An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome

S. Paige Taylor1,†, Michaela Kunova Bosakova2,†, Miroslav Varecha2, Lukas Balek2, Tomas Barta3, Lukas Trantirek4, Iva Jelinkova2, Ivan Duran5,6,7, Iva Vesela8, Kimberly N. Forlenza5,6,7, Jorge H. Martin5,6,7, Ales Hampi3, University of Washington Center for Mendelian Genomics9, Michael Bamshad10,11,12, Deborah Nickerson12, Margie L. Jaworski13, Jieun Song14, Hyuk Wan Ko14, Daniel H. Cohn5,15,16, Deborah Krakow1,5,15,* and Pavel Krejci2,5,17

1Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA, 2Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic, 3Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic, 4Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic, 5Department of Orthopaedic Surgery, 6Department of Human Genetics, 7Department of Obstetrics and Gynecology, Orthopaedic Institute for Children, University of California Los Angeles, Los Angeles, CA 90095, USA, 8Institute of Experimental Biology, Masaryk University, 62500 Brno, Czech Republic, 9University of Washington Center for Mendelian Genomics, University of Washington, Seattle, WA 98195, USA, 10Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA, 11Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA 98105, USA, 12Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA, 13Virginia Commonwealth University, Richmond, VA 23298, USA, 14College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Korea, 15International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles, CA 90095, USA, 16Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA and 17International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic

*To whom correspondence should be addressed at: Deborah Krakow, David Geffen School of Medicine, BSRB, 615 Charles E. Young Drive S, Room 410, Los Angeles, CA 90095, USA. Email: DKrakow@mednet.ucla.edu

Abstract

The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities.
Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homoyzgy for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.

Introduction

Mammalian skeletal development is a carefully orchestrated and precisely-timed sequence of events that includes embryonic limb bud initiation and outgrowth, mesenchymal specification and condensation, cartilage differentiation and bone ossification, and finally, postnatal growth and maintenance (1). This complex process is regulated by a variety of integrated molecular mechanisms, many of which have been revealed by identifying the genes associated with skeletal dysplasia phenotypes. In many instances unappreciated components not previously known to be involved in skeletogenesis have been identified, providing valuable insights into the underlying biology of skeletal development.

The short rib polydactyly syndromes (SRPs or short-rib thoracic syndromes, SRTD, MIM 208500) are a group of autosomal recessive, perinatal-lethal disorders that present with profound effects on the skeleton that include a long narrow thorax, shortened and hypoplastic long bones, and polydactyly. Other organs are also frequently affected, including the brain, heart, kidneys, pancreas, intestines and genitalia. Based on clinical and radiographic phenotypes, SRPs have historically been subdivided into types I through IV but as the associated genes are identified, the nomenclature has continued to evolve (2). SRPs share genetic and phenotypic features with other established skeletal ciliopathies, including asphyxiating thoracic dysrrophy (Jeune syndrome), Ellis-van Creveld dysplasia, and Sensenbrenner syndrome, consistent with the notion that these phenotypes constitute a continuous spectrum of disease (3). Genetic studies demonstrating allelic heterogeneity among these disorders support this concept.

SRPs are caused by mutations in genes involved in the function of primary cilia, microtubule-based projections on the surface of nearly every cell that receive and integrate signalling inputs. Primary cilia function depends on intraflagellar transport (IFT), the bi-directional transport system that shuttles ciliary components, such as the tubulin building blocks, receptors, and signalling components, into and out of this organelle. The IFT machinery is composed of two distinct complexes: the kinesin-2-driven anterograde IFT-B complex, which moves components from the ciliary base to the tip, and the dynein-2-driven retrograde IFT-A complex, which transports components from the tip to the base. Mutations in genes encoding IFT-A and IFT-B components cause SRPS, including: IFT80 (MIM 611263) (4,5), WDR19 (MIM 614376) (6), WDR34 (MIM 615633) (7,8), WDR35 (MIM 614091) (9,10), IFT140 (MIM 266920) (11,12), IFT172 (MIM 615630) (13), WDR60 (MIM 615462) (14), TTC21B (MIM 612014) (15), DYNC2H1 (MIM 603297) (16,17), DYNC2LI1 (18), CEP120 (19), KIAA0586 (20,21).

ICK is a MAP-like kinase belonging to the ancient yet poorly understood family of the tyrosine kinase gene v-ros cross-hybridizing kinase (RCK) serine-threonine kinases. The RCK kinases, which include male germ-cell associated kinase (MAK) and MAPK/MAK/MRK-overlapping kinase (MOK), are highly conserved and have been implicated in cilia biology. ICK was first localized in the intestinal crypt, where it regulates proliferation by promoting G1 cell cycle proliferation (22), and has since been shown to be ubiquitously expressed. ICK is a substrate of cell cycle-related kinase (CCRK), a negative regulator of ciliogenesis and cilia length (23), and ICK homologs in Caenorhabditis elegans (dyf-5) (24), Chlamydomonas reinhardtii (LF4p) (25), and Leishmania mexicana (LmxMPK9) (26), are also negative regulators of cilia length (24). Loss-of-function mutations in ICK, p.R272Q and p.G120C, cause endocrine-cerebro-osteodyplasia (ECO) (MIM 612651), an autosomal recessive, neonatal-lethal disorder similar to SRPS (27,28). Two recently characterized ICK-knockout mouse models recapitulate several phenotypic findings in ECO syndrome and show findings similar to SRPS that include polydactyly, shortened long bones, and an underdeveloped skeleton (29,30). In this study, we identify and characterize a novel inactivating mutation in ICK that produces SRPS and disrupts the architecture of the cartilage growth plate, alters hedgehog signalling, and further expands our understanding of the underlying biology that produces SRPS.

Results

Homozgyosity for an inactivating mutation in ICK produces SRPS

To identify additional SRPS genes, exome sequencing was carried out under an approved human subjects protocol in a cohort of SRPS cases. In one individual (International Skeletal Dysplasia Registry reference number R05-024A, Figure 1A) we identified homozgyosity for a point mutation, c.238G>A (NM_014920), predicting the amino acid substitution p.E80K in Intestinal Cell Kinase (ICK). The affected male was initially identified by prenatal ultrasound with features of a severe skeletal dysplasia associated with multiple congenital abnormalities, including hydrocephalus, genital abnormalities and craniofacial dysmorphism, and delivered at 38 wks gestation. He was intubated for respiratory insufficiency but succumbed within a few hours after birth. Radiographs showed a long narrow thorax with short ribs, elongated clavicles, rhizomelia, mesomelia with bending, a hypoplastic ileum and polydactyly (Figure 1B–D, Table 1) findings consistent with SRPS. Homozgyosity for a different ICK missense mutation was characterized in the original case of ECO (27), demonstrating that these are allelic phenotypes.

ICK residue E80 lies within the highly conserved serine/threonine kinase domain and forms a direct bond with ATP as visualized by structural modelling (Figure 2A and B). In silico substitution of the negatively charged E80 for the positively charged K80 disrupts the electrostatic potential at the ICK-ATP interface, likely compromising ATP-binding (Figure 2B) and kinase activity. To test this prediction, we performed an in vitro cell-free kinase assay using purified ICKWT or ICKE80K and myelin basic protein (MBP) as the substrate. Phosphorylation of MBP...
was achieved with ICK WT but not with ICK E80K, indicating that the p.E80K substitution abrogates kinase activity (Figure 2C).

Having established that ICK E80K is kinase-dead, we next asked if this would prevent activation of the protein. Activation of ICK is regulated by dual-phosphorylation of its T157-D-Y159 motif: auto-phosphorylation of Tyr159 achieves basal activation and CCRK-mediated phosphorylation of Thr157 achieves full activation (31). Because Tyr159 phosphorylation reflects the basal ICK activity, it can be used as a surrogate to estimate the levels of ICK activation (32). Figure 2D shows that ICK E80K was unable to auto-phosphorylate at Tyr159, while ICK R272Q found in ECO syndrome (27) retained approximately one third of Tyr159 phosphorylation compared to ICK WT. We conclude that p.E80K is a loss-of-function mutation differing from ICK R272Q.

ICK E80K demonstrates altered subcellular localization

Previous studies have established that ICK functions as both a cytoplasmic and nuclear kinase, suggesting that it shuttles between these two compartments (27,32,33). Immunohistochemistry performed on HEK293T cells revealed significant differences between ICK WT and ICK E80K localization (Figure 3A). While ICK WT localized evenly between the nucleus and cytosol, ICK E80K localized predominantly, but not exclusively, to the nucleus. The ECO mutant ICK R272Q was almost exclusively cytosolic as described before (27,32) (Figure 3B). Although we do not know the reason for this difference, it is important to note that different residues are mutated, the substituted amino acids have different charge consequences, and the ECO mutation only partially impaired ICK activity when compared to the total loss of function mutation p.E80K (Figure 2C and D). Interestingly, Arg272 is a part of the conserved 269PKKRP273 motif which serves as a nuclear localization sequence (NLS) necessary for tagging ICK for nuclear import (32).

ICK kinase activity regulates ciliogenesis and ciliary localization

To investigate ICK function during ciliogenesis, we expressed ICK WT, ICK E80K and ICK R272Q in NIH3T3 mouse embryonic fibroblasts. Overexpression of ICK WT inhibited cilia formation in these cells, similar to recently published data (29). By contrast, weaker overexpression of ICK WT inhibited ciliogenesis to a lesser degree, suggesting that the level of ICK activity correlates inversely with ciliogenesis (Figure 4A–C). While strong overexpression of ICK E80K inhibited ciliogenesis to a lesser degree, suggesting that the kinase activity of ICK is required to negatively regulate ciliogenesis. In line with that, cells weakly overexpressing partially inactive ICK R272Q formed cilia with frequency between ICK WT and ICK E80K (Figure 4A). We also observed that cells expressing ICK WT had shorter cilia than controls, and that expression of ICK E80K produced longer cilia as compared with both the ICK WT- or ICK R272Q-transfected cells and the control (Figure 4G). The cilia in the ICK E80K mutant cells were longer, with greater variability in length, than in ICK WT cells, suggesting that ICK kinase activity correlates inversely with the cilia length (Figure 4G). Concordant with these findings, longer cilia were also observed in cultured cells lacking ICK due to RNAi knockdown or in cells from the Ick knockout mouse (29). Localization within the cilia also differed between the ICK variants; ICK E80K and ICK R272Q predominantly localized to the tip of the cilia compared with ICK WT, which localized almost exclusively to the cilia base (Figure 4D and E). Interestingly, only a minority of ICK R272Q-transfected cells localized the transgenic ICK to cilia, which was in contrast with ICK WT and ICK E80K cells where the majority of cilia were positive for ICK (Figure 4F). R272Q thus impairs ICK ability to localize to both the nucleus and cilia. Altogether, the loss of kinase activity in ICK E80K altered...
its subcellular localization, ciliogenesis, cilia length, and distribution within primary cilia.

Cilia from R05-024A fibroblasts are long and twisted

We further addressed the ciliary architecture in patient-derived fibroblasts. R05-024A fibroblasts produced longer cilia, on average, compared to control fibroblasts (Figure 5A–C) in agreement with the ICK expression studies in NIH3T3 cells (Figure 4G). Scanning electron microscopy analysis showed that cilia from R05-024A fibroblasts appeared thin and twisted as compared to control fibroblast cilia (Figure 5D). The evidence obtained from both R05-024A primary fibroblasts and ectopic expression studies in NIH3T3 cells demonstrated that kinase-inactive ICKE80K produced elongated cilia in agreement with previous studies on ICK mutations (29,34).
Impaired GLI3 processing and Hedgehog (Hh) signalling in R05-024A fibroblasts

To investigate whether the ICK mutation impaired Hh signalling, we stimulated fibroblasts from R05-024A and controls with smoothened agonist (SAG) (35) and quantified the resulting amounts of GLI3 full-length (GLI3FL) and repressor (GLI3R) as a readout for GLI3 activity. In the absence of pathway stimulation, GLI3FL was normally processed into GLI3R, as demonstrated in control fibroblasts (Figure 6A). R05-024A fibroblasts demonstrated a higher baseline ratio of GLI3FL to GLI3R amounts as compared with control fibroblasts (Figure 6A). With SAG stimulation, control fibroblasts demonstrated an increased GLI3FL to GLI3R ratio, indicative of pathway activation, yet in R05-024A fibroblasts there were negligible changes in this ratio upon SAG treatment. In R05-024A fibroblasts, there was markedly less GLI3R relative to GLI3FL and GLI3 activated processing was impaired, suggesting that mutant ICK altered GLI3 activity. To investigate this further, we visualized ciliary localized GLI3 in R05-024A fibroblasts, and found that endogenous GLI3 accumulated to a far greater extent in primary cilia tips in R05-024A relative to control fibroblasts (Figure 6B). Immunohistochemistry in HEK293T revealed differences in localization between ICKWT (nuclear and cytosolic), ICKE80K (primarily nuclear) and ICKR272Q (almost exclusively cytosolic). (Student’s t-test, *P< 0.05, **P< 0.01).

Ick^{-/-} mouse cartilage growth plates show abnormalities in architecture and impaired Hh signalling

Because of the profound effect of ICK mutations on skeletal development in humans and mice, we investigated the localization of ICK in the distal femoral cartilage growth plate of P1 VT mice. Histologic analyses performed with ICK antibody showed ubiquitous ICK expression, with particularly higher expression in the proliferating and prehypertrophic zone chondrocytes, and relatively less expression in hypertrophic chondrocytes (Supplementary Material, Fig. S1). Minimal expression was seen in the perichondrium and primary spongiosa (Supplementary Material, Fig. S1). Similar to previous findings in transfected cells, the intracellular distribution of ICK was both cytoplasmic and nuclear (Supplementary Material, Fig. S1). Because the cartilage growth plate from case R05-024A was not available, we examined growth plate cartilages of the Ick^{-/-} animals (29). Picrosirius red staining of the control and Ick^{-/-} growth plates revealed marked disruption of growth plate architecture, with a shortened proliferative zone and poor column formation in the hypertrophic zone, with fewer cells contributing to the hypertrophic chondrocyte columns in Ick^{-/-} compared to Ick^{+/+} growth plates (Figure 7A and B). In addition, proliferating and hypertrophic chondrocytes were subjectively smaller with less cytoplasm and diminished extracellular matrix between cells, leading to the appearance of increased cellularity throughout the growth plate (Figure 7A and B). The primary spongiosa also showed diminished numbers of discrete trabeculae (Figure 7A and B) and, similar to the radiographs in the affected neonate and the Ick^{-/-} skeletal preparations (29), there was bending at the mid-diaphyseal portion of the humeral bone (Figure 7A), as well as other bones in the appendicular skeleton (data not shown). The proliferative and hypertrophic zone alterations suggest defects in both cellular proliferation and chondrocyte differentiation, and the hypercellularity may result from an effect on extracellular matrix synthesis due to loss of Ick.

Ihh is a well-recognized morphogenetic organizer of the growth plate cartilage, which is produced by a narrow zone of early hypertrophic chondrocytes and is critical for proper chondrocyte progression from proliferating to hypertrophic stages (36). The in situ hybridization analysis of Ihh expression in the growth plates of E18.5 Ick^{-/-} embryos showed a normal distribution when compared to Ick^{+/+} (Figure 7C). This contrasted Gli1 and Ptc1 expression, which was virtually absent in
proliferating chondrocytes and adjacent perichondrium in the Ick\(^{-/-}\) growth plates, demonstrating defective responsive to Ihh within the growth plate (Figure 7C).

Altered ERK MAP kinase activity in R05-024A fibroblasts and Ick\(^{-/-}\) growth plate chondrocytes

Cartilage growth plate analyses showed a decreased number of proliferating cells and ICK was highly expressed in the proliferative zone. This suggested that ICK could be involved in the regulation of chondrocyte proliferation and differentiation. Because it has been well established that elevated ERK activation inhibits chondrocyte proliferation, induces premature senescence and disturbs chondrocyte differentiation (37,38), we tested the hypothesis that ERK activity might be altered in R05-024A cells. We found increased basal activating phosphorylation of ERK and other members of an ERK signalling module such as C-RAF and MEK in R05-024A fibroblasts compared with control cells (Figure 8A). Chemical inhibition of ERK pathway in R05-024A fibroblasts did not significantly shorten cilia, suggesting that increased ERK activity is not responsible for the long cilia seen in R05-024A fibroblasts (Figure 8B and C). We next evaluated whether a similar increase in ERK activation occurs in the growth plates of Ick\(^{-/-}\) mice. Femoral and tibial growth plates were harvested and analyzed for ERK activating phosphorylation by western blot. In contrast with the R05-024A fibroblast data, we found less ERK phosphorylation in both femurs and tibias isolated from Ick\(^{-/-}\) mice, demonstrating different ERK regulation by ICK in fibroblasts and growth plate chondrocytes (Figure 8D).
Discussion

Here we show that homozygosity for a kinase-inactivating mutation in ICK, p.E80K, causes short rib polydactyly syndrome (SRPS). Functional characterization of the p.E80K mutation revealed total loss of kinase activity, malformed and elongated primary cilia, abnormal growth plate morphology and impaired GLI3 processing coupled with defective expression of GLI1 and PTCH1. Homozygosity for a different ICK missense mutation, p.R272Q, produced ECO syndrome, a distinct disorder delineated in the Old Order Amish population (27). Shared phenotypic findings between the two disorders include hydrocephalus, fused ears, genitourinary abnormalities, shortened long bones, bowing of bones in the mesomelic segment and polydactyly.

Residue E80 of ICK occurs within a highly conserved domain that is required for ATP binding; we show that the mutation of this residue abolished kinase activity, likely by destabilizing the ATP-binding pocket. We demonstrated loss of kinase activity in ICK\(^{E80K}\); first, purified ICK\(^{WT}\), but not ICK\(^{E80K}\), was able to phosphorylate MBP in an in vitro kinase assay; second, phosphorylation of Tyr159, the site of ICK auto-phosphorylation that reflects basal activation, was detected in lysates from cells expressing ICK\(^{WT}\), limited down to one third in ICK\(^{R272Q}\), but was nearly absent in ICK\(^{E80K}\). These findings suggest that the extent of ICK kinase activity influences skeletogenesis, distinguishing the phenotypic consequences between ECO and SRPS mutations.

We also showed that the kinase activity of ICK is important for both cilia structure and ciliogenesis. Both patient-derived primary fibroblasts and NIH3T3 cells expressing ICK\(^{E80K}\) produced longer cilia than their respective controls. Additionally, the cilia from patient-derived fibroblasts appeared gaunt and twisted, similar to the structures of cilia from Kif7 mutants Kif7\(^{L130P}\) and Kif7\(^{−/−}\) (39), suggesting that ICK may be required for ciliary structural integrity. Further, expression of ICK inhibited ciliogenesis in NIH3T3 cells in a dose-dependent manner. Notably, ICK\(^{WT}\) was a much stronger inhibitor of ciliogenesis than ICK\(^{R272Q}\), and weakly expressed kinase-dead ICK\(^{E80K}\) did not inhibit ciliogenesis at all, suggesting that the regulation of ciliogenesis by ICK also depends on the level of kinase activity. This is supported by work showing that a form of ICK that is resistant to activation, ICK\(^{T157A}\), is a weak suppressor of ciliogenesis when compared with ICK\(^{WT}\) (23). It is therefore likely that the loss of kinase activity underlies the ciliary phenotype in R05-024A.

Proteins destined for the cilia must enter through the ciliary gate, a structure of the transition zone between the basal body and the ciliary axoneme (40) where a sorting mechanism prevents the entry of membrane vesicles and ribosomes and guards against uncontrolled diffusion of cytosolic proteins into the cilia (41). Figure 4E shows that the majority of ICK\(^{WT}\) expressed in NIH3T3 cells localized to the basal body, whereas the majority of mutant ICK\(^{E80K}\) or ICK\(^{R272Q}\) localized to the cilia tip. A similar pattern of ICK localization was found in cells expressing ICK\(^{WT}\) or the kinase-dead mutants ICK\(^{K33R}\) and ICK\(^{TDY}\) (29). Collectively, this evidence suggests that ICK normally localizes to the basal body and this localization depends on kinase activity. In addition, the observation that ICK\(^{R272Q}\) failed to enter both nucleus and primary cilia in most cells suggests that the NLS motif disrupted by R272Q substitution also tags ICK for targeting to cilia. This resembles the situation in KIF17, where the substitution of the NLS motif by alamines disrupts targeting of KIF17 both to the nucleus and cilia (42).

In mammals, primary cilia are essential for Hh pathway signal transduction (43). In the absence of Hh stimulation, GLI3 predominates in the processed, repressor form (GLI3R). When the Hh pathway is stimulated, processing of GLI3 stops, the GLI3R form diminishes and there is increased active full length GLI3 (GLI3FL). Achieving the proper balance of GLI3FL to GLI3R is essential for digit specification and Hedgehog induced signal activity and requires IFT-mediated trafficking through the primary cilium (44). Imbalance of GLI3FL to GLI3R resulting from deficient IFT underlies the polydactyly seen in many ciliopathies (18). Our finding of impaired GLI3 processing, the resulting increased GLI3FL to GLI3R ratio and impaired GLI1 and PTCH1 expression in R05-024A fibroblasts is consistent with previous studies of other cilia and IFT.
mutants: Ift88 (Tg737Δ2-3b-gal) (45), (Ift88null and Ift88hypo) (46); Sufu (Sufu-/-) (47); C2cd3 (Hty) (48); Dync2h1 (Dnchc2lla) (49); Ptch1 (45); Ift172 (49); Kif3a (49); Fuz (50); Ift122 (Ift1222-/-) (51); IFT52hypo (46); Kif7-/- (52–54). Similar to other genes responsible for cilia function, in the ICKE80K mutant, the imbalance in GLI3FL to GLI3R appears to underlie the polydactyly in R05-024A.

Concomitant to impaired GLI3 processing, the area of ciliary GLI3 accumulation in R05-024A fibroblasts was greater than that of controls, and this observation was exaggerated by SAG treatment. The progressive, SAG-mediated accumulation of GLI3 at the cilia tips of R05-024A fibroblasts suggests some degree of intact anterograde transport but defective unloading at the cilia tip and/or impaired GLI3 export out of the cilia.

Although the exact mechanism of ICK-mediated regulation of cilia function and GLI3 processing remains to be determined, some of its features are beginning to emerge. For example, modulation of ICK activity affected the transport velocities of several IFT components, including those belonging to both anterograde IFT-B (KIF3A, IFT20) and retrograde IFT-A (IFT43) particles, resulting in their accumulation at ciliary tips in ICK-deficient cells (30,34). Interestingly, loss-of-function mutations in the C. elegans ICK homolog DYF-5 resulted in slower IFT and impaired docking and undocking of kinesin motors from IFT particles (24). It is therefore possible that slow IFT and/or impaired undocking of cargo causes GLI3 accumulation at the tips of R05-024A cilia (55).
While we have shown that homozygosity for a mutation ICK produces a SRPS, little is known regarding the expression of this gene in the developing skeleton. Immunohistochemistry of a newborn mouse femur demonstrated robust expression of ICK throughout the growth plate as well as in the periosteum/perichondrium and the primary spongiosum. Strong expression was seen in reserve and proliferating chondrocytes and its zone of expression was more extensive than that of Indian hedgehog (IHH), for which expression is primarily in pre-hypertrophic and early hypertrophic chondrocytes (36). Altered GLI3 processing would be predicted to have downstream consequences in the cartilage growth plate IHH signalling. This hypothesis was confirmed by the lack of expression of Ihh targets Gli1 and Ptc1 in the growth plates of the Ick−/− mouse.

Although we could not examine the histological appearance of R05-024A growth plate cartilage, the growth plate defects in Ick−/− animals shared some resemblance to those seen in thanatophoric dysplasia (TD), including a short proliferative zone, small proliferating and hypertrophic chondrocytes, and decreased extracellular matrix (Figure 7A and B) (56), suggesting that the two disorders might share some underlying mechanism. Mutated FGFR3 causes TD via aberrant activation of ERK MAP kinase, which inhibits chondrocyte proliferation, induces premature senescence and disturbs chondrocyte differentiation, leading to a short and disorganized cartilage growth plate cartilage (37,38). In intestinal epithelial cells, suppression of ICK expression via RNA interference results in growth arrest in the G1 phase of the cell cycle, accompanied with induction of
p21Cip1/WAF1 cell cycle inhibitor (22). Similar changes accompany FGFR3/ERK-mediated growth arrest in chondrocytes (57), suggesting the possibility that kinase inactive ICK-E80K causes SPRS in part via ERK-mediated inhibition of chondrocyte proliferation. Interestingly, we found increased basal ERK activation in R05-024A patient fibroblasts compared to control cells. These data were, however, in contrast to the similar analysis carried-out in the growth plates of \textit{Ick} \(-/-\) animals, which showed decreased ERK phosphorylation when compared to control growth plates (Figure 8D). As ERK regulates terminal chondrocyte differentiation (58), the lower ERK activation in \textit{Ick} \(-/-\) samples might be explained by the lack of the hypertrophic chondrocytes in the \textit{Ick} \(-/-\) growth plate cartilage.

Our findings that a mutation in ICK produces a form of SPRS adds to the growing number of genes that when mutated produce this disorder. Many of the previously identified genes are components of the ciliary IFT machinery, while ICK is a serine-threonine kinase. Another gene that is responsible for SPRS is \textit{NEK1} (59), a member of the NIMA related kinases in mammals that regulates ciliogenesis (60). It also is a serine/threonine/tyrosine kinase involved in cell cycle regulation and, similar to ICK, is localized in the centrosome/basal body (61). These data contribute to an emerging theme in SPRS, suggesting that altered signalling through phosphorylation by serine/threonine kinases represent an additional cellular mechanism by which skeletal ciliopathies can be produced.

\section*{Material and Methods}

\subsection*{Exome sequencing}

Under an approved human subjects protocol, DNA was isolated and submitted to the University of Washington Center for Mendelian Genomics for library preparation and exome sequencing. The samples were barcoded, captured using the NimbleGen SeqCap EZ Exome Library v2.0 probe library targeting 36.5Mb of genome, and sequenced on the Illumina GAIIx platform with 50 bp reads. Novoalign was used to align the sequencing data to the human reference genome [NCBI build 37] and the Genome Analysis Toolkit (GATK) (62) was used for post-processing and variant calling according to GATK Best Practices recommendations (63, 64). Average coverage of targeted bases was 49X with 91% of targeted bases covered by at least 10 independent reads. Variants were filtered against dbSNP137, 95 NIEHS EGP exome samples (v.0.0.8), 6503 exomes from the NHLBI Exome Sequencing Project (ESP6500), 1000 genomes (release 3.20120430), and 40 in-house exome samples. Mutations were further compared with known disease-causing mutations in HGMD (2012.2). Variants were annotated using VAX (65) and mutation pathogenicity was predicted using the programs Polyphen (66), Sift (67), Condel (68), and CADD (69). The mutation reported in this work was confirmed by bidirectional Sanger sequencing of amplified DNA. Sequence trace files were aligned and analyzed using Geneious version 7.1.4 created by Biomatters (http://www.geneious.com/).

\section*{Cell culture, plasmid transfection and protein analyses}

Cells were propagated in DMEM media supplemented with 10% FBS and antibiotics (Life Technologies, Carlsbad, CA). For serum starvation, NIH3T3 cells and human fibroblasts were grown in the presence of 0.1% FBS. Cells were transfected using FuGENE6 according to the manufacturer’s protocol (Promega, Madison, WI). pCMV6 vector containing C-terminally FLAG-tagged human ICK was purchased from Origene (Rockville, MD). Site-directed mutagenesis was used to generate the ICKE80K and ICKR272Q mutants according to the manufacturer’s protocol (Agilent
Technologies, Santa Clara, CA). To obtain protein samples from mouse tibiae and femurs, the soft tissue was carefully removed, and the proteins were extracted into the lysis buffer (50 mM TrisHCl pH 7.4, 150 mM NaCl, 0.5% NP40, 1 mM EDTA, and 25 mM NaF with protease inhibitors and 1mM orthovanadate) on ice for 1 h. The samples were cleared by centrifugation (15,000g/10min), their concentrations were equalized using DC Protein Assay (BioRad, Hercules, CA), and the samples were then mixed 1:1 with 2x Laemmli sample buffer. For Western blotting, cells were lysed in Laemmli sample buffer and protein samples were resolved by SDS-PAGE, transferred onto a PVDF membrane and visualized by chemiluminescence (Thermo Scientific, Rockford, IL). SAG (smoothed agonist) and PDK35 were obtained from Tocris Bioscience (Bristol, UK).

The following antibodies were used: FLAG (1:1000; Sigma-Aldrich, St. Louis, MO; F1804); pERK\(^{\text{T202/Y204}}\) (1:1000; Cell Signalling Technology, Beverly, MA; 4370, 4376), ERK (1:1000; Cell Signalling; 9102); actin (1:1000; Cell Signalling; 3700); MEK (1:1000; Santa Cruz Biotechnology, Santa Cruz, CA; sc-219); pMEK\(^{\text{G17} / \text{217}}\) (1:1000; Cell Signalling, 9121); C-RAF (1:1000; BD Biosciences, San Jose, CA; 610151); pC-RAF\(^{\text{S338}}\) (1:1000; Cell Signalling; 9427); GLI3 (1:1000; R&D Systems, Minneapolis, MN; AF3690); pICK\(^{\text{Y159}}\) (1:1000; Abcam, Cambridge, MA; ab138435).

Immunoprecipitation and kinase assay
HEK293T cells transfected with FLAG-tagged ICK for 11 or 24 h were extracted in buffer containing 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.5% NP-40, 0.1% sodium deoxycholate, 2 mM EDTA pH 8.0, 0.5 mM DTT, supplemented with protease inhibitors. Extracts were immunoprecipitated with FLAG antibody and immunocomplexes were collected on protein A/G agarose (Santa Cruz) by overnight rotation at 4 °C. Cell-free kinase assays were carried out with immunoprecipitated ICK or 200 ng of recombinant active ERK2 (Cell Signalling) as a kinase, and 4 μg of recombinant MBP (Sigma) as a substrate, in 25 μl of kinase buffer (50 mM HEPES pH 7.5, 10 mM MnCl2, 10 mM MgCl2, 8 mM β-Glycerophosphate, 1 mM DTT, 0.1 mM Na3VO4, 0.1 mM PMSF) for 30 min at 37 °C in the presence of 1 μCi \(^{32}\)P-ATP (Izotop, Budapest, Hungary). Samples were resolved by SDS-PAGE and visualized by autoradiography.

Immunocytochemistry
Cells were plated on glass coverslips in 24 well plates, transfected with 0.25-2 μg of ICK plasmid for 20h, fixed with 4% paraformaldehyde, blocked with 10% goat serum (Life Technologies) and incubated with the following primary antibodies at 4 °C overnight: FLAG (1:200; Sigma-Aldrich F1804), detyrosinated tubulin (1:1000; Millipore, Billerica, MA; AB3201), acetylated tubulin (1:500; Life Technologies 32-2700), polyglutamylated tubulin (1:300; Adipogen, San Diego, CA; GT335), ARL13B (1:250; Proteintech, Rosemont, IL; 17711-1-AP), pericentrin (1:2500; Proteintech, Rosemont, IL; 17711-1-AP), and incubated with the following primary antibodies at 4 °C overnight: FLAG (1:1000; Sigma-Aldrich F1804); pERK\(^{\text{G17} / \text{217}}\) (1:1000; Cell Signalling Technology, Beverly, MA; 4370, 4376), ERK (1:1000; Cell Signalling; 9102); actin (1:1000; Cell Signalling; 3700); MEK (1:1000; Santa Cruz Biotechnology, Santa Cruz, CA; sc-219); pMEK\(^{\text{G17} / \text{217}}\) (1:1000; Cell Signalling, 9121); C-RAF (1:1000; BD Biosciences, San Jose, CA; 610151); pC-RAF\(^{\text{S338}}\) (1:1000; Cell Signalling; 9427); GLI3 (1:1000; R&D Systems, Minneapolis, MN; AF3690); pICK\(^{\text{Y159}}\) (1:1000; Abcam, Cambridge, MA; ab138435).

Histology and immunohistochemistry
For histology, femurs from newborn mice were fixed by cryo-substitution in methanol for immunohistochemistry (70) and PFA (4%) for histochemistry. Samples were decalcified in 10% formic acid. For immunohistochemistry, paraffin sections were treated with citrate buffer for antigen retrieval and quenched by peroxidase solution. The Histostain Plus kit with DAB as a chromogen (Invitrogen) was used for ICK antibody (1:150; Sigma; HPA001113) staining. Ick\(^{\text{E10K}}\) mice were crossed with Rosa26-FLP1 mice which express FLP1 recombinase under the control of Rosa26. Then the exon 6 deleted ICK null allele, Ick\(^{-/-}\), was generated by crossing this conditional allele with E11a-driven Cre recombinase transgenic mice. Ick\(^{-/-}\) and control mouse sections were stained with picrosirius red for 1h and hematoxylin for contrast.

Scanning electron microscopy
Cells were fixed in 3% glutaraldehyde (Polysciences, Warrington, USA) dissolved in 0.2 M cacodylate buffer (Spri supplies/Structure Probe, West Chester, USA) for 2h at room temperature and postfixed in 1% (v/v) osmium tetroxide (Degussa, Hanau, Germany) for 30 min at 22 °C. The samples were washed in 0.2 M cacodylate buffer, dehydrated in ascending ethanol grade and dried in a Critical Point Dryer (Balzers Union Limited, Balzers, Liechtenstein) using liquid carbon dioxide. Samples were sputtered with gold in Sputter Coater (Balzers) and subsequently examined using scanning electron microscopy (Tescan Orsay Holding, Brno, Czech Republic).

Structural modelling
The three-dimensional models for wild-type and ICK\(^{\text{E80K}}\) were generated by template-based (PDB ID: 3FQJ) homology modelling using the PHYRE software (71). The ICK-specific functional elements, predicted using the NCBI Conserved Domain Database (72), were mapped onto a three-dimensional model of ICK using the CHIMERA software (73). Template based (PDB ID: 3C4W, 1JNK) homology modelling was employed to dock ATP into the ATP-binding site of ICK.

In situ hybridization and quantitative RT-PCR
Limbs from control or Ick\(^{-/-}\)embryo (E18.5) were fixed with 4% PFA in PBS for 3 days, decalcified with 0.5M EDTA in RNAse-free water, and embedded for cryosection. Sections were then hybridized with digoxigenin-labelled antisense RNA probes followed by incubation in anti-Dig antibody conjugated with alkaline phosphatase. Colorimetric reaction was carried out using NBT/BCIP as the substrate. Riboprobes for Gli1, Ihh and Ptc11 were prepared as previously described (74, 75). Total RNA was isolated using RNeasy Mini Kit (Qiagen, Hilden, DE) and transcribed into cDNA using Transcriptor First Strand cDNA Synthesis Kit (Roche, Basel, CH). For quantitative PCR, LightCycler® 480 SYBER Green I Master (Roche) was used together with the following QuantiTect Primer Assays (Qiagen):
References

Supplementary Material

Supplementary Material is available at HMG online.

Acknowledgements

We thank Dobromila Klemova and Ladislav Ilkovics for help with electron microscopy, Miriam Minarikova for technical assistance, and Jakub Pivnicka for help with data analysis.

Conflict of Interest statement. None declared.

Funding

This work was supported in part by NIH grants RO1 AR066124, RO1AR062651, and RO1 DE019567 to D.H.C. and D.K. Sequencing was provided by the University of Washington Center for Mendelian Genomics (UW-CMG) and was funded by the National Human Genome Research Institute and the National Heart, Lung and Blood Institute grant 2UM1HG006493 to Drs. Debbie Nickerson, Michael Bamshad, and Suzanne Leal. The NIH Training Grant in Genomic Analysis and Interpretation T32 HG002536 supported S.P.T. The work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic (KONTAKT LH12004, LH15231), the Grant Agency of Masaryk University (0071-2015), the European Regional Development Fund (FNSA-ICR No.CZ.1.05/1.1.00/02.0123; CEITEC No. CZ.1.05/1.1.00/02.0068) and European Union (ERC-ERA-HumanBridge No.316345). A Career Development Grant CEITEC No. CZ.1.05/1.100/02.0068) and European Union (ICRC-ERA-HumanBridge No.316345). A Career Development Grant.

