, Fig. S3). Bad knockdown reduced β-cell apoptosis in control condition and after oleate or brefeldin exposure (Fig. 5A and B). DP5 silencing prevented oleate- but not brefeldin-induced apoptosis (Fig. 5D and E), while Bim knockdown was protective against both (Fig. 5G and H). Bad, DP5 and Bim silencing also prevented oleate-induced apoptosis in...
frataxin-deficient primary rat β-cells (Fig. 5C, F and I). Puma knockdown was not protective for frataxin-deficient β-cells (Fig. 5J and K). The results were confirmed by western blots for the effector caspase-3, that was significantly less activated following Bad, DPS and Bim silencing but not after Puma knockdown (Supplementary Material, Fig. S4).

Figure 3. Frataxin deficiency activates the intrinsic pathway of apoptosis in β-cells. INS-1E cells were transfected with control siRNA (siCT) or siRNA targeting frataxin (siFx). 48 h after transfection the cells were treated or not (CT) with oleate (OL, 0.5 mM) for 24 h. Cytochrome c release was evaluated by immunofluorescence. Representative pictures are shown in (A). Arrows indicate cells with diffuse cytoplasmic staining for cytochrome c. (B) Quantification of A (n = 4-5). More than 900 cells were counted in each experiment. (C–E) DPS, Bim and Puma expression, caspase-3 activation and BAD phosphorylation were examined 72 h after frataxin knockdown. DPS, Puma and Bim mRNA expression was measured by real-time PCR and corrected for the reference gene GAPDH (C). Caspase-3 activation, Bim protein expression and BAD phosphorylation were examined by western blot (D). (E) Densitometry of (D). Results are means ± SE of three to nine independent experiments. *Treated versus CT, \(P < 0.05 \), ** \(P < 0.01 \), §§siFx versus siCT, § \(P < 0.05 \), §§§ \(P < 0.01 \), by paired t-test.

Figure 4. Oxidative stress activates the intrinsic pathway of apoptosis in frataxin-deficient β-cells. Frataxin was silenced in INS-1E cells by siRNA (siFx). 16 h after transfection the cells were cultured in the absence (CT) or presence of MnTMPyP (25 μM) for 48 h. The cells were then treated or not (CT) with oleate (OL, 0.5 mM) alone or combined with MnTMPyP for 24 h. Cytochrome c release was evaluated by immunofluorescence. (A) Representative pictures are shown. Arrows indicate cells with diffuse cytoplasmic cytochrome c staining. (B) Quantification of A. More than 900 cells were counted in each experiment. Results are means ± SE of five independent experiments. *Treated versus CT, \(P < 0.05 \), #presence versus absence of MnTMPyP; \# \(P < 0.05 \), ### \(P < 0.001 \), by paired t-test.
The intrinsic pathway of apoptosis is activated in iPSC-derived neurons from FRDA patients

To evaluate if frataxin deficiency in neurons also leads to activation of the intrinsic pathway of apoptosis we differentiated fibroblast-derived iPSCs from two FRDA patients and one age-matched healthy individual into neurons. Because heterogeneous responses between clones have been reported (25), two clones were examined per individual. As described by Hick and coworkers (25), fibroblasts from FRDA patients (FA1 and FA2)
had expanded GAA repeats (800/600 and 900/400, respectively), whereas the control fibroblasts (CT) had normal GAA repeats (<20). The number of repeats was unstable during reprogramming, but stabilized in iPSC clones and during differentiation. Both FRDA iPSCs clones retained pathological GAA repeat expansions, ranging between 400 and 1000 triplets, with frataxin levels reduced at all stages to 20–30% of that of control cells (25). The neuronal phenotype of iPSC-derived neurons was confirmed by morphology, expression of specific neuronal markers such as β-III-tubulin and microtubule-associated protein 2 (MAP2), and their ability to generate sodium currents, action potentials and calcium transients (25). FRDA iPSC-derived neurons were shown to have impaired mitochondrial membrane potential and delayed functional maturation (25). We confirmed that differentiated neurons from both FRDA patients showed significantly reduced frataxin protein levels as compared with control cells (Fig. 6A and E). These FRDA neurons showed significantly enhanced cleavage of the initiator caspase-9 and the effector caspase-3 (Fig. 6A–C), demonstrating that the intrinsic pathway of apoptosis is activated. In keeping with the observations in β-cells, BimL and BimS expression was increased (Fig. 6D). In one of the four patient clones (FA 1A) caspase activation and Bim induction were not observed, in keeping with reported inter-clonal variation (25). Taken together, these results point to activation of the intrinsic pathway of apoptosis in neurons through Bim induction as occurs in β-cells.

Discussion

FRDA is a neurodegenerative disease caused by decreased frataxin expression. The main cell types affected by frataxin deficiency are neurons from the dorsal root ganglia and dentate nucleus of the cerebellum, cardiomyocytes and pancreatic β-cells (3,10,38). Frataxin deficiency leads to β-cell dysfunction and death (10). Reduced mitochondrial membrane potential, decreased ATP production and insulin secretion contribute to the functional β-cell defect (10). Here, we show that frataxin deficiency in β-cells induces mitochondrial oxidative stress and activates the intrinsic pathway of apoptosis. Similar to observations in other cellular models of FRDA using RNA interference or frataxin knockout mouse cells (17,39,40), frataxin silencing in β-cells enhanced mitochondrial SOD2 expression, mitochondrial hydrogen peroxide production, hydroxyl radical formation and increased mitochondrial GSH oxidation (Fig. 1). This is probably the consequence of respiratory chain dysfunction. Respiratory chain complexes I, II and III need Fe–S clusters as cofactors for proper function. Reduced Fe–S cluster formation, as a consequence of frataxin deficiency, leads to impaired electron flow and premature electron leakage from the respiratory chain. These electrons react with molecular oxygen to form superoxide, which will in turn generate hydrogen peroxide via SOD2. In the presence of iron, hydrogen peroxide is transformed in the highly toxic hydroxyl radical via the Fenton reaction (41), leading to cell damage and death. Our data demonstrate that oxidative stress causes β-cell demise because chemical and genetic approaches to scavenge ROS protect frataxin-deficient cells from apoptosis (Fig. 2).

Cell death in frataxin deficiency occurs through the intrinsic pathway of apoptosis (Fig. 3) and could be prevented by ROS scavenging (Fig. 4). The pro-apoptotic Bcl-2 family members Bad, Bim and BimL are the key mediators of the intrinsic pathway of apoptosis (Fig. 5). Palomo and colleagues (17) previously suggested that shRNA-mediated frataxin silencing in neuron-like cells induces p53-mediated upregulation of Puma and Bax and caspase-3 activation. We confirmed that frataxin silencing in β-cells induces Puma expression, but silencing this BH3-only activator was not cytoprotective suggesting that the p53-Puma pathway does not play a role in apoptosis in frataxin-deficient β-cells. Importantly, we demonstrate here that the intrinsic pathway of apoptosis is also activated in iPSC-derived neurons from FRDA patients and thus identify a common mechanism of cell death in two key cell types in FRDA (Fig. 6). Patient iPSC-derived cells are an invaluable model to gain pathogenic insight and test the impact of novel therapeutics. The differentiation of iPSCs into β-cells remains challenging, with current protocols requiring transplantation into mice in order to achieve in vivo β-cell maturation (42).

After the identification of oxidative stress as a potential major contributor to FRDA pathology, a variety of antioxidants and stimulants of mitochondrial function were considered as possible therapeutics. Coenzyme Q derivatives, such as idebenone, known for their ability to participate in the electron transport chain and their antioxidant properties, were tested in preclinical and clinical studies, but they did not demonstrate efficacy in modifying disease progression (43). Oxidative damage is also strongly implicated...
in the pathogenesis of other neurodegenerative diseases such as Huntington’s disease, amyotrophic lateral sclerosis, Alzheimer’s disease, stroke and Parkinson’s disease. Clinical trials using antioxidant molecules such as vitamin E and C and coenzyme Q derivatives also failed to demonstrate efficacy to prevent or treat oxidative stress damage in those diseases (44,45). It has been proposed that cAMP/PKA signaling modulates redox homeostasis in β-cells (46). Here we demonstrate that forskolin treatment normalizes mitochondrial oxidative status and prevents activation of the intrinsic pathway of apoptosis in frataxin-silenced β-cells and primary islets (Fig. 7). The incretin analogs exendin-4 and [D-Ala²]-GIP were also protective in frataxin-deficient rat and human islets. It is of great interest that forskolin also tended to protect FRDA patients’ iPSC-derived neurons from apoptosis (Fig. 7). In frataxin-deficient cells the forskolin- and incretin-mediated protective effect may be the consequence of reduced oxidative stress, but additional cAMP-mediated ROS-independent protective mechanisms may also play a role. We did not evaluate the impact of forskolin treatment on mitochondrial function of frataxin-deficient cells, but it is conceivable that the normalization of mitochondrial oxidative status decreases mitochondrial damage and improves mitochondrial function.

Taken together our results suggest that cAMP induction by incretin analogs may have therapeutic potential to prevent β-cell and neuronal cell loss in FRDA. GIP and GLP-1 receptors are expressed throughout the brain, and the GLP-1 analogs exendin-4 and liraglutide have been shown to cross the blood–brain barrier (47). Their therapeutic potential is being considered in amyotrophic lateral sclerosis (48), Alzheimer’s (49), Parkinson’s (50) and Huntington’s disease (51) and stroke (52,53). This preclinical study identifies incretin analogs as a potential new treatment for FRDA, where they may be useful to prevent/delay neurodegeneration and diabetes.

![Figure 6.](https://academic.oup.com/hmg/article-abstract/24/8/2274/652344)
Forskolin reduces oxidative stress and prevents activation of the intrinsic pathway of apoptosis in frataxin-deficient β-cells and iPSC-derived neurons from FRDA patients. Mitochondrial H$_2$O$_2$ production was measured using the H$_2$O$_2$ fluorescent sensor HyPer targeted to the mitochondria (HyPerMito). Frataxin was silenced (siFx) or not (siCT) in INS-1E cells. 48 h after transfection the cells were treated or not (CT) for 24 h with 20 μM forskolin (FK). HyPer oxidation, measured by fluorescence count reader (F475/F427), was used as indicative of mitochondrial H$_2$O$_2$ production. The results are means ± SE of seven independent experiments (A). Mitochondrial glutathione redox state was analyzed using the redox-sensitive fluorescent probe roGFP1 targeted to the mitochondria (mt-roGFP1). Frataxin was silenced or not in INS-1E cells. 16 h after transfection, the cells were treated or not (CT) for 24 h with 20 μM forskolin (FK), and then infected with an adenovirus encoding mt-roGFP1. After infection, the cells were further treated or not with forskolin for 48 h. The cells were then perfused with buffered Krebs solution containing 10 mM glucose and mitochondrial glutathione redox state was assessed by measuring the mt-roGFP1 fluorescence ratio (λ_{ex} 400/480 nm/λ_{em} 535 nm). The results (means ± SE of three independent experiments) were normalized to the maximally reduced and maximally oxidized mt-roGFP1 fluorescence ratio following cell perfusion with DTT and aldrithiol, respectively (B). INS-1E (C–F) and dispersed rat islet cells (G and H) were transfected with siCT or siFx and 48 h later treated or not (CT) for 24 h with brefeldin (BR, 0.1 μM/ml) alone or combined with forskolin (FK, 20 μM). Western blots for caspase-3 activation and Bad phosphorylation were used to assess apoptosis in INS-1E cells. (C) Representative blot and (D and E) densitometry of the western blots (n = 4 independent experiments). P-Bad was normalized to total Bad and cleaved caspase-3 to α-tubulin. In dispersed rat islet cells, apoptosis was examined by Hoechst 33342/propidium iodide staining (G). Bim mRNA expression in INS-1E cells (F) and dispersed islets (H) was measured by real-time PCR and corrected for the reference gene GAPDH. Results are means ± SE of four independent experiments. iPSC-derived neurons from two FRDA patients (FA 1 and 2), two clones of each (indicated as A and B) (5 and 7 weeks differentiation), were cultured for 72 h in the absence (CT) or presence of 20 μM forskolin (FK). Densitometry of the western blots for caspase-3 cleavage (I and J) and Bim, α-tubulin expression (K and L). Symbols represent independent experiments. All observations for the four clones were pooled in (J) and (L). *Treated versus CT, *P < 0.05, **P < 0.01, ***P < 0.001; # with FK versus without FK, *P < 0.05, **P < 0.01, by ratio t-test.
Materials and Methods

Culture of INS-1E cells, primary rat β-cells, dispersed rat and human islets and iPSC-derived neurons

Clonal rat INS-1E cells (a kind gift from Dr. C. Wollheim, Centre Médical Universitaire, Geneva, Switzerland) were cultured in RPMI 1640 medium as previously described (54, 55). Rat islets were isolated by collagenase digestion from male Wistar rats (Charles River Laboratories) housed and used following the rules of the Belgian Regulations for Animal Care, and with approval of the local Ethical committee. Islets were hand-picked under the stereomicroscope and dispersed. β-cells were purified from the dispersed rat islets by autofluorescence-activated cell sorting (FACSia; BD Bioscience) and cultured as described (56). Human islets from non-diabetic organ donors (n = 5, age 53 ± 3 years, body mass index 26 ± 2 kg/m²) were isolated by collagenase digestion and density gradient purification (57) in Pisa, Italy. The islets were cultured, dispersed and transfected as previously described (58). The mean percentage of β-cells of the human islet preparations was 53 ± 6%, as determined by insulin immunofluorescence (59). For neuronal differentiation, iPSCs from two FRDA patients and one age-matched unrelated control individual were treated for 14 days with 500 ng/ml of Noggin (60). To allow the formation of neurospheres, the cells were then cultured in NBN media (neurobasal media A + B27 + N2) supplemented with FGFs (both 20 ng/ml; Peprotech, UK). Neuronal precursors were maintained and propagated as neurospheres as previously described (25). For neuronal differentiation, neurospheres were plated on laminin-coated glass coverslips in NBN media (without proliferating factors) containing brain-derived neurotrrophic factor (BDNF) and neurotrophin 3 (NT3) (100 ng/ml; Peprotech, UK). Medium was replaced every 2–3 days. These cells have been characterized in detail by Hick et al. (25). Differentiated neurons were collected after 2, 5 or 7 weeks differentiation.

Cell treatment and apoptosis assays

INS-1E cells were exposed to 0.5 mm oleate in RPMI 1640 medium containing 1% fetal bovine serum (FBS) and 0.75% FFA-free bovine serum albumin (BSA) (10). Primary β-cells and dispersed rat and human islet cells were exposed to 0.5 mm oleate in Ham’s F-10 medium without serum and 1% charcoal-adsorbed BSA (10, 61). The oleate stock solution (50 mm) was prepared by dissolving oleate (sodium salt, Sigma) in 90% ethanol (10, 62, 63). The chemical ER stressor brefeldin-A (an inhibitor of ER-to-Golgi vesicle transport) was used at a concentration of 0.1 μg/ml (10). The cell-permeable superoxide dismutase (SOD)/catalase mimetic (31–33) manganese (III) tetrakis[1-methyl-4-pyridyl] porphyrin pentachloride (MnTMPyP, Alexis Biochemicals) was used at a concentration of 25 μM, 4,5-dihydroxybenzene-1,3-disulfonate (Tiron, Sigma-Aldrich) at a concentration of 12.5 μM, the adenyllyl cyclase stimulator forskolin at a concentration of 20 μM, the GTP-1 analog exendin-4 and the GIP mimetic [D-Ala²]-GIP at concentrations of 50 and 100 nM, respectively (10). In all treatments the control condition contained a similar concentration of the vehicle (ethanol, dimethyl sulfoxide or PBS).

Apoptosis was determined by fluorescence microscopy after Hoechst 33342 (5 μg/ml; Sigma-Aldrich) and propidium iodide (5 μg/ml) staining (10), western blotting for cleaved caspase-3 (10, 61) and apoTox-Glo Triplex Assay (Promega) according to the manufacturer’s instructions.

Analysis of H₂O₂ levels using HyPer vectors

The pHyPerMito and pHyPerCyto eukaryotic expression vectors (Evrogen, Moscow, Russia) were used for mitochondrial and cytoplasmic expression of the fluorescent H₂O₂ sensor protein HyPer, as previously described (64). Stable clones of INS-1E cells expressing these vectors (INS-1E-HyPerMito and INS-1E-HyPerCyto), verified by fluorescence measurements, were transfected with a siRNA targeting rat frataxin (siFx). 48 h after transfection the cells were treated or not for 24 h with oleate or brefeldin. Mitochondrial or cytosolic H₂O₂ production was detected as HyPer oxidation, measured by fluorescence (475/427 nm excitation and 520 nm emission) in a Victor 1420 Multilabel Counter fluorescence reader (Perkin Elmer). The data were expressed as mean values of the F475/F427 ratio.

Estimation of hydroxyl radical formation

Hydroxyl radical formation was estimated using the fluorescent dye HFH (Life Technologies) according to the manufacturer’s instructions.

Mitochondrial glutathione redox state measurement

The mitochondrial glutathione redox state was analyzed using the redox-sensitive fluorescent probe roGFP1 targeted to the mitochondria (mt-roGFP1). INS-1E cells were plated in glass coverslips and transfected with control or frataxin siRNA. Sixteen hours after transfection, the cells were treated or not for 24 h with 20 μM forskolin, and then they were infected with an adenovirus encoding mt-roGFP1 under the control of the cytomegalovirus promoter (multiplicity of infection ~25–50). After infection the cells were further cultured for 48 h in the presence or absence of 20 μM forskolin. After culture, the coverslips were mounted at the bottom of a 37°C temperature-controlled chamber placed on the stage of an inverted microscope equipped with a 40× objective. Cells were perfused with bicarbonate-buffered Krebs solution containing 10 mm glucose at a flow rate of ~1 ml/min. Cell fluorescence ratio (Exitation 400/480 nm/Emission 535 nm) was measured every 30 s. After 20 min of perfusion, the cells were perfused with 10 μM dithiothreitol (DTT) to maximally reduce roGFP1 (set to 0%), followed by 100 μM aldrithiol to maximally oxidize it (set to 100%). The fluorescence ratio was expressed in percentage of the maximally reduced and the maximally oxidized forms of roGFP1 (normalized fluorescence ratio).

Catalase activity measurement

Frataxin was knocked down by siRNA (see below) in control INS-1E cells or INS-1E cells stably overexpressing catalase inside the mitochondria. Catalase enzyme activity was measured by ultraviolet spectroscopy in control and catalase overexpressing cell lysates. The decomposition of H₂O₂ was monitored at 240 nm as previously described (65). One unit of catalase activity was defined as 1 μM of H₂O₂ per minute at 25°C.

RNA interference

INS-1E cells, FACS-purified primary rat β-cells and dispersed rat and human islet cells were transfected overnight with 30 nM control siRNA (Qiagen) or siRNAs targeting rat or human frataxin, rat DPS, Bim, Puma or Bad (all from Invitrogen), using Lipofectamine RNAiMAX (Invitrogen). The siRNAs targeting frataxin (10), DPS (66), Puma (67), Bim (68) and Bad (69) have been previously validated in β-cells. siRNA–lipid complexes were formed in
Immunofluorescence
Cytochrome c release was examined by immunofluorescence (66,67). INS-1E cells plated on poly-lysine coated coverslips were transfected with control or frataxin siRNA. Sixteen hours after transfection cells were cultured for 48 h in the presence of 25 μM MnTMPyP and then treated for 24 h with oleate alone or combined with MnTMPyP. The cells were fixed with 4% formaldehyde (70), permeabilized with 0.1% Triton X-100, blocked with 3% FBS and incubated overnight at 4°C with mouse anti-cytochrome c (1:500, BD Biosciences). Alexa Fluor 488 goat anti-mouse IgG (H + L) (1:500, Molecular Probes, Invitrogen) was used as secondary antibody. Nuclei were stained with Hoechst 33342 and the slides analyzed by inverted fluorescence microscopy (Zeiss Axiovert 200, Oberkochen, Germany).

mRNA extraction and real-time PCR
mRNA was isolated from INS-1E cells, primary rat β-cells and dispersed rat islet cells using the Dynabeads mRNA DIRECT kit (Invitrogen) and reverse transcribed as previously described (63,71). Real-time polymerase chain reaction (PCR) was performed using Rotor-Gene SYBR Green on a Rotor-Gene Q cycler (Qiagen) (72), or using Q SYBR Green Supermix (BIO-RAD) on a MyiQ2 instrument Single Color (BIO-RAD) (59,63). Gene expression was calculated as copies/ml using the standard curve approach (73). Standards were prepared in conventional PCR. Expression values were corrected for the expression of the reference gene GAPDH that was not modified by the experimental conditions. The primer sequences are provided in Supplementary Material, Tables S3 and S4.

Western blotting
INS-1E cells, dispersed rat islet cells or iPSC-derived neurons were lysed in Laemmli buffer. Total extracts were resolved in 10–15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose membrane. Immunoblotting was performed using antibodies against frataxin (Santa Cruz),cleaved caspase-3 (Cell Signaling), cleaved caspase-9 (Cell Signaling), α-tubulin (Sigma-Aldrich), total Bim (Cell Signaling), human P-Bad (Ser112, Cell Signaling), total Bad (Cell Signaling), Bcl-XL (Cell Signaling) and Bcl-2 (Cell Signaling). Protein detection was done using horseradish peroxidase-conjugated secondary antibodies and SuperSignal West Femto chemiluminescence revealing reagent (Thermo Scientific). Immunoreactive bands were detected with a ChemiDoc XRS+ system and Image Lab software (BIO-RAD) (10). Protein levels were corrected for levels of α-tubulin.

Statistical analysis
Data are shown as means ± SE. Non-normally distributed variables were log-transformed before statistical testing. Comparisons between groups were made by ANOVA followed by two-sided Student’s paired t-test with Bonferroni correction for multiple comparisons. Comparisons between iPSC-derived neurons from control and FRDA patients were made by unpaired t-test. A P value <0.05 was considered statistically significant.

Supplementary Material
Supplementary Material is available at HMG online.

Acknowledgements
We thank Isabelle Millard, Michael Pangerl, Nathalie Pachera, Stephanie Mertens and Anyishai Musuaya from the ULB Center for Diabetes Research for excellent technical support, and the Flow Cytometry Facility of the Erasmus campus of the ULB and Christine Dubois for β-cell sorting. B.A. is fellow of the FRIA-FNRS and J.-C.J. is Research Director of the FNRS.

Conflict of Interest statement. The authors declare no conflict of interest.

Funding
This work was supported by the Fonds Erasme Olivia De Clercq, Belgium; the Phillip Bennett and Kyle Bryant Translational Research Award of the Friedreich Ataxia Research Alliance, USA; the European Union (projects BetaBat and EFACTS in the Framework Programme 7 of the European Community); Actions de Recherche Concertée de la Communauté Française (ARC) and Fonds National de la Recherche Scientifique (FNRS), Belgium.

References
12. Schulz, J.B., Dehmer, T., Schols, L., Mende, H., Hardt, C., Vorgerd, M., Burk, K., Matson, W., Dichgans, J., Beal, M.F.

46. Li, N., Li, B., Brun, T., Deffert-Delbouille, C., Mahiout, Z., Daali, Y., Ma, X.J., Krause, K.H. and Maechler, P. (2012) NADPH oxidase NOX2 defines a new antagonistic role for reactive
oxygen species and cAMP/PKA in the regulation of insulin secretion. Diabetes, 61, 2842–2850.

