Incidence of spontaneous abortion among pregnancies produced by assisted reproductive technology

Jim X. Wang1,3, Robert J. Norman1 and Allen J. Wilcox2

1Reproductive Medicine Unit, Department of Obstetrics and Gynaecology, University of Adelaide, The Queen Elizabeth Hospital, Woodville, SA, Australia 5011 and 2Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA

3To whom correspondence should be addressed. E-mail: jim.wang@adelaide.edu.au

BACKGROUND: There has been increasing number of pregnancies following assisted reproductive technology treatment and their survival is understandably a matter of interest. The relative risk of spontaneous abortion in these pregnancies remains unclear. The objectives of this study were to quantify the relative risk in assisted reproductive technology pregnancies in relation to two cohorts of naturally conceived pregnancies and to assess the possible risk factors for spontaneous abortion among assisted reproductive technology pregnancies.

METHODS: Three cohorts of pregnancies, 1945 pregnancies conceived following assisted reproductive technology treatment in a tertiary infertility clinic, 549 natural pregnancies in a prospective study of lifestyle and pregnancy (the Ford cohort), and 4265 pregnancies from another cohort (the Treloar cohort), were used in the study.

RESULTS: After adjusting for age, the relative risk of spontaneous abortion was 1.20 (95% CI 1.03–1.46) in the assisted reproductive technology cohort in comparison with the Ford cohort. Within the assisted reproductive technology cohort, a history of spontaneous abortion predicted increased risk, while a low level of ovarian stimulation seemed to be related to a reduced risk.

CONCLUSIONS: The study showed that the risk of spontaneous abortion was slightly increased in the assisted reproductive technology pregnancies after adjusting for maternal age and previous spontaneous abortion. Within the assisted reproductive technology cohort, several variables, including the level of stimulation, appeared to be linked with the risk of spontaneous abortion.

Key words: assisted reproductive technology/infertility/maternal age/ovarian stimulation/spontaneous abortion

Introduction

In the past two decades, steadily increasing numbers of couples with infertility have been treated by techniques such as IVF, gamete intra-Fallopian transfer (GIFT) or ICSI, collectively known as assisted reproductive technology. These techniques generally involve using gonadotrophins to stimulate the ovary resulting in multiple follicle development, obtaining the mature oocytes surgically, manipulating gametes in vitro, and transferring the gametes/embryos into the uterus within 2–3 days (Edwards et al., 1980; Edwards and Craft, 1990; Khamsi et al., 1998). These methods have produced tens of thousands of conceptions yearly worldwide (Hurst and Lancaster, 2001; Nygren and Andersen, 2001; Anonymous, 2002).

The survival of assisted reproductive technology conceptions is understandably a matter of interest. Even among naturally conceived pregnancies, spontaneous loss is not uncommon. About 10–15% of all natural pregnancies end in recognized spontaneous abortions (Wilcox et al., 1981; Risch et al., 1988; Nybo Andersen et al., 2000; De La Rochebrochard and Thonneau, 2002). Reports from many infertility centres have shown a much higher incidence of spontaneous abortion among assisted reproductive technology pregnancies, in the range of 18–30% (Seppala, 1985; Liu et al., 1988; Saunders and Lancaster, 1989; Breart and de Mouzon, 1995; FIVNAT, 1995).

While the risk of spontaneous abortion appears to be higher among assisted reproductive technology pregnancies than that reported in the general population, the comparison can be misleading. Assisted reproductive technology pregnancies are commonly under intense surveillance, so losses from a very early stage of the pregnancy are often carefully documented and reported. In contrast, spontaneous abortion rates among natural conceptions are notoriously difficult to measure and can be easily underestimated by assisted reproductive technology standards. Also women who received assisted reproductive technology treatment are a selected group with characteristics that may predispose them to an increased risk of spontaneous abortion. For example, women who receive assisted reproductive technology treatment tend to be older and have experienced previous spontaneous abortion. These are all known risk factors for spontaneous abortion (Abdalla et al., 1993; Weinberg et al., 1994; Gray et al., 1995; De La
Rochebrochard and Thonneau, 2002) and need to be taken into consideration. Two small studies comparing the risk of spontaneous abortion in assisted reproductive technology pregnancies with the risk in natural pregnancies (Steer et al., 1989; Pezeshki et al., 2000) concluded that there was no increased risk in assisted reproductive technology pregnancies. However, both studies were limited by small size and unclear definitions of pregnancy and spontaneous abortion. One study has suggested an increased risk of spontaneous abortion among assisted reproductive technology pregnancies, but there was no estimation of the excess risk (Ezra and Schenker, 1995). Information about the presence and the extent of excess risk of spontaneous abortion in assisted reproductive technology pregnancies would be useful for assessing the outcomes of assisted reproductive technology treatment and patient counselling. Similarly, knowledge on the risk factors within the assisted reproductive technology cohort can be used for such purposes too.

The main objective of this study was to quantify the risks of spontaneous abortion in a cohort of assisted reproductive technology pregnancies in relation to two cohorts of naturally conceived pregnancies with adjustment for age and previous spontaneous abortion. Another objective was to assess the treatment and population-related risk factors for spontaneous abortion among assisted reproductive technology pregnancies.

Materials and methods

There were 1698 women who conceived at least one pregnancy following assisted reproductive technology treatment in the Reproductive Medicine Unit, Department of Obstetrics & Gynecology, University of Adelaide, Australia, during the study period of 1982–1996. Altogether they had achieved 1996 pregnancies, including 37 ectopic pregnancies and 14 pregnancies that subsequently underwent induced abortion, which were excluded from the final analysis, so the study population consisted of 1945 pregnancies. The preliminary treatment protocol remained generally stable except for the last menstrual period (LMP), 80 (1.6%) that did not survive >6 weeks after LMP, 63 (1.3%) that ended in induced abortion, and 18 (0.4%) ectopic pregnancies. We included 4265 intrauterine pregnancies that survived to ≥6 weeks of gestation in the present study.

In both assisted reproductive technology and Ford cohorts, the pregnancy was first detected by the raised hCG concentration in either serum (assisted reproductive technology cohort) or urine (Ford cohort) at 4–5 weeks of gestation. This was often followed by further ultrasound scan at 6–7 weeks of gestation to confirm the establishment of the pregnancy. In the Treloar cohort, pregnancy was self-reported by subjects who had been routinely monitoring their menstrual cycles. All pregnancies included in this study lasted ≥6 weeks after the LMP.

Table I. Age and other characteristics of women in the cohorts (mean and SD)

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Mean age (years)</th>
<th>% >30 years old</th>
<th>% with previous spontaneous abortion</th>
<th>% primiparous women</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART cohort</td>
<td>1945</td>
<td>32.4 (4.0)</td>
<td>72</td>
<td>33</td>
<td>66</td>
</tr>
<tr>
<td>Ford cohort</td>
<td>549</td>
<td>29.4 (4.2)</td>
<td>47</td>
<td>N/A*</td>
<td>N/A*</td>
</tr>
</tbody>
</table>

*No data are available for the obstetric history of this cohort.
ART = assisted reproductive technology.

Spontaneous abortion among ART pregnancies

Remainder 16% of women had no apparent reason for their infertility. Of the eligible pregnancies, 56% (1097) were produced by IVF, 21% (411) by ICSI and 23% (437) by GIFT. In order to explore whether stimulation of the ovary might also be related to the risk of subsequent loss, the level of estradiol at the time of hCG administration before oocyte retrieval was used as an indicator of the ovarian stimulation level. We have separated the study period into four sub-periods, 1983–1985 (early period of assisted reproductive technology), 1986 to 1988 (before the major stimulation protocol change), 1989–1991 (post-stimulation protocol change), 1992–1996 (stable period).

We sought a comparison group of naturally conceived pregnancies for assessment of their risk of spontaneous abortion. The choice of an appropriate comparison group is problematic. There are few studies in which large numbers of naturally conceived pregnancies have been defined prospectively and with comparably detailed data recorded. We have chosen two studies where pregnancies had been prospectively followed. The primary comparison group was from prospective follow-up of couples (n = 969) who were trying to achieve pregnancy. This study was carried out in the same location as the assisted reproductive technology cohort during late 1980 and early 1990 (Ford et al., 1994). The original objective of that study was to establish the association between occurrence and outcomes of pregnancy and lifestyle factors. A total of 549 pregnancies established naturally without infertility treatment in this group was included in the study (the Ford cohort).

The second study was designed as a prospective study of menstrual cycles (Treloar et al., 1967). This cohort (termed here as the Treloar cohort) of white, college-educated Minnesota women maintained calendars of their menstrual cycles for up to 40 years. In the 4877 pregnancies recorded, we excluded 451 (9.2%) that lacked the date of the last menstrual period (LMP), 80 (1.6%) that did not survive ≥6 weeks after LMP, 63 (1.3%) that ended in induced abortion, and 18 (0.4%) ectopic pregnancies. We included 4265 intrauterine pregnancies that survived to ≥6 weeks of gestation in the present study.

In both assisted reproductive technology and Ford cohorts, the pregnancy was first detected by the raised hCG concentration in either serum (assisted reproductive technology cohort) or urine (Ford cohort) at 4–5 weeks of gestation. This was often followed by further ultrasound scan at 6–7 weeks of gestation to confirm the establishment of the pregnancy. In the Treloar cohort, pregnancy was self-reported by subjects who had been routinely monitoring their menstrual cycles. All pregnancies included in this study lasted ≥6 weeks after the LMP.

Spontaneous abortion in the assisted reproductive technology cohort was defined as either a self-reported loss of pregnancy, or the absence of a gestational sac at a subsequent ultrasound scan after the initial detection of pregnancy, or a fetal death detected at a subsequent ultrasound scan 6 weeks after the LMP but before 20 full weeks of gestation. In the natural pregnancy cohorts, spontaneous abortion was defined as a self-reported loss of pregnancy, or a medically confirmed pregnancy loss or fetal death over the same period.
Differences between the assisted reproductive technology cohort and the control cohorts were assessed either by Student’s *t*-test or χ²-test (Fisher’s exact test if the cell number was <5). Adjusted relative risks for spontaneous abortion were calculated by the Cochrane–Mantel–Haenszel method. Multivariate logistic regression analysis was used to assess the risk factors for spontaneous abortion within the assisted reproductive technology cohort.

Results

Risk of spontaneous abortion

There were 402 spontaneous abortions among the 1945 assisted reproductive technology pregnancies, for an overall loss rate of 21%. Risk in the Ford cohort was 16% (87/549) and 14% in the Treloar cohort (605/4265). The unadjusted relative risk for assisted reproductive technology pregnancies was 1.33 (95% CI 1.08–1.65) in contrast to the Ford cohort and 1.49 (1.33–1.68) in contrast to the Treloar cohort. Women in the assisted reproductive technology cohort were older than those in the control cohorts, more likely to be primiparous, and with a greater likelihood of previous spontaneous abortion (Table I).

The relative risk controlling for age, using Cochrane–Mantel–Haenszel method, was 1.20 (1.03–1.46) (assisted reproductive technology cohort versus Ford cohort) and 1.37 (1.22–1.54) (assisted reproductive technology cohort versus Treloar cohort) respectively. Table II shows the risk of spontaneous abortion for the assisted reproductive technology and Ford cohorts, stratified by maternal age. Between 25 and 35 years of age, assisted reproductive technology pregnancies had a higher relative risk of spontaneous abortion, although the excess risk in the higher age group was not significant.

adjusted for age and the number of previous spontaneous abortions resulted in no further reduction of the relative risk, 1.34 (1.19–1.51) in the assisted reproductive technology cohort versus Treloar cohort.

The overall risk in the first trimester of gestation was 16.5% in the assisted reproductive technology cohort versus 14.0% in the Ford cohort (*P* < 0.05) and 11.3% in the Treloar cohort (*P* < 0.01). There was a significant difference (*P* < 0.05) between the assisted reproductive technology cohort and control cohorts in the risk of spontaneous abortion in the second trimester of gestation, 4.5% in the assisted reproductive technology cohort, 2.0% in the Ford cohort and 2.7% in the Treloar cohort.

Risk factors for spontaneous abortion in the assisted reproductive technology cohort

The persistence of an excess risk among assisted reproductive technology pregnancies, even after controlling for maternal age and previous spontaneous abortion, suggests possible effects of the assisted reproductive technology population characteristics or treatment itself. In order to pursue this question, we assessed the risk of spontaneous abortion within sub-groups of assisted reproductive technology pregnancies based on various risk factors. Table III shows the risk of spontaneous abortion within each sub-group and the odds ratios adjusted for other factors. The odds ratios were calculated from the multivariate logistic regression analysis including age, BMI and all other factors in the table.

Risk of spontaneous abortion was positively and significantly related to the woman’s age and a history of spontaneous abortion. However, it did not vary by the aetiology of infertility. The risk differed between the treatment options with the highest risk seen among women treated by IVF, and the lowest risk in those treated by GIFT. After adjustment for age and other factors, the difference between IVF and GIFT pregnancies remained statistically significant. There was a significant trend effect from very low level of stimulation to the highest level of stimulation (*P* < 0.01). There was, however, no significant trend across the time period of treatment (*P* = 0.56).

Discussion

We found a small excess risk of spontaneous abortion among assisted reproductive technology pregnancies after adjusting for maternal age. Adjusting for previous spontaneous abortion and material age caused a slight reduction in risk. The excess of risk occurred in both the first and second trimester of the gestation in the assisted reproductive technology cohort. A small disparity was found within the assisted reproductive technology cohort in terms of the risk of spontaneous abortion between the treatments and ovarian stimulation levels, whereas no difference was found between the types of patients or early and more recent patients.

Several previous studies have compared the risk of spontaneous abortion following assisted reproductive technology with that in natural pregnancies. Typically, these studies have not clearly stated the definitions of pregnancy and spontaneous abortion (Steer *et al.*, 1989; Ezra and Schenker, 1995; Pezeshki *et al.*, 2000). While it would be ideal, it is logistically difficult to conduct a prospective study that directly follows both
naturally conceived and assisted reproductive technology treatment pregnancies using uniform methods of surveillance. In the present study, we have obtained two independent cohorts of naturally conceived pregnancies, both prospectively followed up with detailed data on date of LMP and the gestational week of the spontaneous abortion. This makes the definition of pregnancy and spontaneous abortion as comparable as possible. It is an advantage that the Ford cohort was a prospective study of pregnancy in women who were seeking to achieve pregnancy with their pregnancy determined by urine hCG and ultrasound under a protocol nearly as rigorous as for the assisted reproductive technology cohort. In addition it was followed up during a similar time in the same location as the assisted reproductive technology cohort, therefore it may be more comparable with the assisted reproductive technology cohort and used as the primary comparison cohort. The Treloar cohort was from another continent over a different time period with different detection method for pregnancy, so it is a much weaker comparison group. Its strengths include the precise information on gestational age, the availability of some obstetric history and the large sample size. While the Treloar data cover several decades, there is no evidence that the risk of spontaneous abortion has changed in this cohort over time (Wilcox et al., 1981).

Spontaneous abortion is more common in older women (Wilcox et al., 1981; Nybo Andersen et al., 2000). It is also well known that women with previous spontaneous abortion have an increased risk of spontaneous abortion (Nybo Andersen et al., 2000). Therefore, adjustment for such risk factors is essential for a reliable estimate of the excess risk in assisted reproductive technology pregnancies in comparison with natural pregnancies. Adjusting for these risk factors reduced the excess risk in assisted reproductive technology pregnancies but did not eliminate it. Most women in all three cohorts were English-speaking women of European ancestry and with average or above average education. One well-recognized characteristic of assisted reproductive technology pregnancies is its high prevalence of multiple pregnancies which are routinely detected by ultrasound in early pregnancy. Few data on early detection of multiple pregnancy are available in the natural pregnancies although the prevalence of multiple pregnancy is low judged on the birth outcome. The rates of pregnancy loss were shown to be similar for multiple implantations compared with single implantation in an oocyte donor programme (Legro et al., 1995). There were also reports of reduced risk of spontaneous abortion in women with multiple pregnancy (Schieve et al., 2003; Tummers et al., 2003) and this is likely due to the masking effect of the remaining developing fetus in assisted reproductive technology multiple pregnancies (Kol et al., 1993; Rodriguez-Gonzalez et al., 2002). Indeed, these results suggested that the observed risk of spontaneous abortion in the assisted reproductive technology cohort might have been

Table III. The percentage of spontaneous abortion and adjusted odds ratio (OR) by treatment and other characteristics of women conceiving by assisted reproductive technology

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>n</th>
<th>Spontaneous abortion (%)</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td>58</td>
<td>20</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–29.9</td>
<td>487</td>
<td>20</td>
<td>0.90</td>
<td>0.45–1.81</td>
<td>0.56</td>
</tr>
<tr>
<td>30–34.9</td>
<td>898</td>
<td>19</td>
<td>0.87</td>
<td>0.44–1.71</td>
<td>0.45</td>
</tr>
<tr>
<td>35–39.9</td>
<td>439</td>
<td>25</td>
<td>1.22</td>
<td>0.60–2.45</td>
<td>0.77</td>
</tr>
<tr>
<td>≥40</td>
<td>63</td>
<td>38</td>
<td>2.42</td>
<td>1.01–5.78</td>
<td>0.03</td>
</tr>
<tr>
<td>Previous spontaneous abortion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1312</td>
<td>20</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>471</td>
<td>21</td>
<td>1.00</td>
<td>0.75–1.32</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>117</td>
<td>26</td>
<td>1.15</td>
<td>0.71–1.85</td>
<td>0.31</td>
</tr>
<tr>
<td>≥3</td>
<td>45</td>
<td>34</td>
<td>2.09</td>
<td>1.07–4.10</td>
<td>0.02</td>
</tr>
<tr>
<td>Patient type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female single factor</td>
<td>638</td>
<td>21</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female multiple factors</td>
<td>211</td>
<td>21</td>
<td>1.01</td>
<td>0.67–1.52</td>
<td>0.39</td>
</tr>
<tr>
<td>Male factor/donor sperm</td>
<td>260</td>
<td>18</td>
<td>0.90</td>
<td>0.57–1.42</td>
<td>0.38</td>
</tr>
<tr>
<td>Male factor/ICSI</td>
<td>205</td>
<td>22</td>
<td>1.14</td>
<td>0.59–2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>Male factor/IVF or GIFT</td>
<td>250</td>
<td>22</td>
<td>1.19</td>
<td>0.76–1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>Unexplained</td>
<td>290</td>
<td>24</td>
<td>1.22</td>
<td>0.85–1.75</td>
<td>0.39</td>
</tr>
<tr>
<td>Others</td>
<td>101</td>
<td>17</td>
<td>0.92</td>
<td>0.49–1.71</td>
<td>0.40</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVF</td>
<td>1093</td>
<td>23</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICSI</td>
<td>413</td>
<td>20</td>
<td>0.91</td>
<td>0.54–1.54</td>
<td>0.36</td>
</tr>
<tr>
<td>GIFT</td>
<td>439</td>
<td>18</td>
<td>0.74</td>
<td>0.34–0.99</td>
<td>0.04</td>
</tr>
<tr>
<td>Levels of estradiol at hCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 mmol/l</td>
<td>42</td>
<td>10</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–8 mmol/l</td>
<td>1070</td>
<td>20</td>
<td>2.06</td>
<td>0.76–5.56</td>
<td>0.67</td>
</tr>
<tr>
<td>>8 mmol/l</td>
<td>833</td>
<td>23</td>
<td>2.59</td>
<td>0.96–6.99</td>
<td>0.72</td>
</tr>
<tr>
<td>Sub-period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983–1985</td>
<td>114</td>
<td>20</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986–1988</td>
<td>350</td>
<td>18</td>
<td>0.95</td>
<td>0.51–1.74</td>
<td>0.40</td>
</tr>
<tr>
<td>1989–1991</td>
<td>414</td>
<td>21</td>
<td>1.12</td>
<td>0.61–2.05</td>
<td>0.51</td>
</tr>
<tr>
<td>1992–1996</td>
<td>1067</td>
<td>22</td>
<td>1.13</td>
<td>0.67–1.95</td>
<td>0.50</td>
</tr>
</tbody>
</table>

CI = confidence interval; GIFT = gamete intra-Fallopian transfer.
reduced by inclusion of multiple pregnancies. Finally, the effect of other confounding factors cannot be adjusted for in this study due to the lack of data.

An important weakness of the Treloar cohort is its dependence on self-reported pregnancy and pregnancy loss. A false-positive error could occur if a prolonged menses, i.e. longer than unusual and 6 weeks after the LMP was mistakenly identified by the woman as a spontaneous abortion. False-negative errors would occur when an actual loss, again later than 6 weeks after the LMP with the usual period of similar length, was mistakenly interpreted as a late period. Though we cannot rule out either type of error, the incidence may not be great since these women had been carefully recording, and should be familiar with, their menstrual cycles. Also, the distorting influence of these errors would be strongest during the very early stage of pregnancy, and would be smaller by 6 weeks from LMP and thereafter. In this regard, the Ford cohort may have served as a better control. Another possible difference between the cohorts is the completeness of data on previous spontaneous abortion, although this may not differ greatly between the assisted reproductive technology and Treloar cohorts. We cannot exclude the possibility that some patients in the Treloar cohort were treated for infertility, although the chance was very small since the last pregnancy in that cohort occurred in the early 1980s when assisted reproductive technology was only used on very small scale in USA.

The study cannot distinguish whether the increased risk of spontaneous abortion in assisted reproductive technology pregnancies is due to the treatment they received, or to unmeasured patient characteristics. Population differences, such as maternal age and previous spontaneous abortion, certainly accounted for part of the increased risk. Women with a history of infertility have been reported to have higher rates of spontaneous abortion (Barton, 1968; Risch et al., 1988). In one study which failed to detect the difference in the risk of spontaneous abortion between assisted reproductive technology pregnancies and natural pregnancies, the natural pregnancies in fact occurred in women with an infertility history (Pezeshki et al., 2000), suggesting that the lack of difference may be due to the similarity in the background of the women. In deed, Gray and Wu (2000) have reported a significantly higher risk of spontaneous abortion in women with a history of subfertility. There were also reports of higher rates of other reproductive problems such as very low birthweight and perinatal mortality (Venn and Lumley, 1993) and preterm delivery (Henriksen et al., 1997) in women with an infertility history. Thus, it is possible that infertility problems may predispose the women to an increased risk for reproductive problems, including spontaneous abortion as suggested by Baird et al. (1999) that an exposure first causes infertility, then jeopardizes the pregnancy once conception occurs.

Within the assisted reproductive technology cohort, there was some disparity in terms of abortion risk between various subgroups. The pregnancies conceived following GIFT had a lower risk of spontaneous abortion than those by IVF/ICSI. Although the actual cause of this is not clear, this may be due to the more natural fertilization and development of the embryo in GIFT treatment and/or the characteristics of this group of patients. Furthermore, there was indication of an association between the risk of spontaneous abortion and the level of ovarian stimulation. A previous report showed that there was an increased risk of abortion in IVF patients with severe ovarian hyperstimulation syndrome (Raziel et al., 2002). Of course, the levels of stimulation, as assessed by E2 concentrations, in most assisted reproductive technology cycles here were not as high as in hyperstimulation syndrome but much higher than natural cycles. Finally, although there have been many changes or innovations introduced in assisted reproductive technology treatment processes over the study period, little change or trend across the period of the study was found.

Spontaneous abortion can be attributed to several factors involved in human reproduction, including genetic and uterine abnormalities, endocrine and immunological dysfunctions, infectious agents, environmental pollutants, psychogenic factors and endometriosis, as summarized by Bullett et al. (1996). In the assisted reproductive technology cohort, genetic defects, possibly due to the lack of gamete selection (Koulischer et al., 1997), endometriosis (Dicker et al., 1992), obesity and high serum insulin concentration (Hamilton-Fairley et al., 1992; Craig et al., 2002; Wang et al., 2002) and possibly hypersecretion of LH (van Hooff et al., 1994) all can be responsible for the higher risk of spontaneous abortion. Since the excess of risk occurred in both the first and second trimester, it also indicates that there may be multiple causes for the increased risk.

In conclusion, the results of this study suggest that the risk of spontaneous abortion may be increased by ~20–34% in this cohort of assisted reproductive technology pregnancies than in the natural pregnancies after adjusting for differences in maternal age and previous spontaneous abortion. It is important for patients to know that there is such a risk even though it may be acceptable to them. Within the assisted reproductive technology cohort, it appears that by far the most important factor predicting the risk of spontaneous abortion is previous spontaneous abortion, while some treatment related factors may also be linked with increased risk. Further studies are needed to confirm the possible effect of some treatment-related factors.

Acknowledgements

We would like to thank Dr Judy Ford of Environmental and Genetic Solutions, Adelaide, Australia for providing data on the Ford cohort used in the study. We also like to thank the useful comments made by Drs Markku Sallmen and Glinda Cooper on the manuscript.

References

J.X.Wang, R.J.Norman and A.J.Wilcox

van Hooff M, Schoute E and Schoemaker J (1994) Hypersecretion of luteinizing hormone (LH) and ovarian steroids in women with recurrent abortion [letter; comment]. Hum Reprod 9,179–180.

Submitted on March 14, 2003; resubmitted on September 1, 2003; accepted on October 17, 2003