Induction of endometriosis alters the peripheral and endometrial regulatory T cell population in the non-human primate

A. Braundmeier1,*, K. Jackson1, J. Hastings2, J. Koehler1, R. Nowak1, and A. Fazleabas3

1Department of Animal Sciences, University of Illinois, 1207 W. Gregory Drive, Urbana, IL 61801, USA 2Human Reproductive Sciences Unit Centre for Reproductive Biology, The Queen’s Medical Research Institute, Edinburgh, UK 3Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA

*Correspondence address. Tel: +1-217-265-0435; Fax: +1-217-333-8286; E-mail: braundme@illinois.edu

Submitted on December 6, 2011; resubmitted on February 3, 2012; accepted on February 16, 2012

BACKGROUND: Endometriosis is a gynecological condition that is characterized by extreme abdominal pain and also decreased fertility. Regulatory T cells (Tregs) have immunosuppressive activity critical for embryonic implantation and likewise the acceptance of tissue engraftment. Utilizing the induced non-human primate (Papio anubis) model of endometriosis, we hypothesize that endometriosis decreases the peripheral and endometrial Treg profile, whereas ectopic lesions have increased Treg localization.

METHODS: Peripheral blood and endometrium were obtained throughout the menstrual cycle prior to and after induction of disease. Animals were randomly assigned to control (n = 7) or diseased (n = 16) treatment groups. Endometriosis was induced by i.p. injection of autologous menstrual tissue for 2 consecutive months during menses. Peripheral blood and endometrial tissue were collected at d9-11PO at 1, 3, 6, 9, 12 and 15 months post-induction of disease for fluorescence-activated cell sorting, quantitative RT–PCR and immunohistochemistry. Ectopic lesions were excised at 1 and 6 months post-inoculation and also harvested at necropsy (15 months) and processed for RNA of IHC. Identification of Tregs through analysis of FOXP3 expression was conducted utilizing several methodologies. Differences were determined by non-parametric statistical analysis between all treatment groups and time points.

RESULTS: In control animals, the proportion of peripheral natural Tregs (nTregs) was reduced (P < 0.05) during the mid- and late secretory stages of the menstrual cycle compared with menses. The induction of disease decreased peripheral Treg expression at early time points (P < 0.05) and this remained low throughout the time course, compared with the pre-inoculatory level of an individual. FOXP3 gene expression and Treg populations were also decreased in the eutopic endometrium (P < 0.05) compared with control animals, whereas these parameters were increased in ectopic lesions (P < 0.05), compared with the eutopic endometrium.

CONCLUSIONS: Our data suggest that a reduction in peripheral Tregs may be a causative factor for endometriosis-associated infertility, while the increase in ectopic Treg expression may aid lesion development. Furthermore, endometriosis appears to disrupt Treg recruitment in both eutopic and ectopic endometrium.

Key words: endometriosis / regulatory T cells / primate / fertility / pathogenesis

Introduction
Endometriosis is classified pathologically as the existence of endometrial fragments in the abdominal cavity (Sampson, 1925). The growth of ectopic endometrium is stimulated by estrogen and normally suppressed by progesterone (Banu et al., 2008; Hirota et al., 2008; Monkvedick et al., 2009), although the theory of progesterone-resistant ectopic growth has been validated in some cases of endometriosis (Igarashi et al., 2005; Bulun et al., 2006; Burney et al., 2007; Tranguch et al., 2007; Fazleabas, 2010). The primary clinical symptoms of endometriosis are infertility related to endometrial dysregulation (Sherwin et al., 2008; Jones et al., 2009; Umezawa et al., 2009); poor oocyte development (Barnhart et al., 2002); anatomic distortion of the Fallopian tubes and intense abdominal pain from ectopic lesion growth
(Medina and Lebovic, 2009; Wang et al., 2009). Although this disease has been recognized for over a century, the pathophysiology of ectopic lesion development is still unclear (Meyer, 1919). A major limitation to understanding the pathophysiology is the time from the initiation of the disease until the onset of symptoms, and differential diagnosis takes on average of 8–11 years (Arruda et al., 2003). Recently endometriosis has been investigated as a reproductive inflammatory immune disorder because of its negative effect on fertility status and the high degree of pain associated with this disease (Sinaii et al., 2002; Cakmak et al., 2009; Weiss et al., 2009; Berbic and Fraser, 2011; Maybin et al., 2011; Osuga et al., 2011).

The peritoneal cavity of patients with endometriosis has been well characterized as a proinflammatory environment. Peritoneal fluid from patients with endometriosis has elevated levels of inflammatory cytokines which is believed to result from improper clearance of ectopic fragments (Hou et al., 2009; Kyama et al., 2009; Kuroda et al., 2010). Additionally, the immune cell profile of the peritoneal cavity, eutopic endometrium and lymph nodes of patients with endometriosis has an enhanced proinflammatory phenotype indicated by the Th1/Th2 cell ratio, macrophage activation and also natural killer cell activity (Tran et al., 2009; Wang et al., 2010a; Hey-Cunningham et al., 2011; Mier-Cabera et al., 2011; Podgaec et al., 2011; Sikora et al., 2011). The immunological shift caused by peritoneal implantation of endometrium fragments has prompted the development of immune-based therapeutic targets with variable success in the inhibition of ectopic lesion development (Altan et al., 2010; Krikun et al., 2010; Lv et al., 2010). More recently, subfertility and ectopic lesion growth were attributed to dysregulation of immunosuppressor cells known as regulatory T cells (Tregs; Christodoulakos et al., 2007; Berbic et al., 2010).

Tregs are derived from the CD4 lineage of T cells and are produced naturally in the thymus (nTregs) and characterized by their expression of both interleukin (IL)-10 receptor (CD25+) and the forkhead transcription factor (Foxp3+). Additionally, CD4+ T cells can adapt to become Tregs through the induction of Foxp3 by the cytokine microenvironment in target tissues (Th3:CD4+CD25−Foxp3+) and (Tr1:CD4+CD25+Foxp3−; Bluestone and Abbas, 2003; Sakaguchi et al., 2010). Activated nTregs suppress the responses of effector T cells indirectly by inhibiting the dendritic cells or other antigen presenting cells (APCs) from triggering effector T cell proliferation (Tang et al., 2006). Both natural Tregs (nTreg) and adaptive Tregs can confer immune tolerance through the production of the anti-inflammatory cytokines IL-10 and transforming growth factor-β which then inhibit the activation of T helper cells (Th; Bach and Chatenoud, 2001; von Boehmer, 2005). Migration of peripheral Tregs to target tissues is stimulated through the chemokine ligand/receptor CXCL12/CXCR4 (Zou et al., 2004). In the reproductive system, Tregs are critical for tolerance of the maternal fetal allograft (Aluvihare et al., 2004) and patients with recurrent miscarriage have decreased peripheral and endometrial Treg expression (Sasaki et al., 2004; Yang et al., 2008; Basta et al., 2011). Tregs are also critical for tumor growth by providing an immunologically protective microenvironment promoting tumor metastasis (Bergmann et al., 2007; Strauss et al., 2007; Wang et al., 2012). The importance of Tregs for embryonic implantation and tumor growth validate the investigation of Treg expression during the pathogenesis of endometriosis.

The baboon (Papio anubis) is an excellent model for the study of biological and pathological gynecological conditions. Unlike rodents and mice, baboons have a menstrual cycle similar to humans both in terms of duration and endometrial remodeling. In addition, baboons also develop spontaneous endometriosis with ectopic lesions resembling those of women (Merrill, 1968; Folese and Stout, 1978). Endometriosis can also be induced by injection of menstrual effluent into the pelvic cavity (D’Hooghe, 1997; Fazleabas et al., 2002) allowing investigators to study disease progression from the initial onset of the disease. We hypothesize that Tregs are decreased in the eutopic endometrium resulting in reduced fertility and are increased in ectopic endometrium allowing for growth and maintenance of lesions. Using this animal model of induced endometriosis in olive baboons (P. anubis), the aims of this study were to (i) determine the expression and localization of Tregs in the eutopic endometrium throughout the disease pathogenesis during the window of uterine receptivity; (ii) determine if Tregs promote and maintain the eutopic endometrial growth and (iii) determine if surgical removal of lesions restores Treg expression in the eutopic endometrium and inhibits that expression in the ectopic endometrium.

Materials and Methods

Animal procedures and induction of endometriosis

Twenty-three animals were included in this study and randomly assigned to the following groups (controls: 1-month treatment, n = 3; 6-month treatment, n = 4; diseased: 1-month sham, n = 4; 1-month excision, n = 4; 6-month sham, n = 4 and 6-month excision, n = 4). All animals were of reproductive age, ranged in weight from 15 to 20 kg and were confirmed disease free by laparoscopic viewing of the abdominal cavity prior to inoculation. Endometriosis was induced experimentally in olive baboons by laparoscopic i.p. inoculation of menstrual endometrium on Day 2 of two consecutive menstrual cycles, where Day 1 was the first day of menses (Fig. 1). Control animals received laparoscopic injection of warm saline. Details of the inoculation procedure and tissue collection have been previously described (Fazleabas et al., 2002). Animals were determined to have induced endometriosis upon the visualization of multiple ectopic lesions (red, brown, blue and white) and adhesions on the surface of peritoneal organs. The staging of disease was 2 or 3, according to the American Society for Reproductive Medicine guidelines (Medicine, 1997). Animals could receive a total of five invasive (laparotomy) surgeries according to our Institutional Animal Care and Use Committee (IACUC) protocol, which justified the need for two control surgical groups. The surgical procedure timeline began the first month following the second inoculation and described as follows: control (-free animals) received surgery at 1, 3, 6, 9 and 15 months (n = 3; surgical controls for 1 month groups) or 1, 3, 6, 12 and 15 months (n = 4; surgical controls for 6 month groups); 1 month groups received surgery at 1, 3, 6, 9 and 15 months post-inoculation; 6 month groups received surgery at 6, 9, 12 and 15 months post-inoculation. Operational procedures (sham or excisional) were performed on animal groups at 1 or 6 months post-inoculation; therefore animals receiving a 1-month (operational) time point were compared with their 6- and 15-month (post-excisonal) time points and animals receiving a 6-month (operational) time point were compared with their 15-month (post-excisonal) time point (Fig. 1). Surgical and sham procedures were performed through the introduction of two operational ports into the abdominal wall, lateral of the pelvic midline. Lesions were removed by cauternization or curettage procedures. Animals were housed in the animal care facility at the University of Illinois, Chicago, USA, and all studies were approved by the University of Illinois IACUC.
Analysis of lymphocyte preparations using a fluorescence-activated cell sorter

Peripheral blood was collected in heparinized tubes during: mense, late proliferative (d9-12 post-mense), mid-secretory (surgical time point) or late secretory stages of the menstrual cycle. Peripheral mononuclear cells were isolated by the standard Ficoll-paque method. Briefly blood was diluted with an equal volume of sterile phosphate-buffered saline (PBS) and gently layered over the Ficoll paque solution. Samples were centrifuged for 40 min at 400 × g at 20°C and the lymphocyte layer (buffy coat) was isolated and further washed with PBS. Lymphocytes were treated with heat-inactivated human AB serum to block Fc receptor binding and then hemocytometer counts were performed. Lymphocytes were stained directly for T cell surface antigens using: FITC-CD4 (550628; BD Pharmingen, Franklin Lakes, NJ, USA), APC-CD25 (17-0259; eBioscience, San Diego, CA, USA) and PE-FOXp3 (12-4776; eBioscience) according to manufacturer recommendations. Lymphocyte cell populations were sorted using Facscan and Cellquest software (Becton Dickinson, Franklin Lakes, NJ, USA). Populations were gated initially on CD4 fluorescent intensity and CD4+ subpopulations were identified by CD25 and Foxp3 fluorescent intensity.

Immunohistochemical localization of Tregs

Baboon endometrial, lesion and femoral lymph tissues were fixed in 10% neutral-buffered formalin for 24 h. Tissues were then processed and embedded in paraffin blocks. Tissue blocks were sectioned at 5 μm and mounted on poly-L-lysine coated slides. Antigen retrieval was performed by boiling sections in Target Retrieval Solution (pH 9.0; S2367; Dako, Carpentaria, CA, USA) for 40 min. Non-specific binding was blocked with 5% normal goat serum in PBS containing 1% bovine serum albumin (BSA) for 20 min. Slides were then incubated with 10 μg/ml rat monoclonal antibody anti-human Foxp3 (14-4776; eBioscience) in 1% BSA in PBS at 4°C for 2 h. Non-specific rat immunoglobulin (Ig)G (10 μg/ml) in 1% BSA in PBS was used as a negative control. Femoral lymph node tissue was used as a positive control. Slides were washed three times for 5 min each in PBS then incubated with biotinylated horse anti-rat IgG (Vector Labs, Burlingame, CA, USA) diluted 1:200 with 1% BSA in PBS for 60 min at room temperature. Indirect detection of Foxp3 protein was performed by incubation of sections for 45 min with avidin–biotinylated peroxidase complex, reacted with 0.2 mg/ml Metal-3, 3′-diaminobenzidine (Sigma, St. Louis, MO, USA) in Tris–HCl buffer, pH 7.6, for 3 min and finally counterstained with hematoxylin.

Stained slides were digitally scanned using a Nanozoomer 2.0 HT (Hamamatsu, Japan) and these digital images were used for quantification of Foxp3 staining intensity. Staining intensity was calculated by counting the number of cells stained positive for Foxp3 per total area of section. Staining intensity was then normalized to 10 mm² for all tissues stained.

RNA isolation and quantitative RT-PCR

Total RNA was extracted from tissue using TRIzol™ (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Total RNA (1 μg) was used in 20-μl volume reverse transcription reactions using high-capacity reverse transcription kit (4368814; Applied Biosystems, Atlanta, GA, USA). Synthesized cDNA was then used for real-time PCR analysis. Real-time PCR analyses were performed in 10-μl volumes containing 1X TaqMan® Universal PCR Master Mix No AmpErase® UNG (4324018, Applied Biosystems), diluted cDNA and RNase-free water. Primer probe sets used for CXCL12 (Hs00171022_m1) for Foxp3 (Hs01085834_m1) amplification were purchased from Applied Biosystems. Histone 3.3 primers (Forward: GGGCCTCCGTGAATTAGAC; Reverse: CGCTGGAAGGGAAAGTTTGC) and probe (CGCTGGAAGGGAAAGTTTGC) were designed for use as an internal control. Minor groove binding probes were labeled with fluorescent reporter dye FAM™ to detect PCR products directly. Real-time PCR amplification and detection were performed in MicroAmp optical 384-well reaction plates using the ABI Prism 7000 sequence detection system. Amplification conditions included 10 min at 95°C, then 40 thermal cycles of denaturing for 15 s at 95°C and annealing/extension for 1 min at 60°C. Relative fold induction levels were calculated using the comparative C_T method for separate cycle amplification. Fold induction was expressed relative to H3.3 endogenous control gene after normalization for background signal.

Scoring ectopic lesions

At each surgical time point, the entire peritoneal cavity was imaged by laparoscopy and the following lesion information was collected: lesion location, color and operational procedure (excised: yes/no). Lesion dynamics were recorded for each surgical time point to allow for lesion tracking throughout disease progression. After the terminal procedure (at 15 months) each animal had their lesion dynamics evaluated by: (i) the

Figure 1 Schematic of induction of endometriosis and surgical procedures in non-human primates (baboon). Gray arrows indicate the time points of i.p. inoculation using autologous menstrual tissue. Black arrows indicate laparoscopy and endometriectomy surgical time points and peripheral blood collection during the window of receptivity d9-11PO (post-ovulatory). White arrows indicate operational procedure (sham or excisional) time points. All animals were euthanized at 15 months following disease induction.
total number of lesions found at the 15-month procedure, (ii) number of new lesions at 15 months, (iii) the total number of lesions which had developed over the entire time frame and (iv) the number of lesions that re-grew after the excisional procedure (1 month or 6 months). The percentage of sustained lesions, percentage of lesions regressed and the percentage of lesion regrowth was calculated for each animal with induced disease.

\[
\%	ext{ of lesions sustained} = 100 \times \frac{\# \text{of total lesions at 15 months} - \# \text{of new lesions at 15 months}}{\# \text{lesions developed over the entire study}}
\]

\[
\%	ext{ of lesions regressed} = 100 - \% \text{ sustained}
\]

\[
\%	ext{ of lesions regrown} = 100 \times \frac{\# \text{of lesions regrown}}{\# \text{of lesions excised}}
\]

Statistical analysis

An analysis of variance model to evaluate the experimental variability between all treatment groups was used to determine differences in experimental end-points. For all end-points, the difference between treatment groups was analyzed using post-hoc orthogonal comparisons to determine the statistical significance for each treatment. Specifically, data from the fluorescence-activated cell sorter (% of CD4\(^+\) cells) and for gene expression studies, threshold cycle was defined as the cycle number where all transcripts are in the linear phase of amplification. The difference between threshold cycle of Foxp3-positive cells and for gene expression studies [the difference between surgical treatment and time points were evaluated. For all analyses, a P < 0.05 was considered statistically significant. SAS (Cary, NC, USA) statistical software was used to perform all statistical testing.

Results

Peripheral Treg cell populations are altered by induction of endometriosis

Analysis of nTreg (CD4\(^+\)/CD25\(^+\)/Foxp3\(^+\)) and adaptive Treg (CD4\(^+\)/CD25\(^+\)/Foxp3\(^-\) or CD4\(^+\)/CD25\(^-\)/Foxp3\(^+\)) populations showed that the most prevalent Treg population was Tr1 (CD4\(^+\)/CD25\(^+\)/Foxp3\(^-\)) at 2.5–5%, followed by the Th3 subpopulation at 1.5% and nTregs were the least abundant at 0.25–1% of all CD4\(^+\) cells (Fig. 2). nTregs were further reduced in the peripheral blood collected during the secretory stage (mid- and late) compared with either menses (Fig. 2) or normalized to individual pre-inoculated levels. For FACS analysis, the proportion of each Treg type was compared with either menses (Fig. 2) or normalized to individual pre-inoculated levels. Orthogonal contrasts statements were written that measured for differences in treatment groups (control versus diseased; sham versus excisional) over the time course of disease progression. For FACS analysis, the proportion of each Treg type was compared with either menses (Fig. 2) or normalized to individual pre-inoculated levels and then compared across time points (Fig. 3). For gene expression studies, threshold cycle was defined as the cycle number where all transcripts are in the linear phase of amplification. The difference between CXCL12, Foxp3 and H3.3 was then normalized to control animal expression and expressed as a relative fold difference.

![Figure 3](https://academic.oup.com/humrep/article-abstract/27/6/1712/619531/1715)
Natural and Th3 cell populations were reduced as early as 1 month post-inoculation and remained low at each following surgical time point. The Tr1 cell population showed a transient reduction during the proliferative stage (only reduced at 3, 12 and 15 months) but was not reduced until later time points (12 and 15 months) during the mid-secretory stage of the cycle. The reduction of peripheral Treg cells was not altered by operational (sham versus excisional) procedures (data not shown). These results indicate that the induction of peritoneal endometriosis results in a significant reduction of Tregs throughout the pathogenesis of disease induction. These results also suggest that nTregs and Th3 cells are more susceptible to disease status than Tr1 cells.

Foxp3 and CXCL12 expression in eutopic endometrium

Our next investigation examined if the reduction of peripheral Treg cell populations upon disease induction was similarly evident in the eutopic and ectopic endometria. In addition, we examined if excisional removal of all lesions at early (1 month) or later time points (6 months) of disease pathogenesis would alter the localization of Treg cells in both eutopic and ectopic tissues at post-excisional time points. Through quantitative analysis of the Foxp3 transcript, we determined that disease induction significantly reduces Tregs in the eutopic endometrium following disease inoculation. Comparison of Foxp3 transcript levels prior to operational surgeries and post-operative surgeries indicated that excisional procedures did not alleviate the negative effects of disease on Treg expression. There was no significant difference in Foxp3 transcript levels between control groups of animals, therefore these animals were combined into one control treatment group for these analyses. At 1 and 6 months of disease, both 1 month operational groups (sham or excisional) had similar reduction in Foxp3 transcript levels compared with control animals (Fig. 4, P < 0.05, n = 7 controls, n = 8 1 month operational), but at 15 months Foxp3 transcript levels were similar to control. Foxp3 transcript levels were also reduced in animals receiving an operational procedure at 6 month and these levels remained reduced at their 15-month time point (P < 0.05, n = 7 controls, n = 8 6 month operational)). Together these data indicate that the endometrium undergoes transient changes in Foxp3 transcript expression regardless of whether a sham or excision operation is performed. Additionally, we did not find any change in the chemokine CXCL12 expression in the eutopic endometrium either throughout the menstrual cycle or disease progression (data not shown). To validate our Foxp3 genetic profile, we also performed immunohistochemistry to identify Foxp3+ cells in the eutopic endometrial tissues from all animal treatment groups. The localization of Foxp3+ cells in the eutopic endometrium parallels the Foxp3 transcript data. Animals in the control groups showed no differences in localization of Foxp3+ cells but diseased animals at 1 and 6 months post-inoculation had significantly reduced Treg localization compared with control animals (Fig. 5A and B versus D–E and H). At 15 months post-inoculation, animals receiving either a sham or excisional operation at 1 month had similar Treg localization, while animals receiving a sham or excisional operation at 6 months still had reduced Treg localization, compared with control animals (Fig. 5C versus F and I).

Foxp3 expression in ectopic endometrium and its role for lesion invasion

Ectopic lesions from animals that had an excisional 1-month operational procedure had the lowest Foxp3 transcript levels and lowest number of Foxp3-positive cells (Fig. 6A and B) among all diseased animal treatment groups (P < 0.05). Lesions from animals that had a 1-month sham procedure had 2-fold elevated Foxp3 transcript levels and elevated Foxp3+ cells, compared with the excisional control group (P < 0.05). Lesions from animals that had an excisional procedure at 6 months post-inoculation also had 2-fold elevated Foxp3 transcript levels, similar to the 1-month sham treatment group (P < 0.05). Overall, lesions from animals that had a sham 6-month operational procedure had the highest (9.5-fold) Foxp3 transcript level (P < 0.05) and highest number of Foxp3+–positive cells (P = 0.057). These findings indicate that early surgical intervention, whether excisional or sham procedures, can reduce the suppressive immune cell infiltration into the ectopic lesion. At later time points post-inoculation, once the disease has been established, only excisional removal of the lesions maintains a reduced immunosuppressive lesion environment. Together these findings suggest that Tregs may govern ectopic lesion survival and regression.

To address the role of Tregs in lesion survival and regression, we analyzed the localization of Tregs in highly invasive lesions and mapped lesion dynamics among our animal treatment groups. We found that Foxp3+ cells were abundantly localized along the mesenchymal/endometrial border in highly invasive lesions (Fig. 7A–D). This abundant localization was evident in lesions invading adipose tissue of the abdominal wall (Fig. 7A and B) and also lesions invading the peritoneal lining of abdominal organs (Fig. 7C and D). We then determined if an excisional procedure could enhance lesion regression of all ectopic lesion sites. We found that lesion regression (or turnover) occurred in every animal treatment group, however, the percentage of lesions that regressed was significantly higher in animals receiving an excisional procedure at 6 months than at 1 month or the relative...
sham controls (Table I; $P < 0.05$). We did not detect any statistically significant difference in the rate of lesion regrowth after the excisional procedures ($P = 0.65$). Therefore, infiltration of Tregs to the site of ectopic lesion implantation is important for maintenance of the lesion and surgical removal of lesions can alter the rate of lesion regression throughout disease.

Discussion

Immunological regulation of reproductive function and tumorigenesis is well known; however, the dysregulation of Tregs in both eutopic and ectopic tissues highlights the complexity of a single treatment to combat the many faces this disease presents. Endometriosis is characterized by dysregulation of the eutopic endometrium resulting in decreased embryonic implantation success (Lessey, 2002; Kao et al., 2003; Giudice, 2004; Tomassetti et al., 2006; Tranguch et al., 2007; Jackson et al., 2009; Luo et al., 2011) and decreased responsiveness to ovarian steroid hormones (Attia et al., 2000; Bulun et al., 2006; Jackson et al., 2007; Banu et al., 2008; Aghajanova et al., 2009; Braundmeier et al., 2010). Ectopic endometrial fragments have increased estrogen responsiveness and invasive properties (Banu et al., 2008; Yu et al., 2008; Attar et al., 2009; Trukhacheva et al., 2009; Braundmeier et al., 2010; Wang et al., 2010b), which are crucial for ectopic lesion development. Eutopic and ectopic tissues share an alteration of the immunological phenotype compared with a healthy endometrium (Berbic et al., 2010; Wang et al., 2010a; Mier-Cabrera et al., 2011; Osuga et al., 2011; Podgaec et al., 2011; Sikora et al., 2011). Of greater concern is that this immunological alteration is not only targeted to endometrial tissues (eutopic and ectopic) but also systemically, based on findings that patients with endometriosis are more susceptible to the development of autoimmune disorders (Inagaki et al., 2011; Nielsen et al., 2011; Sundqvist et al., 2011). Our study investigated both peripheral and endometrial-specific alterations of Tregs throughout the progression of endometriosis. In addition, we investigated Treg expression and localization in ectopic endometrial fragments and if excisional removal of lesions altered their immunological tolerance.

Adaptive Treg populations were expressed most abundantly in the peripheral circulation of baboons but their migration was not hormonally regulated (i.e. did not change during the cycle). In comparison nTregs were the least abundant population of Tregs and there was a further decrease in abundance during the secretory stage of the menstrual cycle. Ovarian hormones estrogen and progesterone can stimulate the proliferation of nTregs (Polansczyk et al., 2006; Prieto and Rosenstein, 2006; Lee et al., 2011), although we did not find this in our animals. We hypothesized that the decreased abundance...
Peripheral circulation is variable (Kitaya et al., 2011) by ovarian steroid hormones in the endometrium and changes with the cycle stage (Arruvito et al., 2007). The regulation of CXCL12 by ovarian steroid hormones is indicative of immune tolerance (Chavele and Ehrenstein, 2011). The systemic and uterine-specific reduction of Tregs explains why low Treg expression is associated with poor fertility prognosis (Sasaki et al., 2004; Saito et al., 2005; Yang et al., 2008; Mjosberg et al., 2009).

Excisional removal of ectopic endometrial fragments has improved fertility success in both spontaneous and IVF-assisted pregnancies (Abbott et al., 2003; Littman et al., 2005; Opøien et al., 2011) but how surgical removal directly increases fecundity of patients remains unknown. We found that an early operational procedure (1-month post-inoculation), whether excisional or sham, resulted in a recovery of Foxp3 transcript levels and Foxp3-positive cells at 15 months post-inoculation. Because this recovery was not immediate we do feel that the examination of the Foxp3 profile at later time points (18 months or greater) in our 6-month operational animals would result in the same conclusion as those animals receiving operational surgery at the 1 month. These data suggest that any disturbance of the peritoneal environment during surgical manipulation, whether excision of lesions occurs or not, could potentially give the immune system a chance to rebound from a proinflammatory to a normal immunological environment.

The pathogenesis of ectopic lesion establishment, growth and maintenance is relatively unclear; however, this process can be modeled after the establishment and growth of tumors in the abdominal cavity. Although ectopic endometrial fragments are HLA-compatible tissues, the implantation of endometrial tissue into the peritoneal lining results in active wounding of the mesothelial surface and likely triggers apoptotic clearance of ectopic endometrial debris (reviewed in Taniguchi et al., 2011). As this clearance does not occur in patients with endometriosis, we speculate that ectopic endometrial fragments evade the innate immune system using similar methods to tumor cells. The primary method to acquire immune tolerance in tumor cells is through recruitment and active differentiation of Tregs in the tumor microenvironment (reviewed in Wang et al., 2012). Analysis of Foxp3 transcript levels and Foxp3-positive cells in ectopic endometrial lesions that were excised at the 15-month terminal procedure indicates that animals that had sham operational procedures had higher levels of Foxp3 transcript and an increased abundance of Foxp3-positive cells, indicative of immune tolerance. Animals that had received excisional surgeries at either 1 or 6 months had lower Foxp3 transcript levels and reduced abundance of Foxp3-positive cells indicating reduced immune tolerance. This was supported by our results indicating that animals receiving excisional surgeries at 6 months had increased lesion regression over the time course of disease. The role of Tregs at ectopic sites may be to enhance immune tolerance at the invasive

Figure 6 Foxp3 transcript levels (A) and Foxp3+ cells (B) in baboon ectopic endometrium. Ectopic lesions were collected at 15 months post-inoculation and Foxp3 transcript levels were determined through qRT–PCR (A) and Foxp3+ cells were labeled through immunohistochemistry (B). (A) Transcript levels were normalized to endogenous control H3.3 expression and expressed as a relative fold induction over control eutopic endometrial Foxp3 expression. (B) The number of Foxp3+ cells was averaged and then normalized to a 10-mm² area. Significance of animal operational treatments versus controls is indicated by different letters. Significance between sham versus excision treatment within each time point is indicated by asterisk (*). n = 7 (controls), n = 4 animals/group and at least two lesions/animal for diseased animals, P < 0.05, error bars indicate SEM.
edge of the lesion, as indicated by our localization of Tregs to the mesenchymal/endometrial border. These data are similar to those reported in tumor cell lines (Bergmann et al., 2007; Strauss et al., 2007) and multiple tumor types (Katz et al., 2010; Kim et al., 2011; Righi et al., 2011).

Here we demonstrate that the immune environment of animals was altered upon the induction of endometriosis. Alteration of Tregs was observed in the peripheral circulation and eutopic or ectopic endometrial tissues. Peripheral cells and the eutopic endometrium had decreased Tregs, most likely contributing to endometriosis-associated infertility, while ectopic endometrial tissues had enhanced Tregs, thus attaining immune tolerance from the innate immune system. Ongoing studies will elucidate the regulation and function of Tregs at ectopic sites to develop therapeutic targets for the regression of ectopic lesions. This study supports the utilization of surgical intervention as a method for potentially increasing fecundity rates in patients with endometriosis. Additional studies are warranted to determine the precise physiological changes induced by surgical intervention, with a long-term aim of designing more effective surgical treatment options for patients with endometriosis.

Figure 7 Foxp3+ cells in baboon ectopic endometrium. (A, B), Blue lesions invading the peritoneal wall. (C, D) Blue lesions invading peritoneal organs. (E) IgG isotype control. (F) Positive control lymph tissue. Foxp3+ cells are circled and the mesenchymal/endometrial border is indicated by a dashed line. Scale bar = 100 μm.

Table 1 Summary of lesion dynamics for each surgical group.

<table>
<thead>
<tr>
<th></th>
<th>1-month sham</th>
<th>1-month excision</th>
<th>6-month sham</th>
<th>6-month excision</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Lesions sustained</td>
<td>36.23 ± 4.96</td>
<td>25.18 ± 8.59</td>
<td>40.28 ± 7.56</td>
<td>19.32 ± 4.54**</td>
</tr>
<tr>
<td>% Lesions regressed</td>
<td>63.78 ± 4.96</td>
<td>74.82 ± 8.59</td>
<td>59.72 ± 7.56</td>
<td>80.68 ± 4.54**</td>
</tr>
<tr>
<td>% Lesions regrowth</td>
<td>NA</td>
<td>67.08 ± 16.12</td>
<td>NA</td>
<td>39.76 ± 19.56</td>
</tr>
</tbody>
</table>

The proportion of lesion regression, sustainance and regrowth was analyzed and compared among the surgical treatment groups and time points. Values are expressed as a proportion of total lesions documented (regression and sustainance) or as a proportion of total lesions excised (regrowth). Significance is indicated by asterisks (**) as compared with sham treatment group within each time point. No difference was found between time points within treatment groups. SEM is reported as ± value.
Acknowledgements

The authors would like to thank the generous efforts by the following people: Mark Olson, May Miguel, Kavita Sapru, Denisse Yanez and Rachel Rey. We would also like to thank the biological research laboratory staff (UIC) and also Drs. Shane Lipskin and Magdy Milad for assistance with surgeries.

Authors’ roles

A.B. was involved in experimental design, execution, analysis and manuscript preparation. K.J., J.H. were involved in experimental design and execution. J.K. was involved in execution. R.N. was involved in funding, experimental design, execution and manuscript preparation.

Funding

These studies were supported by the Eunice Kennedy Shriver NICHD/NIH through cooperative agreement U54 HD 40093 as part of the Specialized Cooperative Centers Program in Reproductive Research to ATF.

Conflict of interest

None declared.

References

Prieto GA, Rosenberg Y. Oestriol potentiates the suppressive function of human CD4 CD25 regulatory T cells by promoting their proliferation. Immunology 2006;118:58–65.

