Strong family history of uterine leiomyomatosis warrants fumarate hydratase mutation screening

Jaana Tolvanen¹, Outi Uimari², Markku Ryynänen², Lauri A. Aaltonen¹, and Pia Vahteristo¹,*

¹Department of Medical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Biomedicum Helsinki, PO Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland ²Obstetrics and Gynecology Clinic, Oulu University Hospital, Oulu, Finland

*Correspondence address: Tel: +358-9-19125600; Fax: +358-9-19125105; E-mail: pia.vahteristo@helsinki.fi

Submitted on December 20, 2011; resubmitted on February 20, 2012; accepted on February 27, 2012

ABSTRACT: Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome characterized by cutaneous and uterine leiomyomas and renal cell cancer. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. A Finnish family with nine closely related women with uterine leiomyomas was detected by an alert gynecologist. No cutaneous or renal cell tumors were reported in the family when it was referred to genetic analyses. Samples were available from seven patients, and a novel germline FH mutation was detected in five of them. Mutation carriers were symptomatic, had multiple tumors and were diagnosed at an early age. This study emphasizes the importance of considering FH mutation screening when gynecologists encounter families with multiple severe uterine leiomyoma cases. Due to possibility of phenocopies more than one patient should be tested. Early mutation detection allows regular screening of the mutation carriers and enables early detection of possible highly aggressive renal tumors. It may also affect family planning as multiple myomas at early age may significantly reduce fertility.

Key words: hereditary leiomyomatosis and renal cell cancer (HLRCC) / uterine leiomyoma / fumarate hydratase (FH) / mutation screening / tumor predisposition syndrome

Introduction

Uterine leiomyomas (ULM, also called myomas and uterine fibroids) are benign tumors which arise from uterine smooth muscle cells. They are the most common tumors of the female reproductive tract. Clinically significant lesions have been observed in ~25% of Caucasian women, but thorough pathological examinations imply the prevalence to be as high as 77% (Stewart, 2001). Uterine leiomyomas can have a major impact on women’s health and quality of life by causing numerous symptoms such as abdominal pain, abnormal menstrual bleeding and infertility problems. Furthermore, these lesions are the most frequent indication for hysterectomy and thus generate considerable economic costs for the health-care system (Stewart, 2001).

Many lines of evidence suggest that genetic factors play a role in the development of myomas. Twin studies have shown that there is a strong element of heritability in women undergoing hysterectomy for leiomyomata (Snieder et al., 1998). Familial predisposition to uterine leiomyomas has been suggested in Japanese and Caucasian populations (Vikhlyaeva et al., 1995; Sato et al., 2002). Moreover, first degree relatives of women with myomas were discovered to have a 2.2 times increased risk of developing myomas (Vikhlyaeva et al., 1995). The clinical features of familial uterine leiomyomas also seem to be more severe than in sporadic cases (Okolo et al., 2005). Although the existence of a heritability component of uterine leiomyomata has been confirmed, still surprisingly little is known about their molecular background, particularly when considering the prevalence and socio-economic impact of uterine leiomyomas.

Thus far, the only known genetic factor conferring a high risk for developing uterine leiomyomas are the germline mutations in the fumarate hydratase (FH) gene (Tomlinson et al., 2002). These mutations underlie hereditary leiomyomatosis and renal cell cancer (HLRCC, OMIM 605839, also known as multiple cutaneous and uterine leiomyomatosis, MCUL) syndrome. HLRCC is a rare autosomal dominant tumor predisposition syndrome characterized by cutaneous and uterine leiomyomas and renal cell cancer (RCC; Launonen et al., 2001). FH gene encodes fumarate hydratase, an enzyme of the tricarboxylic acid cycle (Tomlinson et al., 2002). Biallelic inactivation of the FH gene is frequently observed in the tumors, and thus FH is classified as a tumor-suppressor gene according to Knudson’s two-hit hypothesis (Tomlinson et al., 2002). Despite careful investigative efforts, no
clear correlation between the type of FH mutation or FH enzyme activity and HLRCC phenotype has been established. In contrast to the benign nature of leiomyomas, the renal cell tumors in the context of HLRCC are exceptionally aggressive and have a poor prognosis.

HLRCC has typically been diagnosed by detection of cutaneous leiomyomas or both cutaneous and uterine leiomyomas. Uterine leiomyomas alone as a sign of HLRCC are under-recognized. Uterine leiomyomas in HLRCC patients are severely symptomatic and have an early age of onset, which differentiates them from sporadic lesions (Alam et al., 2005; Lehtonen, 2011). Early diagnosis and regular screening of mutation carriers is especially important in the view of RCC risk. It is also relevant regarding family planning, as multiple uterine leiomyomas at a young age may significantly reduce fertility. Here we report a Finnish HLRCC family, in which nine closely related women with uterine leiomyomas only awoke the suspicion of a possible genetic component behind the development of the lesions. A novel FH mutation was detected in this family.

Case Report

The Finnish family reported here was identified by a gynecologist. It includes nine women with uterine leiomyomas in three generations (Fig. 1). Four patients have been diagnosed before the age of 30 years, three before 50 years and for two the age at diagnosis is not known. In addition, one woman in the family has been diagnosed with ovarian clear cell carcinoma at the age of 33 years. Her uterus has been removed, with no detection of myomas. Some women in the family have been diagnosed also with other gynecological tumors (Table I). No cutaneous leiomyomas were reported in any of the patients when the family was referred to genetic testing, and none of the family members has been diagnosed with RCC.

Germline mutations were then searched in the coding regions and exon–intron boundaries of the FH gene. Genomic DNA was extracted from blood using a standard procedure. Primer pairs flanking intronic splice sites for all 10 exons of the FH gene were used to amplify the genomic DNA. The PCR products were purified with ExoSAP-IT purification kit (USB Corporation, Cleveland, OH, USA) and sequenced using Big Dye Terminator v.3.1 kit (Applied Biosystems, Foster City, CA, USA) and ABI3730 Automatic DNA Sequencer (Applied Biosystems, Foster City, CA, USA). Sequences were analyzed manually and with Mutation Surveyor software (v.3.30, Soft Genetics, State College, PA, USA). Sequencing primers and PCR conditions are available upon request. All patients signed an informed consent before entering the study. The study has been approved by the ethics committees of the hospital districts of Helsinki and Uusimaa, and the Northern Ostrobothnia.

Sequencing revealed a novel heterozygous missense mutation (c.583A > AG, p.M195V) in exon five in five women with myomas (Fig. 1). The mutation is not a known polymorphism, resides in a highly conserved chromosomal region and was not detected among 94 healthy Finnish control individuals from the same geographical area obtained from Finnish Red Cross Blood Transfusion Service. Interestingly, another missense mutation affecting the same codon (c.584T > C, p.M195T; formerly named as M152T) has been identified in a North American HLRCC family, further supporting the pathogenic nature of the change (Toro et al., 2003). Also a mutation in the next
codon (c. 587A>G, p.H196R) has been found in two Finnish HLRCC families (Lehtonen et al., 2006). While in the US family and in the family reported here there are no RCC cases, altogether six patients have been diagnosed with RCC in the two Finnish families with the H196R mutation. The one myoma sample that was available for the analysis showed clear loss of the wild-type allele (Fig. 2). The average age at diagnosis was 28.5 years in the FH mutation carriers compared with 49 and 35 years in patients without the mutation (Table I). FH mutation carriers had clinical symptoms and several or large myomas, whereas women with sporadic myomas were asymptomatic and had only a few or small myomas. The mutation carriers also underwent hysterectomy at a younger age, with an average age of 30 years.

Discussion

HLRCC is a highly penetrant tumor predisposition syndrome characterized by leiomyomas of the skin and uterus and in some families also RCC. Thus far, 180 HLRCC families have been identified worldwide (Lehtonen, 2011). The primary indication for HLRCC syndrome has been the detection of cutaneous leiomyomas or both cutaneous and uterine leiomyomas.

We here report a Finnish HLRCC family, in which a novel tumor predisposing mutation in the FH gene was detected in five women with uterine leiomyomas. These women were symptomatic, had multiple tumors and were diagnosed at an early age. This emphasizes the importance of FH mutation screening in families with multiple severe uterine leiomyoma cases.

Patients with uterine leiomyomas alone are seldom recognized as cases of HLRCC. Depending on the age of the studied individuals, 79–100% of women with FH mutation have uterine leiomyomas (Lehtonen, 2011). The myomas in HLRCC patients are often severely symptomatic, numerous, large and occur typically at the age of 20–35 years compared with around 40 years in sporadic cases (Toro et al., 2003; Alam et al., 2005; Lehtonen, 2011). The majority of the severely symptomatic lesions of HLRCC patients require hysterectomy at an early age, in many cases already before 30 years of age (Alam et al., 2005; Lehtonen, 2011). The presence of a large and prominent eosinophilic nucleolus surrounded by a halo has also been described in HLRCC-associated uterine leiomyomas (Garg et al., 2011), but this observation needs to be validated in a larger sample series.

RCC in HLRCC is an exceptionally aggressive disease with poor prognosis. The tumors display mostly papillary type II histology and

Table I Clinical features of uterine leiomyoma patients.

<table>
<thead>
<tr>
<th>ID</th>
<th>FH mutation</th>
<th>Age at diagnosis</th>
<th>Symptoms</th>
<th>Number of myomas</th>
<th>Age at hysterectomy</th>
<th>Other tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-1</td>
<td>M195V</td>
<td>36</td>
<td>Hypermenorrhea</td>
<td>Multiple</td>
<td>37</td>
<td>No</td>
</tr>
<tr>
<td>II-3</td>
<td>M195V</td>
<td>28</td>
<td>Hypermenorrhea</td>
<td>1</td>
<td>28</td>
<td>Thyroid cyst</td>
</tr>
<tr>
<td>II-5</td>
<td>M195V</td>
<td>49</td>
<td>No</td>
<td>1</td>
<td>61</td>
<td>Endometrial adenocarcinoma, adrenal adenoma</td>
</tr>
<tr>
<td>III-1</td>
<td>M195V</td>
<td>27</td>
<td>Hypermenorrhea</td>
<td>Multiple</td>
<td>29</td>
<td>Polycystic ovaries</td>
</tr>
<tr>
<td>III-2</td>
<td>No</td>
<td>27</td>
<td>No</td>
<td>2</td>
<td>No</td>
<td>Severe endometriosis, thyroid follicular adenoma</td>
</tr>
<tr>
<td>III-5</td>
<td>M195V</td>
<td>23</td>
<td>Dysmenorrhea</td>
<td>Multiple</td>
<td>27</td>
<td>No</td>
</tr>
<tr>
<td>III-6</td>
<td>No</td>
<td>35</td>
<td>No</td>
<td>2</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Electropherogram of the novel germline FH mutation (c.583A>AG, M195V). (A) Blood sample reveals a heterozygous mutation. (B) Loss of the wild-type allele in the myoma sample.
Family members should be offered appropriate counseling and genetic testing, and clinical follow-up should be organized for the mutation carriers. Counseling should include information on the possible effects on reproduction, as multiple myomatas at an early age may significantly reduce fertility. Also the significantly increased risk for very aggressive RCC should be recognized.

Acknowledgement
We wish to thank Sini Nieminen for handling the patient data and Heli Lehtonen for technical assistance.

Authors’ roles
J.T. performed the molecular analyses and wrote the first draft of the manuscript. O.U. collected the clinical information and was the contact person towards the patients. M.R. identified the family and first suggested hereditary predisposition. L.A.A. participated in study design and drafting of the manuscript. P.V. designed and supervised the study and wrote the final draft of the manuscript.

Funding
This study has been financially supported by the grants from European Commission Project GENICA (Genomic Instability in Cancer and Precancer), Academy of Finland (Center of Excellence in Translational Genome-Scale Biology grant 6302352) and Sigrid Juselius Foundation.

Conflict of interest
None declared.

References

