Expression of secretory leukocyte protease inhibitor and elafin in human fallopian tube and in an in-vitro model of *Chlamydia trachomatis* infection

Anne E. King1,5, Nick Wheelhouse2, Sharon Cameron3, Sarah E. McDonald1, Kai-Fai Lee4, Gary Entrican2, Hilary O.D. Critchley1, and Andrew W. Horne1

1Reproductive and Developmental Sciences, University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK, 2Moredun Research Institute, Pentlands, Science Park, Bush Loan, Midlothian EH26 0PZ, UK, 3Simpson Centre for Reproductive Health, 51 Little France Crescent, Edinburgh EH16 4SA, UK, 4Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong, China

5Correspondence address. Dr Anne King Reproductive and Developmental Sciences Centre for Reproductive Biology, University of Edinburgh The Queen’s Medical Research Institute 47 Little France Crescent Edinburgh EH16 4TJ, UK; Email: anne.king@ed.ac.uk

Tel: +44 (0)131 242 6613; Fax: +44 (0)131 242 6441

Background: Secretory leukocyte protease inhibitor (SLPI) and elafin are anti-protease and anti-microbial molecules with a role in innate immune defence. They have been demonstrated at multiple mucosal surfaces including those of the female reproductive tract.

Methods and Results: This study details their expression in human Fallopian tubes (ampullary region) throughout the menstrual cycle (*n* = 18) and from women with ectopic pregnancy (*n* = 6), and examined their regulation by infection with *Chlamydia trachomatis* in an in-vitro model. Quantitative real-time PCR analysis showed that SLPI and elafin were constitutively expressed in the Fallopian tube during the menstrual cycle but were increased in ectopic pregnancy (*P*, 0.05 versus early-mid luteal phase, *P*, 0.01 versus all phases, respectively). SLPI and elafin were immunolocalised to the Fallopian tube epithelium in biopsies from non-pregnant women and those with ectopic pregnancy. An in-vitro culture model of *C. trachomatis* infection of the OE-E6/E7 oviductal epithelial cell line showed that elafin mRNA expression was upregulated in response to chlamydial infection.

Conclusion: These data suggest that SLPI and elafin have a role in the innate immune defence of the Fallopian tube in infection and ectopic pregnancy. Their role is likely to include regulation of protease activity, wound healing and tissue remodelling.

Key words: Secretory leukocyte protease inhibitor / elafin / *Chlamydia trachomatis* / ectopic pregnancy / Fallopian tube

Introduction

The female reproductive tract must allow fertilisation, implantation and pregnancy to occur while maintaining the ability to respond to infection. Genital tract infection is associated with infertility, ectopic pregnancy and preterm labour and the innate immune response is an important component of the mucosal defence system (Horne et al., 2008).

Natural antimicrobial molecules are effectors of the innate immune system and are widely expressed throughout the female reproductive tract. Secretory leukocyte protease inhibitor (SLPI) and elafin are anti-protease molecules, which also have antimicrobial activity (Hiemstra et al., 1996, Sallenave, 2002, Simpson et al., 1999, Simpson et al., 2001, Tomee et al., 1998, Wiedow et al., 1998). SLPI inhibits several serine proteases including neutrophil elastase and cathepsin G (Thompson and Ohlsson, 1986) while elafin shows a more restricted activity, inhibiting only neutrophil elastase and proteinase 3 (Sallenave and Ryle, 1991, Wiedow et al., 1991, Wiedow et al., 1990). In addition to their anti-protease and anti-microbial roles, SLPI and elafin are reported to have a range of other anti-inflammatory...
properties, such as an ability to inhibit the nuclear factor-kappa B signaling pathway and modulation of the response to lipopolysaccharide (LPS) (Jin et al., 1997; Sallenave et al., 2003). We have previously reported that SLPI and elastin are expressed in human endometrium where they are regulated in a cycle dependent manner and our previous studies have also shown that SLPI is a progesterone regulated gene (King et al., 2000, King et al., 2003b, King et al., 2003c). SLPI is expressed in endometrium from the mid-late secretory phase of the menstrual cycle when it is localised predominantly to the glandular epithelium (King et al., 2000). Expression is maintained in early pregnancy although localisation shifts to the decidualised stroma. In contrast, elastin is expressed primarily in endometrial neutrophils during menstruation (King et al., 2003b). Both molecules have also been reported to be present in cervix and vagina (Fichorova and Anderson, 1999, Moriyama et al., 1999, Narvekar et al., 2007, Pfundt et al., 1996, Valore et al., 2006) and in addition, SLPI has been shown to be present in human Fallopian tube where it is suggested to have a role in the protection of sperm from elastase (Ota et al., 2002a). There are no studies documenting the expression of SLPI and elastin in Fallopian tube from different menstrual cycle phases.

The Fallopian tube is the most common site of ectopic pregnancy with over 98% of such pregnancies occurring in the oviduct (Lemus, 2000). Early pregnancy bleeding as a result of ruptured tubal pregnancy remains one of the commonest causes of maternal death during the first trimester of pregnancy (Farquhar, 2005). The pathology underlying ectopic pregnancy is unclear although previous infection with Chlamydia trachomatis is a risk factor (Faro, 1991, Farquhar, 2005). The role of the innate immune system in chlamydial infection and ectopic pregnancy is not well understood. We have previously documented increased SLPI mRNA expression in the decidualised endometrium of women with ectopic pregnancy (Dalgetty et al., 2008). However, there are no studies examining localisation and expression of SLPI and elastin in the Fallopian tube during ectopic pregnancy.

The aim of the current study was to examine the localisation and regulation of SLPI and elastin in the Fallopian tube from different menstrual cycle phases and in ectopic pregnancy and to examine regulation of SLPI and elastin during in vitro chlamydial infection of an oviductal cell line.

Methods

Tissue collection

Ethical approval for this study was obtained from Lothian Research Ethics Committee (04/S1103/20). All women were aged 18–45 years (mean 38). Written and informed consent was obtained from all patients before sample collection. Fallopian tube biopsies (all from ampullary region), endometrial biopsies (for histological dating) and sera (for measurement of circulating estradiol and progesterone concentrations for endocrine staging) were collected from women with regular menstrual cycles (21–35 days) undergoing gynaecological procedures for benign conditions who had no previous history of ectopic pregnancy and had not taken any hormonal preparations in the three months prior to surgery (n = 18; mean age 39 years; see Table I). Fallopian tube was also obtained from women undergoing surgical management of tubal ectopic pregnancy (n = 6; mean age 37 years, mean gestation 58.09 days ± SD 8.28, mean serum progesterone 58.53 nmol/L ± SD 47.22). None of the women undergoing surgical management of ectopic pregnancy presented acutely with haemodynamic shock, and all required serial serum beta-HCG and ultrasound monitoring prior to diagnosis. Part of the Fallopian tube was immersed in RNAlater™ (Ambion, Texas, USA) at 4°C overnight then flash frozen at −70°C, and part of the Fallopian tube and the endometrial biopsies were fixed in 10% neutral buffered formalin overnight at 4°C, stored in 70% ethanol, and wax embedded. The endometrial biopsies underwent haematoxylin and eosin staining and dating by an expert histopathologist.

Quantitative RT-PCR

RNA was extracted from cells/tissues as detailed in the manufacturer’s protocol (Qiagen, RNeasy mini kits). All samples were treated with DNase I (Qiagen) in order to remove any contaminating genomic DNA. Quantitative real-time RT-PCR was used to measure mRNA levels of SLPI and elastin. Complementary DNA (cDNA) was prepared in 20 μl reaction volumes containing: 1X RT buffer, magnesium chloride, dNTPs, random hexamers, RNase inhibitor and Multiscribe reverse transcriptase (Applied Biosystems, Cheshire, UK). 200 ng of template RNA were reverse transcribed and each cDNA experiment included two controls: one containing template RNA but no reverse transcriptase (RT negative) and the other containing reverse transcriptase with water in place of template RNA (RT H2O).

PCR reaction mixtures contained Taqman 2x Master-mix (1x; Applied Biosystems), forward and reverse primers (300 nM; Eurogentec) and probe (200 nM; Eurogentec) for SLPI or elastin and forward and reverse primers and probe for ribosomal 18S (all 50 nM; Applied Biosystems). Ribosomal 18S was used as a housekeeping gene. Internal control (SLPI, liver; elastin, menstrual endometrium) and negative control (water in place of cDNA) samples were included in each PCR run along with the RT negative and RT H2O control samples described above. All samples were analysed in triplicate using the 2−△△Ct method. PCR reactions were run on an ABI 7900 Sequence Detection System (Perkin-Elmer Applied Biosystems, USA).

SLPI and elastin primers and probes were designed using Primer Express software and their sequences have been reported previously (Dalgetty et al., 2008).

Immunohistochemistry

Immunohistochemical localisation of SLPI and elastin was performed on Fallopian tube sections using standard protocols. In brief, tissue sections were de-waxed in xylene and rehydrated in descending grades of alcohol. Sections were microwaved for 15 minutes in antigen unmasking solution (Vector) and then non-specific endogenous peroxidase activity was blocked with 3% hydrogen peroxide (Sigma-Aldrich). Sections then underwent avidin, biotin (Avidin biotin blocking kit, Vector) and protein blocks (DakoCytomation protein block, Dako), each for 10 minutes at room temperature. Sections were incubated overnight at 4°C with either mouse-anti SLPI (1:100; Hycult) or rabbit anti-elastin (1:600, kind gift from Jean-Michel Sallenave) (Sallenave et al., 1994) antibody diluted in Dako REAL antibody diluent (Dako). In negative control sections, the primary antibody was substituted with mouse immunoglobulin (IgG (SLPI) or antibody diluent (elastin). Sections were subsequently incubated with biotinylated horse anti-mouse or goat anti-rabbit Ig and were then subjected to an avidin biotin peroxidase detection system (both for 30 minutes at room temperature; Vectastain Elite ABC, Vector). Positive staining was detected using the peroxidase substrate, diaminobenzidine (ImmPACT DAB; Vector). Sections were counterstained with Harris’ haematoxylin, dehydrated in ascending grades of ethanol and mounted from xylene in Pertex.
C. trachomatis detection in fallopian tube biopsies by PCR

All Fallopian tube biopsies included in this study were screened for current chlamydial infection by PCR. DNA was extracted from whole Fallopian tube biopsies from the ampullary region of the tube, as detailed in the manufacturers’ protocol (Qiagen, West Sussex, UK). The PCR protocol used a well-validated, in-house, plasmid-based methodology (kindly developed and designed by the West of Scotland Specialist Virology Centre).

Cell culture

The OE-E6/E7 oviductal epithelial cell line (a gift from the University of Hong Kong) (Lee et al., 2001) was used in an in vitro model of chlamydial infection. Cells were maintained in Dulbecco’s modified Eagle’s medium F12 (Invitrogen) containing 10% fetal calf serum. Cells were plated in 48 well culture plates at a density of 2×10^5 cells/well. Prior to treatment cells were serum starved overnight and then washed with phosphate-buffered saline. Treatments were then applied in a 500 μL volume and performed in triplicate. Cells were exposed to live C. trachomatis at multiplicities of infection of 0.001, 0.01 and 0.1 for 4, 24 and 48 hours. To control for the presence of modulatory factors in the C. trachomatis stock and in the oviductal cell lysate resulting from infection, cells were also exposed to UVC-irradiated C. trachomatis stock and cell lysate, respectively. Uninfected cells and cells treated with LPS from Salmonella minnesota were included as additional controls. Cells were collected at each time point for subsequent RNA extraction and analysis of SLPI and elafin mRNA expression by real-time quantitative RT-PCR (as detailed above).

Statistical analysis

Data were logarithmically transformed prior to statistical analysis. Significant difference was determined by one-way analysis of variance and Tukey’s posthoc analysis. A $P < 0.05$ was considered statistically significant.

Results

Expression of SLPI and elafin mRNA in Fallopian tube during the menstrual cycle and in ectopic pregnancy

SLPI mRNA was expressed in Fallopian tube biopsies from throughout the menstrual cycle and did not vary at different cycle phases. The presence of ectopic pregnancy significantly increased expression of SLPI mRNA compared to the early-mid luteal phase of the menstrual cycle (Fig. 1a: $P < 0.05$).
Elafin mRNA expression was very low in Fallopian tubes from non-pregnant women and expression did not vary at different cycle phases. Ectopic pregnancy resulted in increased elafin mRNA expression in the Fallopian tube (Fig. 1b: $P < 0.01$).

Immunohistochemical localisation of SLPI and elafin in fallopian tube during the menstrual cycle and in ectopic pregnancy

SLPI was localised to the epithelium of all Fallopian tubes collected during the follicular phase of the menstrual cycle (all five cases) (Fig. 2a). Epithelial staining was also present in some Fallopian tubes (two out of five cases) from the early to mid-luteal (Fig. 2b) and late luteal-menstrual phases (two out of three cases). In the Fallopian tube from women with ectopic pregnancies, the localisation was similarly epithelial (Fig. 2c).

Elafin was also localised to the epithelium of Fallopian tubes from all cycle phases (Fig. 2d & e). In addition, in some Fallopian tube biopsies from ectopic pregnancy elafin was localised to leukocytes present in blood vessels within the mucosal layer (Fig. 2f).

Detection of current chlamydial infection in fallopian tube biopsies

All Fallopian tube biopsies were screened for current *C. trachomatis* infection by PCR and shown to be negative (data not shown).

Regulation of SLPI and elafin mRNA expression in an in vitro model of *c. trachomatis* infection

Infection of the OE-E6/E7 oviductal epithelial cell line with *C. trachomatis* had no effect on SLPI mRNA expression at 4 (data not shown), 24 and 48 hr time points (Fig. 3a). In contrast, elafin mRNA expression was increased by the highest dose of *C. trachomatis* at 24 hours ($P < 0.05$; Fig. 3b). There were no significant
changes in elafin mRNA expression at 4 (data not shown) or 48 hours
(Fig. 3b).

Discussion

In this study we have shown that the anti-protease and anti-microbial molecules, SLPI and elafin, are expressed in the epithelial layer of the human Fallopian tube throughout the menstrual cycle. Both molecules are present at other mucosal layers, such as the lung (Franken et al., 1989, Sallenave et al., 1992) and they are also widely expressed at reproductive sites including the vagina, cervix and endometrium, where they contribute to the innate immune response (Horne et al., 2008). The presence of SLPI and elafin in the Fallopian tube suggests that they also have an innate immune role at this upper genital tract site, where they may protect against ascending infection and regulate associated inflammatory events. A previous study has suggested that the anti-protease actions of SLPI in the Fallopian tube may protect sperm from the detrimental effects of elastase (Ota et al., 2002b) suggesting that SLPI and elafin may also modulate inflammatory events occurring at fertilisation which may be detrimental to sperm and the developing embryo.

We have shown that SLPI and elafin are not regulated in a cycle dependent manner at the mRNA level in the Fallopian tube. This is in contrast to our previous studies in endometrium, which have shown SLPI to be maximally expressed in the secretory phase of the menstrual cycle (King et al., 2000) and elafin expression to peak at menstruation (King et al., 2003b). These differences in regulation of the molecules at two upper genital tract sites may reflect the different functions of the Fallopian tube and endometrium. The endometrium undergoes repeat cycles of proliferation, differentiation and repair in response to changes in the levels of circulating steroid hormones (Jabbour et al., 2006). It must allow the breaching of the mucosal barrier at implantation and menstruation while maintaining the ability to mount an innate immune response if necessary.

Increased natural antimicrobial expression during the implantation

Figure 2 Immunohistochemical localisation of SLPI and elafin in human Fallopian tube (ampullary region) during the menstrual cycle and in ectopic pregnancy. (a) SLPI. Follicular phase. (b) SLPI. Luteal phase. (c) SLPI. Ectopic. (d) Elafin. Follicular phase. (e) Elafin. Luteal phase. (f) Elafin. Ectopic. Negative controls in insets. Scale bar = 100 μm.
window and at menstruation may be one mechanism for enhancing innate immune protection at these vulnerable times (King et al., 2003a). In contrast, the Fallopian tube undergoes relatively few cycle dependent changes and the epithelial layer is not normally breached, and the constant expression of SLPI and elafin may reflect this.

Ectopic implantation occurs most commonly in the Fallopian tube (Lemus, 2000) although few studies have examined the molecular changes that predispose to or result from inappropriate implantation. In the current study we document increased mRNA expression of both SLPI and elafin in the Fallopian tube from ectopic pregnancies. Due to ethical constraints it is not possible to obtain Fallopian tubes from women with intrauterine pregnancies and thus, it is not clear whether the increased expression of SLPI and elafin may reflect this.

Ectopic implantation occurs most commonly in the Fallopian tube (Lemus, 2000) although few studies have examined the molecular changes that predispose to or result from inappropriate implantation. In the current study we document increased mRNA expression of both SLPI and elafin in the Fallopian tube from ectopic pregnancies. Due to ethical constraints it is not possible to obtain Fallopian tubes from women with intrauterine pregnancies and thus, it is not clear whether the increased expression of SLPI and elafin may reflect this.

Ectopic implantation occurs most commonly in the Fallopian tube (Lemus, 2000) although few studies have examined the molecular changes that predispose to or result from inappropriate implantation. In the current study we document increased mRNA expression of both SLPI and elafin in the Fallopian tube from ectopic pregnancies. Due to ethical constraints it is not possible to obtain Fallopian tubes from women with intrauterine pregnancies and thus, it is not clear whether the increased expression of SLPI and elafin may reflect this.

Ectopic implantation occurs most commonly in the Fallopian tube (Lemus, 2000) although few studies have examined the molecular changes that predispose to or result from inappropriate implantation. In the current study we document increased mRNA expression of both SLPI and elafin in the Fallopian tube from ectopic pregnancies. Due to ethical constraints it is not possible to obtain Fallopian tubes from women with intrauterine pregnancies and thus, it is not clear whether the increased expression of SLPI and elafin may reflect this.

Ectopic implantation occurs most commonly in the Fallopian tube (Lemus, 2000) although few studies have examined the molecular changes that predispose to or result from inappropriate implantation. In the current study we document increased mRNA expression of both SLPI and elafin in the Fallopian tube from ectopic pregnancies. Due to ethical constraints it is not possible to obtain Fallopian tubes from women with intrauterine pregnancies and thus, it is not clear whether the increased expression of SLPI and elafin may reflect this.

Ectopic implantation occurs most commonly in the Fallopian tube (Lemus, 2000) although few studies have examined the molecular changes that predispose to or result from inappropriate implantation. In the current study we document increased mRNA expression of both SLPI and elafin in the Fallopian tube from ectopic pregnancies. Due to ethical constraints it is not possible to obtain Fallopian tubes from women with intrauterine pregnancies and thus, it is not clear whether the increased expression of SLPI and elafin may reflect this.
Wiedow et al., 1990), promotion of wound healing (Ashcroft et al., 2000) and tissue remodelling (Lee et al., 2002). These anti-inflammatory actions will limit tissue damage due to infection or abnormal implantation. Alternatively, abnormal expression of SLPI and elafin may predispose to infection or ectopic pregnancy. Previous studies have suggested that changes in the innate immune system are associated with reproductive tract pathologies. Women with single nucleotide polymorphisms in two or more of the genes for Toll-like receptor (TLR)9, TLR4, CD14 or nucleotide-binding oligomerization domain containing 2 (NOD2) showed a trend towards increased likelihood of tubal pathology (den Hartog et al., 2006). Decreased expression of SLPI in vaginal secretions is related to infection of the lower genital tract by C. trachomatis, although it is unclear whether this occurs prior to or as a result of infection (Draper et al., 2000). Contrary to our findings with OE-E6/E7 cells, experimental infection of HeLa cells with C. trachomatis results in increased expression of SLPI mRNA and SLPI peptide (Wheelhouse et al., 2008). Despite this increase in SLPI expression following infection and the fact that HeLa cells constitutively produce SLPI in the absence of infection, C. trachomatis grows well, strongly suggesting that SLPI does not have a direct antimicrobial effect on chlamydial growth.

In summary, we have demonstrated that the anti-protease and anti-microbial molecules SLPI and elafin are expressed in human Fallopian tube, that mRNAs for both are upregulated in ectopic pregnancy, and mRNA for elafin is increased in response to chlamydial infection in a cell culture model. This suggests that SLPI and elafin are involved in the innate immune protection of the Fallopian tube during the normal menstrual cycle and may be important in the event of pathological conditions, such as infection and ectopic implantation.

Acknowledgements

We thank Catherine Murray and Sharon MacPherson for recruitment of patients and collection of biopsies. We acknowledge Prof William SB Yeung and Prof Sai-Wah Tsao for their kind gift of the OE-E6/E7 oviductal epithelial cell line. We thank Dr Jean-Michel Sallenave for the use of his rabbit anti-elafin antibody.

Funding

This research was supported a grant from the Chief Scientist’s Office (CBZ/4/513). Nick Wheelhouse and Gary Entrican are funded by the Scottish Government Rural and Environmental Research and Analysis Directorate (RERAD). Dr Anne King is supported by a personal research fellowship from the Caledonian Research Foundation.

References

Submitted on October 2, 2008; resubmitted on October 25, 2008; accepted on November 15, 2008.