Comparison of serum FSH and Inhibin B levels between adult male dizygotic and monozygotic twins

Alastair Sutcliffe1,10, Helen A. Spoudeas5, Devaki Nair2, Pierre Bouloux3, Tim Oliver6, Philip Sambrook8, Wendy Bannister4, Cornelis B. Lambalk9 and Tim Spector7

1Department of Child Health, 2Department of Chemical Pathology, 3Reader in Endocrinology, 4Department of Primary Care and Population Sciences, Royal Free and University College Medical School, NW3 2PF, 5Consultant Paediatric Endocrinologist, University College and Great Ormond Street Hospitals, 6St Bartholomew’s and The Royal London Hospital, London, and 7Twin Research and Genetic Epidemiology Unit, St Thomas’s Hospital, London, UK, 8Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia 2065 and 9Division of Reproductive Medicine, Vrije Universiteit Medical Centre (VUMC), Amsterdam, The Netherlands

© The Author 2005. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.

Introduction

FSH stimulates spermatogenesis in the male. Infertility and testicular germ cell cancer are associated with an elevated FSH but a diminished level of Inhibin B as a marker of atrophy (Jensen et al., 1997; Byrd et al., 1998). Reports that mothers who produce familial dizygotic (DZ) twins have an elevated FSH compared with normal controls —possibly genetically controlled (Martin et al., 1991; Lambalk et al., 1998)—and that male DZ twins have a two (Braun et al., 1995) to threefold increased incidence of testicular cancers—particularly seminoma (Swerdlow et al., 1997a)—provided important confirmatory information to support the hypothesis that FSH may play a role in the aetiology of both conditions (Oliver, 1990). This led us to investigate FSH and Inhibin levels in twins to test the hypothesis that gonadotropin gonadal interaction differs between MZ and DZ twins.

Materials and methods

Serum samples were obtained from 208 individuals (54 DZ and 50 MZ twin pairs) in two voluntary twin registries (Twins UK at St Thomas’s Hospital, London, UK, and The Sydney Adult Twin Registry, Australia). The St Thomas’s Registry consists of nearly 10000 monozygous and dizygous adult caucasian twins aged 18 to 80 from all over the UK and was started in 1993. It has an average age of around 45, who are predominantly female and same sex, because the diseases initially focussed on were more common in women. The ratio of identical to non-identical twins is ∼50:50. Zygosity is ascertained using the standard ‘peas in the pod’ questionnaire and, if there is uncertainty, checked by genotyping. The Sydney Twin Study consists of over 2000 monozygous and dizygous adult caucasian twins aged 18 to 80 from all over Australia and was started in 1996. This is a volunteer sample recruited by successive media campaigns without selecting for particular diseases or traits. Zygosity is ascertained by genotyping.

The male twins in this study varied from 20 to 68 years and all MZ and DZ samples were age matched. No patient in either group was IVF conceived. All twins joining the registry are asked to indicate their conception status. Most twins in this study were anyway too old to have been conceived by IVF.

Ethical approval for participation in the study was given by both twin registries. All samples were taken by venesection between 10 and 11 am and cryopreserved for future analyses.

Assays

Assay of samples was performed in one laboratory using the following protocol. LH and FSH were measured by immunometric (sandwich) method on Roche E170 (Roche Diagnostics GmbH, Mannheim, Germany) following the manufacturer’s recommendations. Both testosterone and dehydroepiandrosterone sulphate (DHEA-S) were measured by a competitive immunometric assay on Roche E170 following the manufacturer’s recommendations. Sex hormone-binding globulin (SHBG) was measured on DPC Immulite (EURO/DPC Ltd, Glyn Rhonwy, Llanberis, Gwynedd, UK) using an immunometric assay. Inhibin B was measured by an enzymatically
amplified two-site two-step sandwich-type immunoassay using a DSL-10-84100 Active Inhibin B enzyme-linked immunosorbent assay (ELISA) kit (Diagnostic Systems Laboratories Inc., Webster, TX, USA.).

DHEA-S and SHBG were determined using a solid-phase, competitive chemiluminescent immunoassay with DPC Immulite.

Testosterone, LH and FSH were measured using a two-step sandwich electrochemiluminescent immunoassay (ECLIA).

Analysis of results and statistics

Linear regression models were developed to determine the effect of MZ versus DZ twins on the response variables of interest, FSH and Inhibin B levels. Stepwise selection methods were used to identify possible confounding variables from the dataset and adjusted for those found to have a significant effect on the response variables.

For FSH level, the model was adjusted for LH, DHEA-S and testosterone levels, and an analysis of variance revealed no significant difference between MZ and DZ twins, \(F = 0.60, P = 0.440 \). For Inhibin B level, the model was adjusted for LH, SHBG and testosterone levels, and evidence in the data suggested a significant difference for Inhibin B levels \(F = 7.72, P = 0.006 \) (Fig. 1). Interactions between variables were investigated but did not appear to alter the results significantly.

The appropriateness of the selected models was tested by ensuring the data were: (i) normally distributed with a constant variance; (ii) independent; and (iii) robust (removal of outliers did not significantly influence results). These requirements were satisfied. However, because each group contained twin pairs, there was potential correlation of values between them and a sensitivity analysis—using the mean values of each twin pair and thus halving the sample size—was conducted. Analysis of variance once more failed to uncover a significant difference between FSH levels in MZ and DZ twins \(F = 0.08, P = 0.772 \), but suggested a significant difference for Inhibin B levels \(F = 4.22, P = 0.043 \).

Results

FSH: Inhibin B ratio

Linear regression was conducted on a log_e transformation of the ratio FSH/Inhibin B. Investigation of the data revealed that a transformation was needed in order to normalize the data. An unadjusted analysis revealed no significant difference between MZ and DZ twins, \(F = 1.97, P = 0.162 \). Using a step-wise selection procedure to select potentially confounding variables, the analysis was adjusted accordingly. Hormone levels of LH and testosterone were found to significantly affect the results, but age was not found to be a confounder. The adjusted analysis found no difference between MZ and DZ twins \(F = 1.68, P = 0.196 \). With the addition of age in the model, this remained exactly the same. Excluding outliers with Inhibin B levels <20 pg/ml, there was even less evidence of a difference in ratio between MZ and DZ twins \(F = 0.61, P = 0.435 \). Models were checked and found to meet the requirements of normality, homogeneity of variance and independence.

Observed means and standard deviations can be found in Table I, together with \(P \) values from two-tailed \(t \)-tests in order to compare differences in the two sets of twins before adjustment.

We compared hormone biochemistry between twin groups (MZ versus DZ) (Table I) overall and across defined age categories. The effects of age and LH, SHBG, testosterone and DHEA-S levels on FSH and Inhibin B levels were investigated to identify potential confounders via a stepwise selection method. After adjustment for LH, DHEA-S and testosterone, FSH levels were not significantly different in DZ compared with MZ twins, \[\text{ANOVA } F = 0.60, P = 0.440 \] (Fig. 1). However, levels of Inhibin B were significantly higher in the DZ group \(F = 7.72, P = 0.006 \) after adjustment for LH, SHBG and testosterone.

Discussion

The peak incidence of testicular tumours occurs relatively early at 20–40 years of age—suggesting an age-specific aetiological factor—and has been increasing (Bergstrom et al., 1996; Power et al., 2001; Richiardi et al., 2004a) in parallel with the increase in male subfertility rates (Carlsen et al., 1992; Auger et al., 1995; Irvine et al., 1996) over the past four decades. The latter has led authors to postulate common aetiologies which include:

(i) toxic insults to germinal epithelium from environmental or endogenous overexposure to transplacental estrogen (Swerdlow et al., 1997a; Skakkebaek et al., 2001);
(ii) testicular maldevelopment (Skakkebaek et al., 2001; Slowikowska-Hliczer et al., 2001) and maldescent (Swerdlow et al., 1997b; Moller et al., 1998);
(iii) heredity (Swerdlow et al., 1997a);
(iv) dizygotic twinning (Lambalk and Boomsma, 1998), with which it shares a geographical distribution;
(v) subfertility which is related both to testicular cancers (Moller and Skakkebaek, 1999; Jacobsen et al., 2000; Richiardi et al., 2004b) and cryptorchidism (Swerdlow et al., 1997a; de Gouveia Brazao et al., 2003).

The syndrome of testicular dysgenesis may comprise a spectrum from mild subfertility to severe gonadal malformation, often with partial sex reversal, and neoplasia (Skakkebaek et al., 2001). There is growing evidence to suggest tumours
Observed means and SDs of hormone levels in monozygotic (MZ) and dizygotic (DZ) twins by 10-year age band

<table>
<thead>
<tr>
<th>Mean (SD)</th>
<th>Age group (years)</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><20</td>
<td>21–30</td>
</tr>
<tr>
<td>FSH (IU/l)</td>
<td>MZ</td>
<td>3.5 (2.3)</td>
</tr>
<tr>
<td>DZ</td>
<td>6.3 (7.9)</td>
<td>4.8 (2.6)</td>
</tr>
<tr>
<td>Inhibin B (pg/ml)</td>
<td>NR</td>
<td><400</td>
</tr>
<tr>
<td>DZ</td>
<td>214.7 (81.8)</td>
<td>193.4 (42.2)</td>
</tr>
<tr>
<td>LH (IU/l)</td>
<td>MZ</td>
<td>3.7 (1.2)</td>
</tr>
<tr>
<td>DZ</td>
<td>17.7 (6.8)</td>
<td>19.4 (5.9)</td>
</tr>
<tr>
<td>Testosterone (nmol/l)</td>
<td>MZ</td>
<td>17.3 (3.3)</td>
</tr>
<tr>
<td>DZ</td>
<td>27.3 (7.2)</td>
<td>29.8 (15.3)</td>
</tr>
<tr>
<td>SHBG (nmol/l)</td>
<td>MZ</td>
<td>7.3 (3.3)</td>
</tr>
<tr>
<td>DZ</td>
<td>27.3 (7.2)</td>
<td>29.8 (15.3)</td>
</tr>
</tbody>
</table>

NR = normal range. The elevated Inhibin B levels in DZ compared with MZ twins appear to be due to a failure to undergo the expected age-related decline.

Table I. Observed means and SDs of hormone levels in monozygotic (MZ) and dizygotic (DZ) twins by 10-year age band.

Contributors
Alastair Sutcliffe, Pierre Bouloux and Helen Spoudeas designed the study. Samples were obtained from the St Thomas’s Adult Twin Registry and the Sydney Adult Twin Registry by Tim Spector and Philip Sambrook, respectively. Assays were performed by Devaki Nair. Alastair Sutcliffe, Pierre Bouloux, Cornelis B. (Nils) Lambalk, Tim Oliver and Helen Spoudeas contributed to the interpretation of the data. Wendy Bannister performed statistical analyses. All authors contributed to writing of the paper.

Conflict of interest statement
We have no conflicts of interest to declare.
Acknowledgements
We would like to thank the Sir Halley Stewart Trust for paying for the Inhibin assays. The Twins UK project is supported by the Wellcome Trust.

References
Skakkebaek NE, Rajpert-De Meyts E and Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16,972–978.

Submitted on June 14, 2005; resubmitted on August 25, 2005; accepted on August 31, 2005.