Effectiveness of auto-cross-linked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic adhesiolysis: a prospective, randomized, controlled study

Giuseppe Acunzo1,3, Maurizio Guida1, Massimiliano Pellicano1, Giovanni Antonio Tommaselli1, Attilio Di Spiezo Sardo1, Giuseppe Bifulco1, Domenico Cirillo1, Alex Taylor2 and Carmine Nappi1

1Department of Obstetrics and Gynaecology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy and 2Minimally Invasive Therapy Unit and Endoscopy Training Centre, University Department of Obstetrics and Gynaecology, Royal Free Hospital, Hampstead, London, UK
3To whom correspondence should be addressed. E-mail: nappi@unina.it

BACKGROUND: A prospective, randomized, controlled study was performed to assess the efficacy of auto-cross-linked hyaluronic acid (ACP) gel in preventing the development of intrauterine adhesions following hysteroscopic adhesiolysis. METHODS: Ninety-two patients with irregular menses and intrauterine adhesions referred to the Hysteroscopic Unit of the University of Naples “Federico II”. Patients were randomized to two different groups. Group A were randomized to hysteroscopic adhesiolysis plus intrauterine application of ACP gel (10 ml) and group B were randomized to operative hysteroscopy alone (control group). Baseline adhesion scores were calculated for each patient and at 3 months after surgery. RESULTS: Group A showed a significant decrease in intrauterine adhesions at 3 months follow-up in comparison with the control group. Staging of adhesions showed a significant decrease in adhesion severity in patients treated with ACP gel. CONCLUSIONS: ACP gel significantly reduces the development of intrauterine adhesions postoperatively and its use is likely to be associated with a reduction of severe adhesions.

Key words: adhesion score/hyaluronic acid gel/intrauterine adhesions/operative hysteroscopy

Introduction

Intrauterine adhesions are a recognized complication of operative hysteroscopy. Their development may result in infertility, recurrent miscarriages, irregular periods with dysmenorrhea and pelvic pain (Valle and Sciarra, 1988). The most frequent cause of their formation is post-partum or post-abortion overzealous dilatation and curettage (Pabuçu et al., 1997).

In recent years, many attempts have been made to develop effective strategies to reduce the risk of post-surgical adhesions (Risberg et al., 1997; Farquhar et al., 2002; Watson et al., 2002). Several in-vitro and in-vivo studies have demonstrated the efficacy of different barrier agents for preventing adhesions after laparotomy and laparoscopic gynaecological surgery (Mais et al., 1995; Burns et al., 1995; De Iaco et al., 1998; Diamond et al., 1998; Ferland et al., 2001; di Zerega et al., 2002). At the present time, few studies evaluating the efficacy of barrier methods for the prevention of intrauterine adhesions are available. For example, the insertion of an intrauterine device (IUD) following lysis of adhesions has been advocated by many authors as an effective method to prevent adhesions reformation, although the specific type to be utilized for this purpose remains a controversial issue. Other authors prefer the use of a balloon catheter, such as the Foley catheter (Schenker and Margalioth, 1982). Success in the safe enhancement of rapid endometrial growth has been reported with administration of estrogens or of a combination of estrogens and progestins, although the necessity for either has been queried (Schenker and Margalioth, 1982).

In recent years, hyaluronic acid (HA), a natural component of the extracellular matrix, the vitreous humor and synovial fluid of the joint, has been proposed as a barrier agent to prevent adhesion development after surgery (Burns et al., 1995).

A new barrier agent containing an HA derivative, the Seprafilm membrane, has recently been described for the prevention of post-surgical adhesions. Seprafilm is a novel biodegradable membrane formulated from chemically modified HA and carboxymethyl cellulose. It has been proposed as an effective adjuvant in reducing the incidence, extent and severity of abdominal and pelvic post-surgical adhesions (Becker et al., 1996). Seprafilm has also been suggested as an effective method to reduce the presence and extent of intrauterine adhesions (Tsapanos et al., 2002).
Previous experimental preclinical studies have shown that cross-linked HA reduces adhesion formation after abdominal and pelvic surgery (Burns et al., 1995; Thornton et al., 1998; Johns et al., 2001). HA has been modified to obtain an auto-cross-linked HA (ACP) gel (De Iaco et al., 1998; 2001) that seems particularly suitable for preventing adhesion formation because of its higher adhesivity and more prolonged residence time on the injured surface than unmodified HA (Mensisitieri et al., 1996).

The aim of this prospective, randomized, controlled study was (i) to assess the efficacy of the ACP gel in the reduction of post-surgical adhesions formation in women undergone hysteroscopic adhesiolysis, and (ii) to evaluate the characteristics of the adhesions observed at follow-up.

Materials and methods

The protocol of the study was approved by our Institutional Review Board and the study was conducted according to the guidelines of the 1975 Declaration of Helsinki on human experimentation.

All patients with intrauterine adhesions at diagnostic hysteroscopy were invited to participate in the study. From June 2001 to September 2002, 92 women (mean age ± SD, 30.1 ± 3.5 years) were enrolled in the study.

The inclusion criterion was hysteroscopic diagnosis of intrauterine adhesions. Exclusion criteria were: age >50 years, weight >100 kg, menopause (FSH >40 mU/ml, 17β-estradiol <20 pg/ml) or pregnancy (positive β-hCG test), presence of uroterovaginal prolapse and severe urinary symptoms, presence of malignancy, presence of severe intercurrent illness (coagulative disorders, systemic disease, severe cardiopathy), presence of other intrauterine lesions (i.e. polyps, myomata, septa).

Before entering the study, the purpose of the protocol was explained clearly to women attending our Hysteroscopic Unit, and a printed explanatory consent form was signed and obtained by all subjects enrolled.

Diagnostic hysteroscopy was performed using a 3.5 mm instrument (Gynecare Versascope; Gynecare, Ethicon Inc., Somerville, NJ, USA) using normal saline solution (NaCl 0.9 %) as the distension medium. Before hysteroscopy, all patients underwent vaginal examination to ascertain the position and size of the uterus, and a speculum was inserted into the vagina to expose the cervix.

Following diagnostic hysteroscopy, patients were randomized into two groups: group A (n = 46), the treatment group, and group B (n = 46), the control group, using a computer-generated randomization list. The design of the study followed CONSORT guidelines (www.CONSORT-statement.org) and the patient flowchart is set out in Figure 1 of these guidelines.

The treatment group received an intrauterine application of 10 ml of ACP gel (Hyalobarrier gel; Baxter, Pisa, Italy) under hysteroscopic view after operative hysteroscopy. The only intervention performed in the control group was hysteroscopic resection of intrauterine adhesions.

Operative hysteroscopy was performed using a rigid resectoscope (Karl Storz, Tuttingen, Germany) with a 12-degree fore-oblique telescope with a hook-shaped monopolar electrode.

In group A, ACP gel was introduced into the uterine cavity at the end of the procedure through the out-flow channel of the resectoscope while the surgeon progressively limited the entering of the distension medium through the in-flow channel. The procedure was considered complete when, under hysteroscopic view, the gel seemed to have replaced all the liquid medium and the cavity appeared completely filled by the gel from tubal ostia to internal uterine orifice.

Intrauterine presence of ACP gel was confirmed over the time by postoperative ultrasound evaluation. Ultrasound scans were performed in each patient from group A immediately after gel application and after 24, 48 and 72 h. The gel-related hyperechoic thickness that seemed to separate endometrial walls was the mean evaluated parameter.

Patients from both groups were administered oral antibiotics (cefixima 400 mg/day) (Cefixoral; Menarini, Firenze, Italy) for 3 days after surgery.

Each patient underwent a follow-up diagnostic hysteroscopy 3 months after the surgical procedure and their adhesion score was assessed.

Both the initial diagnostic hysteroscopy and the 3-month follow-up diagnostic hysteroscopy were performed by the same operator (G.A.). G.A. evaluated the adhesion score for each patient and was blind for patients’ randomized allocation, whilst operative hysteroscopies and application of ACP gel were performed by a different operator (M.G.).

Statistical analysis was performed with the use of a commercial software program (Statistica for Windows; Statsoft, Inc., Tulsa, USA). Data distribution was performed using Shapiro–Wilks test. Differences in age, weight and parity, which showed a normal distribution, were compared using the two-tailed Student’s t-test for unpaired data. Repeated analysis of variance (ANOVA) followed by the Newman–Keuls multiple range test are used to compare the adhesion scores at 3 months between group A and B. The χ²-test was used for proportions. P < 0.05 was considered as statistically significant.

Results

Characteristics of the patients treated are reported in Table I. There were no significant differences in age, weight, body mass index, uterine size and parity between patients in groups A and B.
Avoid direct contact after surgery (Mais et al., 1998). In vivo experimental studies have shown that HA gel is more effective than control gel for in situ reconstruction of the uterine cavity. In our experience, ACP gel remains in situ for at least 72 h (data not shown). Animal data suggest that HA gel remains in situ for more than 5–6 days (Laurent and Fraser, 1992; Nimrod et al., 1992).

In-vivo preclinical studies: ACP gel has been reported to significantly reduce the incidence and severity of adhesion formation (De Iaco et al., 1998; De Iaco et al., 1999; Belluco et al., 2001). In this study, we evaluated a new ACP gel preparation. This new HA derivative seems to be well tolerated (De Iaco et al., 1998; Pellicano et al., 2003).

The objective of this prospective study was to demonstrate the efficacy of ACP gel in the prevention of post-surgical intrauterine adhesions. The ACP gel was used in a randomized, controlled trial showing a significant reduction in post-operative intrauterine adhesions in group A (25% stage I, mild adhesions; and 75% stage II, moderate adhesions). The effect on long-term reproductive outcome is not clear; the results should be confirmed in further studies before it is introduced into widespread clinical practice.

The mean adhesion score was significantly lower in both groups A and B at 3 months follow-up compared with those in group B (0.2 ± 0.5). When intrauterine adhesions staged postoperatively according to the American Fertility Society classification, the scores at follow-up showed a significant decrease in adhesions severity (100% stage I, mild adhesions; and 75% stage II, moderate adhesions).

No significant differences were observed in intrauterine adhesion localization at follow-up. In in-vivo preclinical studies ACP gel has been reported to significantly reduce the incidence and severity of adhesion formation (De Iaco et al., 1998, Kocak et al., 1999; Belluco et al., 2001). In this study, we evaluated a new ACP gel preparation. This new HA derivative seems to be well tolerated (De Iaco et al., 1998; Pellicano et al., 2003).

The objective of this prospective study was to demonstrate the efficacy of ACP gel in the prevention of post-surgical intrauterine adhesions. The ACP gel was used in a randomized, controlled trial showing a significant reduction in post-operative intrauterine adhesions in group A (25% stage I, mild adhesions; and 75% stage II, moderate adhesions). The effect on long-term reproductive outcome is not clear; the results should be confirmed in further studies before it is introduced into widespread clinical practice.

The mean adhesion score was significantly lower in both groups A and B at 3 months follow-up compared with those in group B (0.2 ± 0.5). When intrauterine adhesions staged postoperatively according to the American Fertility Society classification, the scores at follow-up showed a significant decrease in adhesions severity (100% stage I, mild adhesions; and 75% stage II, moderate adhesions).

No significant differences were observed in intrauterine adhesion localization at follow-up. In in-vivo preclinical studies ACP gel has been reported to significantly reduce the incidence and severity of adhesion formation (De Iaco et al., 1998; De Iaco et al., 1999; Belluco et al., 2001). In this study, we evaluated a new ACP gel preparation. This new HA derivative seems to be well tolerated (De Iaco et al., 1998; Pellicano et al., 2003).

The objective of this prospective study was to demonstrate the efficacy of ACP gel in the prevention of post-surgical intrauterine adhesions. The ACP gel was used in a randomized, controlled trial showing a significant reduction in post-operative intrauterine adhesions in group A (25% stage I, mild adhesions; and 75% stage II, moderate adhesions). The effect on long-term reproductive outcome is not clear; the results should be confirmed in further studies before it is introduced into widespread clinical practice.

The mean adhesion score was significantly lower in both groups A and B at 3 months follow-up compared with those in group B (0.2 ± 0.5). When intrauterine adhesions staged postoperatively according to the American Fertility Society classification, the scores at follow-up showed a significant decrease in adhesions severity (100% stage I, mild adhesions; and 75% stage II, moderate adhesions).

No significant differences were observed in intrauterine adhesion localization at follow-up.


Submitted on February 19, 2003; resubmitted on April 16, 2003; accepted on May 27, 2003.