Advanced glycation end-products accumulation compromises embryonic development and achievement of pregnancy by assisted reproductive technology

Masao Jinno1,*, Masayoshi Takeuchi2, Aiko Watanabe1, Koji Teruya3, Jun Hirohama1, Noriko Eguchi1, and Aiko Miyazaki4

1Women’s Clinic Jinno, 3-1-39-201 Kokuryou-chou, Choufu City, Tokyo 182-0022, Japan 2Department of Life Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa City, Ishikawa, Japan 3Department of Public Health, School of Health Sciences, Kyorin University, Hachioji City, Tokyo, Japan 4HUSHIMI Pharmaceuticals, Kagawa, Japan

*Correspondence address. Tel: +81-424-80-3105; Fax: +81-424-80-3105; E-mail: mjinno@s9.dion.ne.jp
Submitted on August 20, 2010; resubmitted on December 2, 2010; accepted on December 10, 2010

BACKGROUND: Advanced glycation end-products (AGE) are pivotal in aging and diabetes. Aging and polycystic ovary syndrome, a diabetes-associated disease, often cause infertility. We examined how AGE accumulation affects assisted reproductive technology (ART) outcomes.

METHODS: In this retrospective analysis, toxic AGE (TAGE), pentosidine (Pent) and carboxymethyl lysine (CML) in blood and follicular fluid (FF) were measured in 157 ART-patients. We analyzed associations of AGE with ART outcomes and pre-ART clinical factors.

RESULTS: TAGE, Pent and CML in FF and TAGE in serum, showed significant negative correlations with estradiol and numbers of follicles larger than 12 mm in diameter, retrieved oocytes, fertilized oocytes and embryos. AGE, Pent in FF and TAGE in serum showed significant negative correlations with ongoing pregnancy. Areas under receiver-operating characteristic curves for AGE (0.709), Pent in FF (0.686) and TAGE in serum (0.667) were significantly larger than for the reference (0.5). Women with serum TAGE above 7.24 U/ml showed decreased oocyte numbers and ongoing pregnancy rates, even with younger age or lower Day-3 FSH. Serum TAGE correlated positively with leptin (R=0.51), BMI, low-density lipoprotein, triglyceride, glucose, homeostasis model assessment-insulin resistance and insulin.

CONCLUSIONS: Serum TAGE and FF Pent accumulations correlated highly with poor follicular and embryonic development and with a lower likelihood of ongoing pregnancy. Serum TAGE predicts poor ART outcomes independent of age and Day-3 FSH.

Key words: advanced glycation end-products / assisted reproductive technology / fertility / pregnancy / ovarian dysfunction

Introduction

Advanced glycation end-products (AGE) are reactive cross-linked molecules formed by non-enzymatic reactions of reducing sugars with amino groups of proteins, lipids or nucleic acids (Thomas et al., 2005). Formation and accumulation of AGE occurs during normal aging but accelerates with hyperglycemia, insulin resistance, dyslipidemia, oxidative stress and/or renin–angiotensin system activation in diabetes (Ulrich and Cerami, 2001; Thomas et al., 2005; Unoki and Yamagishi, 2008). AGE, in turn, worsens these detrimental states (Thomas et al., 2005; Unoki and Yamagishi, 2008). AGE cause tissue and intracellular damage directly by macromolecular trapping and cross-linking and also indirectly by binding to specific AGE receptors (RAGE) on cell surfaces (Ulrich and Cerami, 2001; Thomas et al., 2005).

Insulin resistance is pivotal in the pathogenesis of polycystic ovary syndrome (PCOS) (Dunaif, 1997), the most common cause of infertility. Moreover, insulin resistance can reflect factors such as aging, stress, anxiety, depression, obesity and sedentary lifestyle (Rosenthal et al., 1983; Eck et al., 1996; Paolisso et al., 1999; Bjornorp and Rosmond, 2000; Vanitallie, 2002), all of which can be common among infertile patients. Thus, insulin resistance appears prevalent even in infertile patients without PCOS. It has in fact been shown that the prevalence of insulin resistance is significantly higher among

© The Author 2011. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
non-PCOS infertile women with oligomenorrhea than among those with eumenorrhea (Ohgi et al., 2008). Furthermore, we improved pregnancy rates in repeatedly failing IVF patients without PCOS by administering metformin, an insulin-sensitizing agent (Jinno et al., 2010). It is possible, therefore, that insulin resistance induces AGE accumulation as described already, which in turn deteriorates insulin resistance, leading to a vicious cycle of escalating ovarian dysfunction and infertility. Consistently, young normoglycemic women with PCOS have higher serum AGE than healthy women (Diamanti-Kandarakis et al., 2005).

Thus, AGE accumulation in infertile patients could contribute to diminished folliculogenesis and poor oocyte developmental potential. In this study, we examined whether AGE accumulation in blood and follicular fluid (FF) could affect follicular development, fertilization, embryonic development and achievement of pregnancy in patients undergoing IVF and ICSI. We also investigated factors favoring AGE accumulation.

Materials and Methods

Patients and study design

A consecutive series of 157 IVF/ICSI cycles in 157 infertile women were included in this study. Uterine infertility was excluded. Causes of infertility included ovarian dysfunction (52 women), tubal factors (19 women), endometriosis (7 women), male factors (3 women), ovarian dysfunction plus male factors (49 women), tubal plus male factors (18 women) or unexplained (9 women). PCOS was diagnosed in 71 women according to the 2003 Rotterdam criteria (The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group, 2004). Age, BMI and numbers of previous failed IVF/ICSI attempts in the subjects were 39.0 ± 0.38 years (mean ± SEM), 21.9 ± 0.2 kg/m² and 2.5 ± 0.3 failures, respectively.

On Day 3 of a spontaneous menstrual cycle, clinical examinations—including BMI, blood pressure (BP), blood sampling, hormone measurements and a 75-g oral glucose tolerance test (OGTT)—were carried out between 9 and 12 a.m. after 12 h of fasting. Within 3 months of these pre-examinations, patients underwent IVF/ICSI using the long protocol for ovarian stimulation by GnRH agonist and hMG administration, as described previously (Jinno et al., 2010). Briefly, buserelin acetate (Suprecur; Hoechst, Tokyo, Japan) was begun between Days 3 and 10 of the follicular phase and 8.8%, respectively.

Concentrations of TAGE (glyceraldehyde-derived AGE or glycer-AGE) in serum and follicular fluid were measured with a competitive ELISA using immunopurified glyceraldehyde-AGE antibody (Takeuchi et al., 2000). Briefly, 96-well microtiter plates were coated with 1 μg/ml glycer-AGE per well and kept overnight in a cold room. Wells were washed three times with 0.3 ml of phosphate-buffered saline (PBS)-TWEEN-20. Wells were then blocked by incubation for 1 h with 0.2 ml of PBS containing 1% bovine serum albumin (BSA). After washing with PBS-TWEEN-20, test samples (50 μl) were added to each well as a competitor for 50 μl of glycer-AGE antibody (1:1000), followed by incubation for 2 h at room temperature with gentle shaking by a horizontal rotary shaker. Wells then were washed with PBS-TWEEN-20 and developed with an alkaline-phosphatase-linked anti-rabbit IgG utilizing p-nitrophenyl phosphate as a colorimetric substrate. Results are expressed as glycer-AGE units (U) per milliliter of serum or follicular fluid, with 1 U corresponding to 1 μg of glycer-AGE-BSA standard, as described previously (Takeuchi et al., 2000). Sensitivity and intra- and inter-assay coefficients of variation were 0.02 U/ml, 6.2 and 8.8%, respectively.

Measurements of AGE

Pent concentrations in plasma and follicular fluid were measured using a competitive enzyme-linked immunosorbent assay (ELISA) kit (FSK Pentosidine; Pharmaceutical FUSHIMI, Kagawa, Japan) as previously described (Sanaka et al., 2002). In brief, pronase was added to plasma or follicular fluid to expose Pent molecules bound to proteins, and an incubation was carried out at 55°C for 1.5 h. The mixture was then heated in boiling water for 15 min to inactivate the enzyme. Pent antibody and pre-treated sample or Pent standard solution were added to each well of a microtiter plate and incubated at 37°C for 1 h. After washing, peroxidase-labeled goat anti-rabbit IgG polyclonal antibodies were added and incubated for 1 h at room temperature. A color development reagent containing 3,3′,5,5′-tetramethylbenzidine (TMB) was then added to each well. The reaction was stopped 10 min later by adding TMB stop buffer. Absorbance was measured within 10 min at 450 and 630 nm (main and reference wavelength, respectively). Sensitivity and intra- and inter-assay coefficients of variation were 0.4 μg/ml, 5.0 and 11.4%, respectively.

Concentrations of AGE in follicular fluid could affect follicular development, fertilization, embryonic development and achievement of pregnancy in patients undergoing IVF and ICSI. We also investigated factors favoring AGE accumulation.

Inform consent was obtained from all subjects. The study was approved by the Women’s Clinic Jinno Ethics Committee.

Ovarian stimulation, IVF and ICSI

Follicular development was stimulated with the ‘long protocol’, involving GnRH agonist and hMG administration, as described previously (Jinno et al., 2010). Briefly, buserelin acetate (Suprecur; Hoechst, Tokyo, Japan), at 900 μg per day, was administered nasally from Day 4 of the luteal phase preceding the IVF/ICSI cycle until administration of hCG. Daily administration of hMG (hMG-Ferring; Ferring Pharmaceuticals, Tokyo, Japan) was begun between Days 3 and 10 of the follicular phase in the IVF/ICSI cycle. hCG (Gonotropin, Teikokuzouki, Tokyo, Japan) at 10 000 IU was administered when one or more follicles were at least 18 mm in diameter and the serum 17β-estradiol concentration exceeded 300 pg/ml (a conversion factor to SI units: 3.671).

Oocytes were collected transvaginally 36 h after hCG administration. Semen was diluted 2-fold with human tubal fluid medium (no. 9962; Irvine Scientific, Irvine, CA, USA) containing 10% patient serum (Jinno, 1986). Diluted semen was centrifuged directly if semen analysis results were normal, or after placement upon two layers of Sil-Select solutions (FertiPro NV, Beemem, Belgium) if the analysis results were abnormal.
Semen analyses were performed according to World Health Organization criteria (World Health Organization, 1987). The sperm pellet was resuspended in the medium and then recentrifuged, after which motile spermatozoa were collected by a swim-up technique. Harvested oocytes were inseminated within 2–6 h by exposing to 80,000 motile spermatozoa per ml. ICSI was performed when the male partner had severe infertility with a sperm count <5 × 10^6 per ml and/or motility in fewer than 20% of sperm. Gardner’s G-III sequential medium (G-FERT, G-1 version 3 and G-2 version 3; Vitrolife, Goteborg, Sweden) supplemented with human serum albumin (HSA-solution; Vitrolife) was used for insemination and embryo culture.

Oocytes were considered fertilized when two pronuclei were observed at 17–19 h following insemination or ICSI. At 2, 3 or 5 days after oocyte retrieval, two or three embryos were transferred to the uterus according to the number and quality of developing embryos in each patient. Morphologically high-quality embryos at 2 days after oocyte retrieval were defined as Grades 1 and 2 according to Veeck’s criteria (Scott et al., 1991). Briefly, Grade 1 or 2 is defined as an embryo with equal size of cells accompanied with no or little fragmentation, respectively. Grade 3 is an embryo with different sizes of cells. Grade 4 or 5 is an embryo with moderate or severe fragmentation, respectively.

Morphology of blastocysts was assessed according to Gardner’s criteria (Gardner and Schoolcraft, 1999). Briefly, blastocysts were given a numerical score ranging from 1 to 6: 1, an early blastocyst with a blastocoel smaller than half of the embryo; 2, a blastocyst with a blastocoel larger than half of the embryo; 3, a full blastocyst with a blastocoel completely filling the embryo; 4, an expanded blastocyst; 5, a hatching blastocyst; and 6, a hatched blastocyst.

Embryologists who evaluated fertilization and embryonic development were blinded to information about AGE results. A 25-mg dose of progesterone was administered daily throughout the luteal phase after embryo transfer.

Clinical pre-examinations before IVF/ICSI attempts

Between 9 and 12 a.m. after at least 12 h of fasting, all patients underwent various examinations on Day 3 of a spontaneous menstrual cycle within 3 months before IVF/ICSI attempts. Physical examinations included BMI and systolic (S) and diastolic (D) BP. Glucose metabolism assessments included 75-g OGTT, homeostasis model assessment-insulin resistance index [HOMA-R, defined as fasting plasma glucose (FPG) × fasting immuno-reactive insulin (FIRI)/405] and hemoglobin (Hb) A1c. Lipid metabolism assessments included total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and triglyceride (TG). Endocrinologic assessments included LH, FSH, PRL, free testosterone, dehydroepiandrosterone sulfate (DHEA-S), 17β-estradiol, leptin and adiponectin.

Serum insulin and plasma glucose were measured by enzyme immunoassay (EIA, Lumipulse Insulin; Fuji Rebio, Tokyo, Japan) and amperometry using a GOD-fixation enzyme membrane and a peroxidizing electrode, respectively. Hb A1c was measured using rapid liquid chromatography. Sensitivities (with intra- and inter-assay coefficients of variation in parentheses) were 0.05 μU/ml (2.1%, 1.8%) for insulin; 0.1 mg/dl (1.0%, 1.0%) for glucose and 3.5% (0.81%, 0.82%) for Hb A1c.

Serum concentrations of 17β-estradiol, free testosterone, DHEA-S, FSH and PRL were measured with radioimmunoassay (RIA) kits from Diagnostic Products, Los Angeles, CA, except for FSH and PRL (Spack-S kits; Daiichi Radiosotope, Tokyo, Japan). Serum leptin was measured by RIA (Human Leptin RIA Kit; Linco Research, MO), and serum LH and adiponectin were measured by ELISA (Immulyze LH; Diagnostic Products and Human Adiponectin ELISA Kit; Otsukase Seiyaku, Tokyo, Japan). Sensitivities and intra- and inter-assay coefficients of variation were 10 pg/ml (5.6%, 6.8%) for 17β-estradiol; 0.6 pg/ml (3.1%, 7.7%) for free testosterone; 20 ng/ml (3.9%, 4.3%) for DHEA-S; 0.5 IU/l (1.5%, 2.7%) for FSH; 1.0 ng/ml (6.3%, 6.9%) for PRL; 0.7 IU/l (6.2%, 5.5%) for LH; 0.5 ng/ml (6.3%, 6.3%) for leptin and 1.9 μg/ml (4.1%, 4.7%) for adiponectin.

Statistical analysis

Data were analyzed using Student’s t-test, the χ² test, Fisher’s exact test, analysis of variance (ANOVA), Fisher’s protected least significant difference (PLSD) test, receiver-operating characteristics (ROCs) curve analysis, multiple logistic regression analysis, multiple regression analysis, Pearson analysis or discriminant analysis as appropriate. P-values of <0.05 were considered to indicate significance. Results are presented as the mean ± SEM unless otherwise stated.

Results

In 157 women overall, the mean number of follicles larger than 12 mm in diameter, and serum concentrations of 17β-estradiol on the day of hCG administration were 13.3 ± 1.1 and 3051 ± 201 pg/ml, respectively. The mean numbers of retrieved oocytes, fertilized oocytes, Day-2 embryos and morphologically superior Day-2 embryos were 11.8 ± 0.8, 7.0 ± 0.5, 6.2 ± 0.5 and 3.6 ± 0.3, respectively.

Concentrations of Pent, CML and TAGE in follicular fluid (FF-Pent, FF-CML and FF-TAGE, respectively) and those of TAGE in serum (S-TAGE) had significant negative correlations (Pearson analysis) with follicular growth in terms of number of follicles larger than 12 mm in diameter (FF-Pent, R = −0.32, P < 0.0001; FF-CML, −0.32, <0.0001; FF-TAGE, −0.24, <0.01; and S-TAGE, −0.22, <0.05, respectively) and serum concentrations of 17β-estradiol (FF-Pent, −0.29, <0.001; FF-CML, −0.31, <0.0001; FF-TAGE, −0.26, <0.01; and S-TAGE, −0.25, <0.01) on the day of hCG administration. Concentrations of Pent and CML in plasma (P-Pent and P-CML) and skin AGE estimates had no significant correlations with these parameters.

Similarly, FF-Pent, FF-CML, FF-TAGE and S-TAGE had significant negative correlations (Pearson analysis) with number of oocytes retrieved (FF-Pent, R = −0.34, P < 0.0001; FF-CML, −0.34, <0.0001; FF-TAGE, −0.26, <0.01; and S-TAGE, −0.23, <0.01) and number of fertilized oocytes (FF-Pent, −0.23, <0.01; FF-CML, −0.29, <0.001; FF-TAGE, −0.19, <0.05; and S-TAGE, −0.25, <0.01), but P-Pent, P-CML or skin AGE estimates did not have significant correlations with either numbers of oocytes retrieved or numbers of oocytes fertilized. Numbers of Day-2 embryos and morphologically superior Day-2 embryos correlated negatively and significantly (Pearson analysis) with FF-Pent (R = −0.22, P < 0.01 and −0.22, <0.01, respectively), FF-CML (−0.23, <0.01 and −0.16, <0.05) and S-TAGE (−0.21, <0.05 and −0.26, <0.01).

FF-Pent was significantly lower in patients whose IVF/ICSI resulted in ongoing pregnancy than in no pregnancies or spontaneous abortion (P < 0.05, ANOVA). S-TAGE was significantly lower in patients whose IVF/ICSI resulted in ongoing or lost pregnancy than in no pregnancy (P < 0.01, ANOVA; Fig. 1). Higher skin AGE estimates tended to be associated with better IVF/ICSI outcomes (P = 0.06, ANOVA).
were analyzed by a forward stepwise (Wald) logistic regression analysis. Among these factors, only age, FF-Pent and S-TAGE significantly predicted the achievement of ongoing pregnancy (Table I).

ROC curve analyses were performed concerning age, FF-Pent, S-TAGE and Day-3 FSH for prediction of IVF/ICSI outcome other than ongoing pregnancy, i.e. no pregnancy or clinical abortion (Fig. 2). Areas under the curves (AUC) for age (0.709, \(P = 0.002 \)), FF-Pent (0.686, \(P = 0.006 \)) and S-TAGE (0.667, \(P = 0.02 \)) but not for Day-3 FSH (0.592, \(P = 0.18 \)) were significantly greater than for the reference line (0.5). Cutoff values of 16.25 ng/ml and 7.24 U/ml for FF-Pent and S-TAGE, respectively, corresponding to the point nearest the coordinates on the ROC curve \((1 - \text{specificity} = 0, \text{sensitivity} = 1)\), were chosen as optimal cutoff values for further analyses.

The numbers of retrieved oocytes \((14.6 \pm 1.3 \text{ versus } 8.4 \pm 0.9, P = 0.0004, \text{ unpaired t-test})\), fertilized oocytes \((9.0 \pm 0.9 \text{ versus } 4.7 \pm 0.5, P = 0.0001)\), Day-2 embryos \((8.0 \pm 0.8 \text{ versus } 4.3 \pm 0.5, P = 0.0004)\) morphologically superior Day-2 embryos \((5.0 \pm 0.6 \text{ versus } 2.2 \pm 0.3, P = 0.0002)\), as well as ongoing pregnancy rates per cycle \(23\% \text{ (17/75 cycles) versus } 3.4\% \text{ (2/59 cycles), } P = 0.0015\) were significantly higher in 75 women with S-TAGE below 7.24 U/ml than in 59 women with S-TAGE above 7.24 U/ml. Similarly, the numbers of retrieved oocytes \((16.0 \pm 1.5 \text{ versus } 9.1 \pm 0.8, P < 0.0001)\), fertilized oocytes \((9.0 \pm 0.9 \text{ versus } 5.8 \pm 0.5, P = 0.002)\), Day-2 embryos \((8.0 \pm 0.9 \text{ versus } 5.1 \pm 0.5, P = 0.002)\) and morphologically superior Day-2 embryos \((4.9 \pm 0.6 \text{ versus } 2.9 \pm 0.3, P = 0.003)\) were significantly higher in 64 women with FF-Pent below 16.25 ng/ml than in 91 women with FF-Pent above 16.25 ng/ml.

Table I Results of forward stepwise (Wald) logistic regression analysis on associations of 12 factors with achievement of ongoing pregnancy by IVF/ICSI.

<table>
<thead>
<tr>
<th>Variables (unit)</th>
<th>Significance</th>
<th>Odds ratio</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>0.027</td>
<td>0.872</td>
<td>0.772–0.984</td>
</tr>
<tr>
<td>Pentosidine in follicular fluid (ng/ml)</td>
<td>0.027</td>
<td>0.890</td>
<td>0.803–0.987</td>
</tr>
<tr>
<td>Toxic AGEs in serum (U/ml)</td>
<td>0.044</td>
<td>0.740</td>
<td>0.552–0.991</td>
</tr>
</tbody>
</table>

Age, BMI, Day-3 FSH, numbers of previous IVF/ICSI attempts, presence/absence of tubal infertility, presence/absence of ovarian dysfunction, concentrations of Pent and CML in plasma, concentrations of TAGE in serum, and concentrations of Pent, CML and TAGE in follicular fluid.

Figure 1 Concentrations of pentosidine and Nε-carboxymethyl lysine (CML) in plasma (P-Pent and P-CML), those of toxic advanced glycation end-products in serum (S-TAGE), those of Pent, CML and TAGE in follicular fluid (FF-Pent, FF-CML and FF-TAGE), and skin AGE estimates by AGE-reader were compared among women whose IVF/ICSI resulted in no pregnancy, miscarriage and ongoing pregnancy.

Figure 2 ROCs curves of age, follicular fluid pentosidine (FF-Pent), serum TAGE (S-TAGE) and Day-3-FSH, and a discriminant score (DS) calculated from these four variables for prediction of IVF/ICSI outcome other than ongoing pregnancy, i.e. no pregnancy or miscarriage.
When S-TAGE was below 7.24 U/ml, number of retrieved oocytes as well as rate of ongoing pregnancy per cycle were high for age < 40 but significantly lower for ages above 40 (Table II). When S-TAGE was above 7.24 U/ml, however, number of retrieved oocytes was significantly decreased early on at ages 35–40 and further at ages above 40. The rate of ongoing pregnancy was compromised even at ages below 35, worsening further for ages above 35. Consequently, the largest differences in number of oocytes retrieved and ongoing pregnancy rate between high and low S-TAGE groups were observed at ages 35–40. Similarly, the rate of ongoing pregnancy was low irrespective of Day-3 FSH when S-TAGE was higher than 7.24 U/ml, but was high when Day-3 FSH was below 15 U/L with S-TAGE under 7.24 U/ml (Table II).

We then attempted to predict the achievement of ongoing pregnancy by discriminant analysis using four variables: age, FF-Pent, S-TAGE and Day-3 FSH. Canonical discriminant function coefficients of these parameters were determined (age, 0.725; FF-Pent, 0.617; S-TAGE, 0.524; Day-3 FSH, 0.307; Wilks’ lambda, 0.877; P = 0.002). The discriminant score (DS) was defined as the sum of each variable multiplied by its coefficient; when the DS was less than a cutoff value, achievement of ongoing pregnancy could be predicted. The optimal cutoff value as determined by an ROC curve (AUC = 0.786, P < 0.001, Fig. 2) as described already, was demonstrated to be 46.0. The result of discriminant analysis using this optimal cutoff was shown in Table III (sensitivity = 0.62 and specificity = 0.90; P < 0.001, x² test).

Correlations between AGE and physical and laboratory parameters first were screened by Pearson analysis. S-TAGE correlated positively and significantly with leptin (R = 0.51, P < 0.001), BMI (R = 0.35, P < 0.0001), LDL (R = 0.37, P < 0.0001), TC (R = 0.27, P < 0.01), TG (R = 0.31, P < 0.001), FPG (R = 0.25, P < 0.01), PG after 60 min (R = 0.25, P < 0.01), HOMA-R (R = 0.21, P < 0.05), insulin (R = 0.19, P < 0.05) and age (R = 0.19, P < 0.05). Of these 10 parameters, only leptin (standardized coefficient β, 0.51; P < 0.001) correlated significantly with S-TAGE by stepwise multiple regression analysis (S-TAGE = 0.373 × leptin + 5.041; adjusted R² = 0.24, P < 0.001). FF-Pent correlated positively and significantly with age (R = 0.27, P < 0.01, Pearson analysis) and Day-3 FSH (R = 0.22, P < 0.01), and correlated negatively with Hb A1c (R = −0.17, P < 0.05). Stepwise multiple regression analysis using these three parameters as independent variables indicated that FF-Pent equalled 0.360 × age − 4.237 × HbA1c + 0.104 × Day-3-FSH + 24.306 (adjusted R² = 0.13, P < 0.001; for age, standardized coefficient β was 0.27, P < 0.01; for HbA1c, β = −0.21, P < 0.01; and for Day-3 FSH, β = 0.18, P < 0.05). Partial correlations between S-TAGE or FF-Pent and various parameters

Table II Numbers of retrieved oocytes and rates of ongoing pregnancy by age, Day-3-FSH levels and serum toxic advanced glycation end-products (S-TAGE) levels.

<table>
<thead>
<tr>
<th>S-TAGE < 7.24 U/ml</th>
<th>S-TAGE ≥ 7.24 U/ml</th>
<th>Probabilitya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 35</td>
<td>17.5 ± 2.0b</td>
<td>16.1 ± 2.7</td>
</tr>
<tr>
<td>30% (6/20 cycles)c</td>
<td>14% (1/7 cycles)</td>
<td>NS</td>
</tr>
<tr>
<td>35 ≤ age < 40</td>
<td>18.0 ± 2.8</td>
<td>10.6 ± 1.7a</td>
</tr>
<tr>
<td>38% (10/26 cycles)</td>
<td>4.8% (1/21 cycles)</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>Age ≥ 40</td>
<td>9.5 ± 1.5f</td>
<td>5.3 ± 0.8e</td>
</tr>
<tr>
<td>3.4% (1/29 cycles)</td>
<td>0% (0/31 cycles)</td>
<td>NS</td>
</tr>
<tr>
<td>FSH < 10</td>
<td>18.1 ± 1.6</td>
<td>11.9 ± 1.3j</td>
</tr>
<tr>
<td>25% (13/52 cycles)</td>
<td>6.1% (2/33 cycles)</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>10 ≤ FSH < 15</td>
<td>9.0 ± 1.7</td>
<td>4.9 ± 0.7</td>
</tr>
<tr>
<td>29% (4/14 cycles)</td>
<td>0% (0/16 cycles)</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>FSH ≥ 15</td>
<td>2.8 ± 0.8</td>
<td>2.7 ± 0.8</td>
</tr>
<tr>
<td>0% (0/9 cycles)</td>
<td>0% (0/10 cycles)</td>
<td>NS</td>
</tr>
</tbody>
</table>

aData in the same raw were compared between high and low S-TAGE by unpaired t-test, x² test or Fisher’s exact test.

bNumber of retrieved oocytes per stimulated cycle.

Table III Association between the DSb and achievement of ongoing pregnancy by IVF/ICSI.b

| DS Ongoing pregnancy Failed (abortion or no pregnancy) Total |
|------------------|---------------------|-----------------|
| <46 | 17 (28%) | 44 (72%) | 61 (100%) |
| > or = 46 | 2 (3%) | 71 (97%) | 73 (100%) |
| Total | 19 | 115 | 134 |

bThe DS is defined as the sum of each variable multiplied by its coefficient (age, 0.725; FF-Pent, 0.617; S-TAGE, 0.524; or Day-3 FSH, 0.307).

bP < 0.001, x² test.
Discussion

This study presents the first direct clinical evidence based on human IVF/ICSI therapy for an important role of AGE accumulation in ovarian dysfunction and diminished fertility. Accumulations of Pent, CML and TAGE in follicular fluid and TAGE in serum correlated negatively and significantly with follicular growth, fertilization and embryonic development. Lower concentrations of Pent in follicular fluid and TAGE in serum were the most significant novel predictors for achievement of ongoing pregnancy, acting independently of conventional determinants like age and Day-3 FSH. Elevation of serum TAGE above 7.24 U/ml appeared to indicate ovarian dysfunction causing diminished fertility, even with young age and normal Day-3 FSH. A DS calculated from four variables—age, follicular fluid Pent, serum TAGE and Day-3 FSH (DS = the sum of each variable multiplied by its coefficient: age, 0.725; FF-Pent, 0.617; S-TAGE, 0.524; or Day-3 FSH, 0.307)—correlated best with achievement of ongoing pregnancy.

Our observations are consistent with previous reports of AGE affecting reproduction. While immunohistochemical localization of AGE such as CML and Ne-carboxyethyl lysine was observed in normal and PCOS ovaries, staining was stronger in the granulosa cell layer and endothelial cells of PCOS ovaries (Diamanti-Kandarakis et al., 2007). Young normoglycemic women with PCOS had higher serum AGE than healthy women (Diamanti-Kandarakis et al., 2005). Positive signals for Pent, ubiquitin and activated caspase 12, as well as nick-end-labeling evidence of apoptosis were detected in human oocytes of primordial, primary and atretic follicles in premenopausal women without chronic diseases; these signals increased with age (Matsumine et al., 2008). Glucose-derived AGE induced secretion of chemokines and apoptosis in human first-trimester trophoblasts in vitro, suggesting that AGE could impair implantation and placental function (Konishi et al., 2004).

Accumulation of AGE in follicles and circulation may simply reflect the severity of AGE-forming states such as insulin resistance, dyslipidemia, oxidative stress and renin–angiotensin system activation (Ulrich and Cerami, 2001; Thomas et al., 2005; Unoki and Yamagishi, 2008), which might directly impair folliculogenesis (Dunaif, 1997; Tatone et al., 2008). More likely, however, AGE could impact folliculogenesis synergistically with these states. Accumulation of AGE in tissues and cells induce macromolecular trapping and cross-linking, causing molecules to malfunction and resist removal by proteolysis (Ulrich and Cerami, 2001; Thomas et al., 2005). Directly and indirectly through RAGE, AGE increases oxidative stress (Thomas et al., 2005), a major cause of macromolecular damage in follicles (Tatone et al., 2008) and other cells (Terman and Brunk, 2004) during aging. Interaction of TAGE with RAGE alters intracellular signaling and gene expression, releases pro-inflammatory molecules and produces oxidative stress, all of which contribute to diabetic vascular complications (Takeuchi and Yamagishi, 2009), which may be mirrored in the follicular vasculature.

Diabetic patients have higher S-TAGE than healthy subjects, while S-TAGE is related to cumulative hyperglycemic burden (Nakamura et al., 2007; Takeuchi and Yamagishi, 2009). Even in a non-diabetic general population, S-TAGE was related positively to FPG and LDL (Yamagishi et al., 2009). In our study, S-TAGE correlated positively with leptin, BMI, LDL, TC, TG, FPG, PG at 60 min, HOMA-R, insulin and age, all of which are related to obesity, dyslipidemia, hyperglycemia and insulin resistance. Of 10 parameters, leptin was the most significant determinant of S-TAGE, probably reflecting the induction of leptin resistance by hyperleptinemia associated with obesity. This exacerbates obesity and insulin resistance, leading to a vicious cycle of escalating metabolic derangement (Zhang and Scarpace, 2006).

Our study showed that women with S-TAGE of at least 7.24 U/ml had fewer retrieved oocytes and lower rates of ongoing pregnancy, even when they were younger than 40 years or had Day-3 FSH below 10 IU/l. This observation supports two important points. First, S-TAGE measurement may facilitate early detection of diminished female fertility when Day-3 FSH is not yet elevated, allowing successful treatment. Elevation of serum Day-3 FSH, which occurs when remaining primordial follicles have decreased to the extent seen in perimenopausal women, is an advanced sign of severely diminished ovarian reserve limiting success of treatment (Scott and Hofmann, 1995). Second, elevated TAGE appears to decrease follicular reserve or functionally suppress folliculogenesis.

Results of this study suggest a novel treatment strategy for ovarian dysfunction by decreasing AGE or AGE effects. Benfotiamine, a lipid-soluble thiamine derivative, is thought to inhibit AGE formation by multiple mechanisms including interactions with post-Amadori precursors of AGE, reduction of triose-phosphate generation in hyperglycemia by acting as a co-enzyme in mitochondrial energy production from carbohydrate metabolism and regulation of glucose metabolism (Thomas et al., 2005). Serum AGE concentrations and tissue AGE accumulation in the retina and kidney have been decreased by benfotiamine (Babaei-Jadidi et al., 2003; Hammes et al., 2003). We performed a pilot treatment with benfotiamine, 75 mg per day, for 3 months for seven non-pregnant patients and repeated assisted reproductive technology (ART) and AGE measurements (unpublished data). Concentrations of CML (from 4.1 ± 0.3 to 3.0 ± 0.2 μg/ml) and TAGE (from 3.1 ± 0.03 to 2.0 ± 0.27 U/ml) in follicular fluid were decreased significantly by benfotiamine, although significant effects on ART outcomes were not concluded because of a limited numbers of subjects. A larger prospective randomized study remains to be performed.

Other agents (such as pyridoxamine, carnosine, alpha-lipoic acid, ACE inhibitors, angiotensin receptor antagonists, metal chelators, metformin and peroxisome proliferator receptor agonists) are also potential inhibitors of AGE accumulation (Thomas et al., 2005). Interruption of adverse effects of AGE by soluble RAGE (Koyama et al., 2009) or a RAGE antagonist may be yet another approach applicable to the treatment of ovarian dysfunction.

Authors’ roles

M.J., MD, played a major role in formulation of study design, acquisition of data and interpretation of data, writing the manuscript and revising it critically and final approval of the version to be published. M.T., PhD, was involved in acquisition of TAGE data by measuring TAGE, (ii) writing a part of TAGE measurement and (iii) final approval of the version to be published. A.W. acquired clinical ART data, wrote a part of clinical ART procedures and was involved in final approval of the version to be published. K.T., MD, played a role...
in analysis and interpretation of data, wrote part of data analysis and
was involved in final approval of the version to be published. J.H., N.E.
acquired the ART embryonic data, wrote part of embryonic assess-
ments and was involved in final approval of the version to be pub-
ished. A.M. obtained the Pent and CML data by measuring them,
wrote part of Pent and CML measurements and was involved in
final approval of the version to be published.

References

Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ.
Prevention of incipient diabetic nephropathy by high-dose thiamine

Bjorntorp P, Rosmond R. The metabolic syndrome—a neuroendocrine

Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatas G. Increased levels
of serum advanced glycation end-products in women with polycystic

Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D,
Pawlczyk L, Papavassiliou AG, Duleja A. Immunohistochemical
localization of advanced glycation end-products (AGEs) and their
receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol

Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism

Eck MV, Berkhof H, Nicolson N, Sulon J. The effects of perceived stress,
traits, mood states, and stressful daily events on salivary cortisol.

Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In:
Jansen R, Mortimer D (eds). Towards reproductive certainty: Infertility

Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J,
Bierhaus A, Nawroth P, Hannak D et al. Benfotiamine blocks three
major pathways of hyperglycemic damage and prevents experimental

Jinno M. Comparison of media used for human in vitro fertilization

Jinno M, Kondou K, Teruya K. Low-dose metformin improves pregnancy
rate in in vitro fertilization repeaters without polycystic ovary
syndrome: Prediction of effectiveness by multiple parameters related

Konishi H, Nakatsuka M, Chekir C, Noguchi S, Kamada Y, Sasaki A,
Hiramatsu Y. Advanced glycation end products induce secretion of
chemokines and apoptosis in human first trimester trophoblasts. Hum

Koyama H, Yamagishi SI, Nishizawa Y. RAGE and soluble RAGE:
potential therapeutic targets for cardiovascular diseases. Mol Med
2007;13:625–635.

accumulation in human oocytes and their correlation to age-related

Nakamura K, Yamagishi SI, Matsui T, Adachi H, Takeuchi M, Imaizumi T.
Serum levels of soluble form of receptor for advanced glycation end
products (sRAGE) are correlated with AGEs in both diabetic and

Ohgi S, Nakagawa K, Kojima R, Ito M, Honkawa T, Saito H. Insulin
resistance in oligomenorrheic infertile women with non-polycystic

Paolisso G, Tagliamonte MR, Rizzo MR, Giugliano D. Advancing age
and insulin resistance: new facts about an ancient history. Eur J Clin Invest

Demonstration of a relationship between levels of physical training
and insulin-stimulated glucose utilisation in normal humans. Diabetes

Sanaka T, Funaki T, Tanaka T, Hoshi S, Niyawaya J, Taitoh T. Plasma
pentosidine levels measured by a newly developed method using

Scott RT Jr, Hofmann GE. Prognostic assessment of ovarian reserve. Fertil

Scott RT, Hofmann GE, Veeck LL, Jones HW Jr, Muasher SJ. Embryo
quality and pregnancy rates in patients attempting pregnancy through

Takeuchi M, Yamagishi S. Involvement of toxic AGEs (TAGE) in the
pathogenesis of diabetic vascular complications and Alzheimer’s

Takeuchi M, Makita Z, Bucala R, Suzuki T, Koike T, Kameda Y. Immunological
evidence that non-carboxymethyllysine advanced
glycation end-products are produced from short chain sugars and

Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R,
Artini PG, Piomboni P, Focarelli R. Cellular and molecular aspects of

Terman A, Brunk UT. Aging as a catabolic malfunction. Int J Biochem Cell

The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop
group. Revised 2003 consensus on diagnostic criteria and longterm
health risks related to polycystic ovary syndrome (PCOS). Hum

Thomas MC, Baynes JW, Thorpe SR, Cooper ME. The role of AGEs and
AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets

Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog
Horm Res 2001;56:1–21.

Unoki H, Yamagishi S. Advanced glycation end products and insulin

Vanhattel TB. Stress: a risk factor for serious illness. Metabolism 2002;
51:40–45.

World Health Organization. WHO Laboratory Manual for Examination
of Human Semen and Semen-Cervical Mucus Interaction. Cambridge:

Yamagishi S, Adachi H, Nakamura K, Takeuchi M, Enomoto M, Fukami A,
Otsuka M, Kumagae S, Nanjo Y et al. Low-density lipoprotein
levels are one of the independent determinants of circulating levels of
advanced glycation end products in non-diabetic subjects. Clin Cardiol

Zhang Y, Scarpace PJ. The role of leptin in leptin resistance and obesity.
Physiol Behav 2006;88:249–256.