Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility

Frédéric Chalmel1,†, Aurélie Lardenois1,†, Bertrand Evrard1, Romain Mathieu1, Caroline Feig2, Philippe Demougin3, Alexandre Gattiker4, Wolfgang Schulze2, Bernard Jégou1, Christiane Kirchhoff2, and Michael Primig1,*

1Inserm Unit 1085-IRSET, Université de Rennes 1, EHESP School of Public Health, F-35042 Rennes, France 2Department of Andrology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany 3Biozentrum, University of Basel, CH-4046 Basel, Switzerland 4Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

*Correspondence address. Tel: +33-2-23-23-61-78; E-mail: michael.primig@inserm.fr

Background: Mammalian spermatogenesis is a process that involves a complex expression program in both somatic and germ cells present in the male gonad. A number of studies have attempted to define the transcriptome of male meiosis and gametogenesis in rodents and primates. Few human transcripts, however, have been associated with testicular somatic cells and germ cells at different post-natal developmental stages and little is known about their level of germline-specificity compared with non-testicular tissues.

Methods: We quantified human transcripts using GeneChips and a total of 47 biopsies from prepubertal children diagnosed with undescended testis, infertile adult patients whose spermatogenesis is arrested at consecutive stages and fertile control individuals. These results were integrated with data from enriched normal germ cells, non-testicular expression data, phenotype information, predicted regulatory DNA-binding motifs and interactome data.

Results: Among 3580 genes for which we found differential transcript concentrations in somatic and germ cells present in human testis, 933 were undetectable in 45 embryonic and adult non-testicular tissues, including many that were corroborated at protein level by published gene annotation data and histological high-throughput protein immunodetection assays. Using motif enrichment analyses, we identified regulatory promoter elements likely involved in germline development. Finally, we constructed a regulatory disease network for human fertility by integrating expression signals, interactome information, phenotypes and functional annotation data.

Conclusions: Our results provide broad insight into the post-natal human testicular transcriptome at the level of cell populations and in a global somatic tissular context. Furthermore, they yield clues for genetic causes of male infertility and will facilitate the identification of novel cancer/testis genes as targets for cancer immunotherapies.

Key words: spermatogenesis / transcriptome / regulatory motifs / interactome

† F. Chalmel and A. Lardenois made equal contributions.

© The Author 2012. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
Introduction

Mammalian spermatogenesis is a complex process that involves cell growth and development, cell adhesion, signalling and cell migration (Wilhelm and Koopman, 2006; Oatley and Brinster, 2008). In primates, a long period of infancy precedes the onset of sexual maturation during puberty when Sertoli nurse cells establish the blood–testis barrier and germ cell populations expand (Jegou, 1992; Chemes, 2001; Holstein et al., 2003). A classical model posits that human spermatogenesis is initiated in spermatogonial stem cells, classified into A
\text{dark} and A
\text{pale} that develop into B-type spermatogonia. These cells then become spermatocytes capable of entering meiotic development that ultimately leads to the formation of haploid gametes (Clermont, 1966; Oatley and Brinster, 2008; Hermann et al., 2009).

More than 400 mouse gene deletion models show abnormal spermatogenesis or impaired fertility, but to date only a few mutations in human genes have been associated with male infertility (reviewed in: Jamsai and O’Bryan, 2011; Massart et al., 2012). Certain genetic causes of more or less severely impaired male gametogenesis and gamete function may lead to disrupted testicular functions, while others may render individuals less resistant to environmental factors that are known to impair male reproductive health (Guerreiro-Bosagna et al., 2005; Roy Choudhury et al., 2010); (for reviews see: Wrobel and Primig, 2008; Vidal et al., 2003). A classical model posits that genetic effects that may occur in infertile patients, we used biopsies from vasectomized patients showing normal spermatogenesis as controls (mJS 2, 7) or Sertoli cells but rarely spermatogonia (mJS 3, 8), early but no late spermatids (mJS 7, 8), and many early and elongated but only few mature spermatids (mJS 8, n = 7). To eliminate altered transcript concentrations due to unknown genetic effects that may occur in infertile patients, we used biopsies from vasectomized patients showing normal spermatogenesis as controls (mJS 2, 7).

Materials and Methods

Patient samples and ethical considerations

Human biopsies were obtained following the guidelines from the ethics committees of the University Hospital Hamburg Eppendorf (Germany) (Feig et al., 2007) and the Kinderspital Liestal (Switzerland) (Hadziselimovic et al., 2009). Informed consent of patients and Ethic Committee Approval by the Arztekammer Hamburg (Germany) were obtained (OB/X/2000 and WF-007/11), and the study was conducted in accordance with the ethical principles described in the Declaration of Helsinki.

Adult human biopsies were obtained as follows: an 8–10 mm incision was made into the tunica albuginea to gain access at least four or five testicular lobules. A sample approximately the size of a rice grain was isolated from the protruding tissue using microsurgical scissors. The sample was then divided into four small fragments, each measuring around 3 mm³. One fragment was immediately put into 5.5% glutardialdehyde and then treated with 1% OsO₄ solution for Epon-embedding and semi-thin sectioning as described (Jezek et al., 1998; Schulze et al., 1999). During histological analysis, the tissue sample was evaluated with regard to mature spermatids, early spermatids, primary spermatocytes, spermatogonia only, Sertoli cells only and tubular atrophy (tubular shadows, see Supplementary data, Fig. S1). On the basis of this evaluation, a modified Johnsen score (mJS) was used to classify the samples. The second fragment was immediately put into 1 ml of RNAlater (Life Technologies, Carlsbad, USA) for RNA extraction and microarray analysis. The third fragment was cultured in 1 ml of prewarmed (37 °C) Sperm-Prep Medium (Medicult, Hamburg, Germany) testicular sperm extraction (Jezek et al., 1998; Schulze et al., 1999). Finally, the samples selected for cryopreservation were kept in 0.5 ml Sperm-Freeze (Medicult) and subsequently frozen.

Experimental design and patient selection

We sought to classify transcripts according to their peak concentrations in testicular somatic cells and germ cells before and after puberty to establish a global view of the human testicular protein-coding transcriptome. To this end, we employed U133 Plus 2.0 GeneChips covering most human mRNAs to analyze biopsies from prepubertal children whose testes contain typical (Ad+, n = 5 replicates) or very low levels (Ad−, n = 4) of A
\text{dark} spermatogonial cells which are an indicator for adult fertility (Hartzelisimovic, 2008). Furthermore, we included samples from infertile patients whose seminiferous tubules were either empty (mJS 1, n = 1; De Kretser and Holstein, 1976) or contained almost exclusively Sertoli cells (mJS 2, n = 7) or Sertoli cells but rarely spermatogonia (mJS 3, n = 3). These cases were compared with samples containing spermatocytes but no spermatids (mJS 5, n = 8), early but no late spermatids (mJS 7, n = 4) and many early and elongated but only few mature spermatids (mJS 8, n = 7). To eliminate altered transcript concentrations due to known genetic effects that may occur in infertile patients, we used biopsies from vasectomized patients showing normal spermatogenesis as controls (mJS 2, 7).
10, n = 8), (Supplementary data, Fig. S1 and Supplementary data, Table S1). In addition, the patient samples were compared with previously published data obtained with highly enriched spermatocytes, spermatids, seminiferous tubules and total-testis controls from fertile individuals (Chalmel et al., 2007) to confirm and validate the mRNA levels observed in biopsies from abnormal (mJS1, 3, 5, 7 and 8) and healthy (mJS10) testes. Finally, we included 45 non-testicular data sets each covering one tissue sample from the National Center for Biotechnology Information’s (NCBI) Gene Omnibus (GEO) to determine the extent to which transcripts are specifically present in male gonads before and after puberty (Barrett et al., 2011) (Supplementary data, Table S2).

Immunohistochemical analysis of human and rat testicular sections

Human testicular sections for immunohistochemistry (IHC) were prepared from paraffin-fixed material and analyzed as published (Feig et al., 2007). Adult post-mortem testes were directly fixed in Bouin’s solution (Microm Microtech, Francheville, France) for 24 h. The treated tissues were embedded in paraffin and sectioned at 5 μm using a microtome (Shandon, Thermo Scientific, Illkirch, France). To prepare slides for IHC, paraffin was removed with toluene (Carlo Erba, Grosseron, Saint-Herblain, France) and rehydrated using decreasing concentrations of ethanol. The samples were treated with citrate buffer pH 6 (Eurobio, Les Ulis, Courtaboeuf, France) for 30 min at 80°C and then were kept for 20 min at room temperature. The slides were rinsed with 1 × PBS (phosphate-buffered saline, pH 7.4) and treated with 3% hydrogen peroxide (Sigma-Aldrich, Saint-Quentin Fallavier, France) in 1 × PBS for 5 min.

Adult rats (Elevage Janvier, Le Genest Saint Isle, France) at the age of 90 dpp were anesthetized with sodium pentobarbital (Ceva Sante´ 0.01% Tween. Microtech) for 24 h. The treated tissues before their testes were removed and fixed in Bouin’s solution (Microm Animal, Libourne, France) and perfused with Bouin’s solution for 20 min (phosphate-buffered saline, pH 7.4) and treated with 3% hydrogen peroxide with biotinylated goat anti-rabbit IgG (Dako, Trappes, France) and rehydrated using decreasing concentrations of ethanol. The samples were treated with citrate buffer pH 6 (Eurobio, Les Ulis, Courtaboeuf, France) for 30 min at 80°C and then were kept for 20 min at room temperature. The slides were rinsed with 1 × PBS (phosphate-buffered saline, pH 7.4) and treated with 3% hydrogen peroxide (Sigma-Aldrich, Saint-Quentin Fallavier, France) in 1 × PBS for 5 min.

Prior to adding antibodies, the rat testicular sections were incubated in 1 × PBS, 1% bovine serum albumin (Euromedex, Mundolsheim, France) and 0.01% Tween (Sigma-Aldrich) while human testicular sections were treated with 1 × PBS, 2% human serum albumin (Sigma-Aldrich) and 0.01% Tween.

Polyclonal antibodies recognizing human and rodent proteins used for IHC

The human and rat testicular sections were incubated overnight at 4°C with rabbit polyclonal antibodies against Nr6a1 (Abcam ab38816) at 1:200, Brd8 (Sigma HPA001841) at 1:500 and Hsf5 (Sigma HPA016440) at 1:150. Immunohistochemical staining was performed at room temperature with biotinylated goat anti-rabbit IgG (Dako, Trappes, France) and streptavidin–biotin peroxidase (Dako) for 1 h each at a dilution of 1:500. Then the slides were then stained for 3 min with 0.05% 3,3’-diaminobenzidine tetrachloride (Sigma) and 0.01% hydrogen peroxide. Finally, the sections were counterstained with 0.2% hematoxylin (Sigma), dehydrated and mounted in Eukitt (VWR International S.A.S., Fontenay-sous-Bois, France). Photos were taken with an AxioImager M1 microscope equipped with an AxioCam MRC5 camera controlled by the AxioVision 4.7.1 software using standard settings (Zeiss, Le Pecq, France).

RNA sample processing and GeneChip hybridization

Testicular biopsies were used to prepare total RNA, which was further processed to synthesize cRNA targets as published (Feig et al., 2007). RNA quality control was carried out using a 2100 BioAnalyzer (Agilent, Massy, France). U133 Plus 2.0 GeneChips (Affymetrix, Santa Clara, USA) were hybridized, washed and scanned using a hybridization oven 640, a Fluidics station 400 and a GeneArray 2500 Scanner under standard conditions as recommended by the manufacturer (Affymetrix) (Supplementary data, Table S1, Supplementary data, Fig. S2).

Raw data preprocessing

GeneChip data were quality controlled and normalized as published. Expression values for biopsies, whole-gonad samples and testicular cell type replicates were averaged (Supplementary data, Fig. S3).

Statistical gene filtration

Using AMEN (Chalmel and Primig, 2008), DET (differentially expressed in testis) genes among human testicular biopsies of prepubertal and adult infertile patients were identified by filtering detectable transcripts with at least one signal above the background expression cutoff (BEC = 5.5, corresponding to the overall median log2-transformed intensity). Subsequently, a subset of detectable transcripts showing highly variable signals across the sample set (standard deviation ≥ 0.8) was filtered. To define the DET gene set, the statistically significant changes across the samples were identified using a permutation test; the P-value was adjusted with the FDR (false discovery rate) method ≤ 0.01. In addition, SET/PET transcripts showing a significant ≥ 2-fold signal change among the samples (LIMMA statistical test with the false discovery rate (FDR) adjustment method ≤ 0.01) were filtered when the signals were ≥ BEC in testis samples and < BEC in non-testicular tissues (Figure 1A).

Cluster analysis and functional data mining

There were 4833 transcripts grouped into 13 patterns using the PAM (Partitioning Around Medoids) algorithm implemented in AMEN (Chalmel and Primig, 2008). The capacity of the patterns to discriminate transcripts was verified using Silhouette plots; this method is helpful in distinguishing neighboring clusters that appear visually similar in a heatmap display (such as that shown in Fig. 2B). The point of this step is to reveal subtle differences among expression clusters bearing in mind that neighboring clusters are likely to be very similar in a heatmap display using a false-colour scale. The patterns were ordered according to peak signals in prepubertal and adult samples representing somatic cells and germ cells. Probeset identifiers were converted into their corresponding NCBI Entrez Gene IDs to avoid redundancy.

For each individual pattern, we identified significantly enriched Gene Ontology (GO) annotation terms. Enrichment was estimated by calculating the Fisher exact probability using the Gaussian hypergeometric test. A given annotation term was considered enriched in a group of genes when the P-value was ≤ 0.01 and the number of genes in this group associated with the annotation term was ≥ 5.

MIAME compliance

Data files are available from the EBI’s ArrayExpress via the accession number E-TABM-1214.

Information sources and data integration

To compare the content of different database gene symbols, Ensembl, RefSeq and UniProt identifiers were converted into their corresponding Entrez Gene IDs. Published Leydig cell, Sertoli cell, gonocyte, spermatocyte and sperm markers were extracted from the Antibody & Beyond website (http://www.antibodybeyond.com). IHC data for human proteins were downloaded from the Human Protein Atlas (HPA) website (http://www.proteintatlas.org/about/download, data version 8.0) (Ponten et al., 2011).
Information on human genes encoding transcription factors (TFs) was provided by Vaquerizas et al. (2009), who classified genes into five categories with decreasing likelihood of being a DNA-binding regulator (a-c, other and x); the latter category was not considered in our analysis. Finally, we included 36 TFs annotated with the GO term ‘TF activity’ (GO:0003700). Among 1838 genes (Entrez Gene IDs) coding for known or potential TFs, 260 were identified as being differentially expressed in our sample set.

Human, mouse and rat genes were scored according to their association with diseases and phenotypes. Association files between genes and disease or ontology terms were downloaded for human (‘gene2pubmed’ file from the NCBI website and ‘phenotype_ annotation.omim.gz’ file at http://www.human-phenotype-ontology.org), mouse (‘MGI_PhenotypicAllele.rpt’ and ‘MGI_PhenoGenoMP.rpt’ files at the Mouse Genome Informatics website, http://www.informatics.jax.org) and rat (‘rattus_genes_mp’ file at the Rat Genome Database, http://rgd.mcw.edu) genes. Mouse and rat Entrez Gene IDs were converted into their corresponding human gene IDs through the HomoloGene IDs (Sayers et al., 2011). Human genes were categorized according to their association with spermatogenesis failure (Score 4), male infertility (Score 3), infertility (Score 2), reproductive phenotypes (Score 1) and other phenotypes (Score 0).

Motif enrichment analysis

The Promoter Analysis Protocol (PAP) was employed to predict TF-binding sites (TFBSs) conserved across species using parameters as previously described (Lardenois et al., 2010a). Binding site enrichment was estimated using the minSUM_good profile from TRANSFAC Professional database release 2011.2 (Matys et al., 2006). Enrichments were calculated with CLOVER (Fricht et al., 2004), RAMEN (McLeay and Bailey, 2010), DREME (Bailey, 2011) and TOMTOM (Bailey et al., 2009) for 156 TFBS matrices (associated with TFs identified as differentially expressed in our study) from the TRANSFAC Professional (Matys et al., 2006) and JASPAR (Portales-Casamar et al., 2010) databases. The TFBS matrix enrichment cut-off value was set at 0.05 in each of the programs.

Enrichments were estimated considering the TFs differentially expressed in the germline (8–13) patterns. This strategy was used with PAP, CLOVER and RAMEN. Enrichment using CLOVER was estimated against the whole human chromosome 20, a file containing 5000 random 1 kb promoter sequences upstream of the transcription start site (TSS), and human CpG islands provided by The University of California, Santa Clara. A TFBS was considered to be enriched at a P-value of ≤ 0.05 in at least two background files. When using RAMEN, we associated the standard deviation of the mean expression data with each genomic sequence within the patterns; enrichment was estimated using a file containing 1 kb genomic regions upstream the TSS of all annotated human genes. DREME was employed to identify over-represented sequences (words) that were subsequently compared with the whole TRANSFAC and JASPAR databases using the TOMTOM program. Relevant references for TF functions were manually verified using Uniprot (Consortium, 2011), Nextbio (Kuperemidt et al., 2010), the Mouse Genome Database (Blake et al., 2011) and PubMed (Sayers et al., 2012).

Regulatory protein network analysis

The network representation was drawn using the AMEN software. The association data described in this article correspond to a consolidation of the human, mouse and rat data sets. Human homologs of the mouse and rat genes were identified through NCBI’s HomoloGene database (Sayers et al., 2012). Physical protein–protein interaction data were downloaded on 19 April 2011 from the BioGRID, HPRD, IntAct, MINT and NCBI databases (Keshava Prasad et al., 2009; Stark et al., 2011; Kerrien et al., 2012; Licata et al., 2012).

The known protein–gene regulation data were downloaded from TRANSFAC Professional Database release 2010.2 (Wingender, 2008) and from the Transcription Factor Encyclopedia (http://www.cisreg.ca/cgi-bin/df/home.pl, TFE, accessed 21 April 2011). Regulation data were supplemented by two Chip-Chip and Chip-Seq studies aiming at the identification of the testis target genes of mouse Hsf2 and Cre, respectively (Akergal et al., 2008; Martianov et al., 2010). The predicted protein–gene regulation data were extracted from the predictions performed using the PAP protocol.

The gene–gene association data were computed using a partial correlation network analysis implemented in GeneNet (Oppegard-Rhein and Strimmer, 2007). This R program is dedicated to the analysis of large gene expression data sets with a focus on the inference of gene networks. In particular, it implements methods for learning large-scale gene association networks. Default parameters were used (‘static’ method) and the top-1000 edges (or associations) were returned.

The gene–gene literature co-citation was computed using Hubert’s I (gamma) score implemented into the CoCiteStats R package. This statistic (ranging from −1 to 1) estimates the degree of association between two entities and it was proposed as an alternative to the odds ratio by Ding and Gentleman (2004) for distinguishing biologically meaningful relationships between genes on the basis of co-occurrence in PubMed abstracts. As suggested by the authors, Hubert’s I score was modified using both the ‘paper size’ and ‘gene size’ adjustments to decrease the weight of evidence when the number of genes (cited in a single publication) or the number of publications (citing a single gene) involved is very large. In the current study, we aimed at identifying the human genes significantly associated (co-cited) with genes related to infertility diseases/phenotypes. We used a re-sampling test (n = 1000 randomly selected genes) to assess significance (P-value). Finally, only significantly related genes according to co-citation were selected (P-value ≤ 0.05 and Hubert’s gamma score ≥ 0).

Results

Identification of genes differentially expressed between abnormal and healthy testes

The human testicular expression program was established by combining DET and preferentially expressed in testis (PET) transcripts. DET and PET combined yielded 3580 genes grouped into 13 different patterns using the PAM algorithm (see methods, Fig. 1A). By comparing male gonads with 45 non-testicular somatic samples, we organised 3580 genes into four classes termed ‘specific expression in testis’ (SET, 933 genes expressed in male gonads but not in any of the 45 non-testicular controls), ‘preferential expression in testis’ (PET 754 genes for which transcripts were also detected in <3 controls), ‘intermediate expression in testis’ (IET, 676 genes detected in 4–19 controls) and ‘ubiquitous expression’ (UEX, 1552 genes detected in >20 controls) (Fig. 1B). It is noteworthy that many genes falling into the broadly expressed IET and UEX classes show much higher mRNA concentrations in male gonads than in non-testicular tissues.

Spatio-temporal association between gene expression and gene function in human testis

By combining a set of testicular samples lacking specific cell populations (Fig. 2A) and by ordering them over age and an increasingly severe spermatogenesis phenotype (reflected by the mJS), we were
able to assemble a global transcript profile of post-natal human male gonads before and after puberty (Fig. 2B, columns 1 and 2). To rule out effects due to the unknown causes of our patients suffering from unexplained infertility, the signals obtained with their biopsies were confirmed by data obtained with normal total testis samples, purified tubules and enriched germ cells (column 3). Finally, the presence of mRNAs in male gonads was put into the context of non-testicular controls (column 4). This approach identified numerous novel genes expressed in different testicular cell populations including a particularly interesting subset for which transcripts are not reliably detectable in non-testicular tissues.

Pattern 1 defines genes that show the strongest signals in both pre-pubertal sample types, including some for which we never found mRNAs in any adult sample investigated. This pattern, associated with somatic cell types, contains 56 genes previously associated with reproductive phenotypes and is enriched for GO terms such as ‘cell–cell adhesion’ and ‘cell differentiation and signalling’ (Fig. 2B, Supplementary data, Table S3 for data on GO term enrichment).
Figure 2. Profiling the human testicular transcriptome. (A) A schematic drawing shows the cellular composition of prepubertal and adult testicular samples. Somatic and germ cells are indicated. (B) A false-colour heatmap summarizes 13 patterns defining the global concentrations for transcripts across the entire sample set. Each line corresponds to a probe set. The first data sets (grouped into four large columns) were obtained with biopsies from prepubertal (Ad–, Ad+) and adult patients (mJS1, 2, 3, 5, 7, 8 and 10; each sub-column corresponds to a patient). We note that the conclusions based on mJS1 are limited by the fact that we have only one patient with this condition; inclusion of this extremely rare sample is, however, justified because it provides a useful negative control for Sertoli gene expression. They were compared with total testis (TT), tubules (TU), enriched spermatocytes (SC) and round spermatids (ST) from fertile patients and 45 non-testicular healthy tissues. The next two columns indicate different degrees of testis specificity using a colour code (SP: dark blue = SET, light blue = PET, yellow = IET and red = UEX), and infertility phenotypes (IN: dark green = spermatogenesis failure, light green = male infertility, orange = infertility and yellow = reproductive phenotype). A colour scale is shown for log2 values and percentiles.
Transcript patterns 2–4 are in general consistent with expression in Leydig cells or peritubular myoid cells because the levels are similar in both prepubertal sample types, as well as mJS1 (tubular shadows lacking Sertoli cells and germ cells) and normal tubular testis and seminiferous tubule samples (Leydig cells are not completely removed during tubule isolation). Coherently, at higher mJS scores, the somatic cell population diminishes relative to the increasing germ cell component and as a consequence the relative transcript concentrations in the biopsies decrease. Little, if any, signal is obtained in purified spermatocytes and as a consequence the relative transcript concentrations in the biopopulation diminishes relative to the increasing germ cell component (tubule isolation). Coherently, at higher mJS scores, the somatic cell population diminishes relative to the increasing germ cell component.

Patterns 5 to 7 are indicative of expression in Sertoli cells because signals are typically similar across prepubertal samples and are low or below the threshold level of detection in mJS1 (lacking Sertoli cells) while they are detected from mJS2 onwards. Furthermore, they decline in the sample set as Sertoli cell populations get diluted by increasing numbers of germ cells, and they reach high levels in total testis samples and isolated tubules. As in the case of Leydig cells, we observe weaker signals in prepubertal than in adult samples for genes in pattern 7 suggesting gene activation in adult Sertoli cells. Consistently, we found the GO terms ‘male gonad development’, ‘cell adhesion’ and ‘cell migration’ to be enriched in patterns 5 and 6 (Fig. 2B).

Patterns 8–11 are consistent with expression in mitotic and meiotic germ cells since the transcripts fail to be detected in mJS1-2 patients (no germ cells) while they yield strong signals in isolated seminiferous tubules (containing mostly germ cells) and enriched spermatocytes. Pattern 9 appears particularly interesting because it reveals elevated signals in the Ad+ prepubertal sample set. This profile is consistent with the presence of transcripts in juvenile spermatogonial cell populations as well as in adult spermatogonia (from mJS3 to mJS5 onwards) and spermatocytes. Notably, we found ‘Regulation of gene expression’ and ‘DNA methylation’ to be overrepresented in pattern 9, which reflects the importance of transcriptional and epigenetic mechanisms involved in the onset of gametogenesis. Patterns 10 and 11 include functions related to cell-cycle progression and spermiogenesis, respectively. As expected, the GO terms ‘Mitosis’ (pattern 9–11), ‘Meiosis’ and ‘Germ cell development’ (pattern 10) and ‘Spermatid differentiation’ (pattern 11) were enriched.

Finally, patterns 12 and 13 are in most cases likely caused by elevated transcript levels in spermatids because the signals are typically below the threshold in prepubertal samples, while they are strong in mJS 7–10 and they peak in purified spermatids. Consistently, the GO terms ‘spermatogenesis’, ‘reproduction’ and ‘fertilization’ were enriched in these patterns.

A total of 636 transcripts falling into the 13 patterns shown in Fig. 2B have been associated with reproductive phenotypes including 262 that were shown to be directly involved in spermatogenic failure. We infer from the profiling data that novel and poorly characterized loci present in the patterns likely play important roles in spermatogonial stem cell growth and differentiation, germ cell development and gamete function; data for individual genes or groups of loci can be retrieved from GermOnline (www.germonline.org) or from the searchable Supplementary data, Table S4.

Transcript profiles match cellular protein localization patterns

A critical issue of our RNA profiling approach is to what extent it helps predict protein levels and localization in the gonad. We therefore asked whether transcript signatures correlate with the cellular distribution of proteins by integrating our data with information available in the literature. We found 30 proteins including known markers for Leydig cells (INSL3, STAR), Sertoli cells (AMH, GATA4, SOX9), spermatocytes (SYCP1, -3), spermatids (PRM1, -2) and germ cells (DDX4) that show coherent mRNA/protein profiles, thereby confirming the anticipated association of expression patterns and testicular cell types (Supplementary data, Fig. S4).

We next integrated high-throughput IHC data provided by the HPA that annotates proteins using defined tissue cell types (such as ‘Testis-Leydig cells’) and four levels of staining intensity (none, low, medium and high) (Ponten et al., 2011). Combining expression signals and IHC data from 66 normal cell types identified 93 genes for which our transcript patterns accurately predict specific protein localization to interstitial Leydig cells and Sertoli cells or germ cells inside of the seminiferous tubules (Fig. 3 and Supplementary data, Table S4).

We then further validated the high-throughput assays by individually analysing adult human testicular sections with antibodies against BRD8, HS5 and NR6A1 (Fig. 4A) for which we predicted peak concentrations in human and rat germ cells using U133 Plus 2.0 and Rat Exon 1.0 ST GeneChips (Lardenois et al., in preparation), respectively (Fig. 4B). Finally, we confirmed and extended the information obtained in human tissue by detecting the rat Brd8, H5f5 and Nr6a1 mRNAs and proteins in germ cells using histological sections (Fig. 4C and D); we note that our results are consistent with previous observations for mouse Nr6a1 (Lan et al., 2003a).

Taken together, functional annotation data, known testicular cell markers and IHC assays show that the testicular transcript signature correlates well with protein localization. Our results therefore provide an insight into developmental stage-related cellular protein function in the human testis.

Identification of DNA-binding motifs enriched among developmentally regulated human promoters

To learn more about promoters mediating germine gene expression, we searched putative regulatory regions of genes falling into patterns 8–13 and their four sub-classes (see Fig. 2 and Methods) for significantly enriched TFBSs. We found that binding sites again occur within single or multiple patterns showing enrichment either among all genes in a given pattern or among individual or multiple subclasses (Fig. 5). The promoter elements significantly enriched are bound by TFs required for spermatogenesis (CREM, EGR4, HMGAI), male and female gametogenesis (CEBPG, HS2F, LEF1, NR2C2, ZFX), sex differentiation (DMRT3), signalling (FOXG1, KLF11, STAT4), as well as embryogenesis (MXD1, NFYA) and organ development (ISL1, OVL2). Other regulators have been reported as being expressed in testicular tissue and are known or thought to be involved in...
controlling germline gene expression (BACH1, E2F2, DMRTC2, RFX2, RFX3, RORA, RUNX2, ZNF846). We find some TFs that were previously associated with somatic testicular cells (FOXM1, GABPA) to be expressed in germ cells; consistently, their target motifs are enriched in patterns indicative of gene expression in spermatocytes and spermatids. Finally, a number of the factors we identified are known to be involved in somatic cancers (EGR4, FOXM1, RUNX2), notably prostate cancer (ELK4, ZIC2), providing evidence for a link between gametogenesis and carcinogenesis (Simpson et al., 2005).

Predicting gene function by integration of phenotypes with interactome data

To reveal regulatory interactions of known or putative regulators and their potential target genes associated with germline patterns 8–13 (see Fig. 2), we combined phenotypic information with data on protein function (TF or co-factor), protein–protein interactions, known or predicted protein-DNA-binding activities, co-expression and co-citation in the literature. A graphical display created with AMEN (Chalmel and Primig, 2008) revealed numerous physical, regulatory, co-expression and co-citation interactions between genes falling into patterns 8–13 (Fig. 6A–D). Figure 6E summarizes a network of TFs induced in the germline and genes related to infertility such as CREM (Blendy et al., 1996; Nantel et al., 1996), HMGA1 (Liu et al., 2003), HS2F (Wang et al., 2004) and NR2C2 (Mu et al., 2004). We note that EGR4 was found to be connected only with SIX1 via an expression association in spite of its important role in mouse fertility (Tourtellotte et al., 1999); this might be due to the paucity of interaction data for EGR4.

The network analysis yielded human TFs such as: BACH1, encoding at least one splice variant highly expressed in testis (Kanezaki et al., 2001); FOXM1, whose rodent ortholog is involved in regulating Sertoli cells (Chaudhary et al., 2000); GABPA, required for Leydig cell gene expression (Giatzakis et al., 2007) and NFYA, involved in the formation of the blood-testis barrier (Lui et al., 2007). Our data also suggest regulatory functions in the male germline for: ELK4, controlled by the androgen receptor in prostate cancer (Makkonen et al., 2008), an isoform of which is expressed in testis (Kerr et al., 2010); STAT4, a mediator of cytokine effects expressed in mouse spermatids (Herrada and Wolgemuth, 1997); OVOL2, a cell-cycle regulator (Wells et al., 2009) localizing to the XY body in mouse spermatocytes (Chizaki et al., 2011); RORA, a regulator of aromatase that controls testosterone production (Sarachana et al., 2011); and RUNX2, a gene possibly involved in steroid metabolism in the testis (Jeong et al., 2008; Teplyuk et al., 2009). Moreover, we
propose novel roles and target genes in the germline for ATF2, a protein implicated in stress-induced gene expression in male gonads (Lysiak et al., 2003) and RFX2, a highly conserved gene involved in the expression of testis-specific linker histone H1t (VanWert et al., 2008). Finally, we suggest an unanticipated testicular function in androgen-dependent regulation of spermatogenesis for LEF1, a gene associated with female infertility (Koler et al., 2009) and castration-resistant prostate cancer (Li et al., 2009).

Our work identifies candidate TFs highly specifically expressed in the germline; since germ cells are difficult to analyse, little is known about these regulators in terms of their DNA-binding specificity and their target genes (Bettegowda and Wilkinson, 2010; Cheng and Mruk, 2010). This study thus facilitates the identification of new genes, notably TFs, important for germline development and fertility in humans, and it points to unexpected links between testicular and somatic regulatory pathways.

Discussion

The present study establishes the genome-wide transcript signature of somatic cells and germ cells prior to and after the onset of human spermatogenesis. We integrated the data set with expression signals from 45 non-testicular tissues to gain insight into the organism-wide transcriptional profile of genes highly induced in testicular cells. The
resulting transcripts were grouped into 13 clusters using the PAM algorithm and silhouette plots to determine the number of mRNA concentration patterns that adequately correlate peak RNA signals and cell populations present in testicular biopsies. Finally, we identified DNA-binding motifs statistically significantly enriched in developmentally regulated promoters, and we constructed a germline disease regulatory network by integrating the outcome of our expression analysis with interactome data and information about phenotypes.

RNA profiling analysis of complex samples

We have obtained a global view of mRNA concentrations in testicular somatic and germ cells by combining biopsies from spermatogenesis-deficient and normal gonads with purified germ cells and isolated seminiferous tubules. Using enriched cells bears the risk of RNA degradation artefacts, while whole gonads yield complex data because mRNA concentrations depend on transcriptional activity, RNA stability and the size of a given cell population expressing the transcript within the testis. Another issue is whether testicular cells accumulating at a given stage in a pathological gonad accurately represent the transcriptome of that cell type during normal spermatogenesis. This may be relevant for a number of transcripts; however, the mRNAs we classified in this study are confirmed by data from fertile controls and normal enriched germ cells making it very unlikely that their concentration patterns may be the consequence of a genetic defect at the origin of infertility. In addition, previous publications have demonstrated both spotted microarray and GeneChip analyses of gonads from infertile male adults to yield interpretable expression signals (Ellis et al., 2007; Feig et al., 2007). It is conceivable that chronic inflammatory processes related to artificial obstructive azoospermia (vasectomy; mjS10) could influence the transcriptome to a certain extent (McDonald, 2000). However, we did not find any histological evidence for pathological effects in our mjS10 samples. Moreover, our data set includes two total testis samples from pooled fertile individuals as complementary controls.

Germline specificity at transcript level and its implications for gene function

An important corollary from the RNA profiling data is that transcripts present in testicular somatic cells (patterns 1–7) are typically detected over a broad range of non-testicular tissues (IET and UEX subclasses), whereas transcripts accumulating in germ cells show a strong tendency to be either repressed or highly unstable in non-testicular controls (SET and PET subclasses). This result confirms our earlier report on meiotic and postmeiotic germ cells; however, it is inconsistent with our observation that purified rodent spermatogonia express many somatic genes; this may reflect differences between rodents and primate spermatogonia or it might be due to a Sertoli cell contamination of enriched mitotic germ cell populations. Does apparent specificity indicate an important function? We speculate, on the basis of results from RNA profiling and gene deletion data relevant to budding yeast gametogenesis (Deutschbauer et al., 2002), that genes preferentially or exclusively expressed in the male germline are likely important for germ cell differentiation and gamete function. An ultimate answer to this question will have to await experiments that confirm RNA data at protein level and functional insight via mouse gene deletion experiments (Naz et al., 2009; Jamsai and O’Bryan, 2011) as well as exome sequencing of human patients suffering from unexplained male factor infertility (Lam et al., 2011; Singleton, 2011).

The germ stem cell transcriptome

To identify transcripts expressed in the spermatogonial cell population present in prepubertal testis, we included samples from patients diagnosed with undescended testes essentially lacking (Ad–) or containing (Ad+) A dark spermatogonia (Hadziselimovic, 2008). It is notoriously difficult to visually assess and to distinguish A dark from A pale cells in histological section by morphological criteria alone. As a consequence, RNA profiling data obtained with such samples must be interpreted with caution. These issues notwithstanding, our approach enabled us to identify transcripts detected (mostly) in Ad+ testes but not in
Ad− controls, and to compare that pattern with adult germ cells (see Fig. 2B, pattern 9). One example is UTF1, a gene encoding a chromatin-associated repressor expressed in pluripotent cells (Kooistra et al., 2009). In our study, UTF1 mRNA is reliably detected only in Ad+ samples (Supplementary data, Table S4; GermOnline); consistently, the protein was detected in spermatogonial stem cells and proposed to be important for their renewal (Wang et al., 2010). In rat testis, Utf1 expression is restricted to a subpopulation of undifferentiated type A spermatogonia (van Bragt et al., 2008).

The human homolog was previously reported to be expressed in

Figure 6 Integration of transcriptome, interactome and phenotype information to establish a germline regulatory network of fertility. Graphical displays are given for (A) protein–protein interactions (blue edges), (B) protein–DNA (green), (C) co-expression (grey, black edges are used when conserved motif predictions were also identified) and (D) co-citation (yellow) data. (E) The integrated network is focused on TFs and genes implicated in infertilities and based on four types of interactions and phenotype data. TFs for which we find target motifs to be enriched are given in bold. Nodes symbolizing TFs are given in red, co-factors are given in green and proteins involved in fertility are represented by blue nodes.
fetal germ cells, in normal adult spermatogonia and in testicular germ cell cancer (Kristensen et al., 2008; von Kopylow et al., 2010, 2012).

The 226 transcripts in pattern 9 furthermore include DAZL, DDX4, ELAVL2 and notably FGFR3 that were previously found to be expressed in human prepubertal spermatogonia and whose mouse orthologs were detected in gonocyte precursors of spermatogonia (Wu et al., 2009; von Kopylow et al., 2012). Intriguingly, pattern 9 includes 43 genes that continue to be expressed in the adult male germ line and that are associated with phenotypes relevant to reproduction as well as 49 transcripts corresponding to Cancer/Testis genes including four known to be important for spermatogenesis (MORCI, PIWIL2, TSPY1 and TEX15; see searchable Supplementary data, Table S4). These results substantially extend a previous report (MORC1, PIWIL2, TSPY1 and TEX15; see searchable Supplementary data, Table S4). The next challenge will be to determine the complete transcriptome of the rodent and human germ lines using RNA-Seq, a method that identifies both mRNAs and ncRNAs (Wang et al., 2009). Integration of this information with the ever increasing amount of data on the human genome (Genomes Project Consortium, 2010) will accelerate the pace at which we discover genetic mechanisms that control male germline development and fertility.

Supplementary data

Supplementary data are available at http://humrep.oxfordjournals.org/.

Acknowledgements

We thank A. Amon and J. Toppari for critical reading of the manuscript and O. Sallou and O. Collin from the Genouest bioinformatics platform for GermOnline systems administration.

Authors’ roles

F.C. and A.L. analyzed and interpreted data and contributed to the manuscript; B.E., R.M., C.F. and P.D. performed research, A.G. contributed to database development, W.S. C.K. and B.J. contributed new reagents; C.K. designed research, M.P. designed research, interpreted data and wrote the paper. All authors approved the final version of the manuscript.

Funding

This work was supported by the grants Inserm Avenir R07216NS, ARC No7985 and Région Bretagne CREATE R11016NN awarded to M.P., SCH 587/3-1 from the Deutsche Forschungsgemeinschaft awarded to C.K. and W.S. and INERIS-STORM N 10028NN awarded to B.J.

Conflict of interest

None declared.

The regulatory network driving male germ cell development

Given the huge number of genes that are highly transcribed in mammalian testis including hundreds that appear to be specifically expressed in the germline (Schultz et al., 2003; Small et al., 2005; Chalmel et al., 2007; Feig et al., 2007), rather few transcriptional activators have been identified and characterized as being essential for gametogenesis or fertility so far (for review see Kimmins et al., 2004). Notable exceptions are Myb1 (Toscani et al., 1997; Bolcun-Filas et al., 2011), and members of the heat shock factor (HSF) family (Akerfelt et al., 2007; Metchat et al., 2009), the bromodomain (BRD) class (Shang et al., 2007), and the nuclear receptor (NR) (Zechel, 2005; Rajkovic et al., 2010) type of DNA-binding regulators. Another potentially important novel candidate is BRD8, a subunit of the NuA4-histone acetyl transferase complex that might play a role in chromatin modification events occurring during germline development (Cai et al., 2003). Finally, we confirmed the presence of the NR6A1 protein in human and rat germ cells. This orphan nuclear receptor, important for normal female fertility (Lan et al., 2003b) among other processes, interacts with the CREM activator via a common DNA-binding motif to regulate gene expression in spermatids (Hummelke and Cooney, 2004; Rajkovic et al., 2010).

We have identified numerous as yet unreported TF-target motifs within the promoter regions of genes expressed in the germline, and our data are consistent with novel roles in gametogenesis for a number of regulators implicated in somatic processes. Our work, therefore, provides an initial glimpse into the complex regulatory network controlling germline development and paves the way for further analyses that will lead to a better understanding of the mechanisms that control germ cell type specific transcriptional activation.

The germ-line-somatic cancer link

Given earlier results obtained with yeast, it appears that regulatory genes important for meiosis and gametogenesis are incompatible with regular mitotic growth and division (Sopko et al., 2006; Varela et al., 2010). Abnormal activation of such loci in somatic cells may therefore interfere with their ability to divide and differentiate normally. A better understanding of the germline functions fulfilled by novel cancer/testis genes via (targeted) gene deletion mouse models may help generate testable hypotheses about the possible contribution of mis-expressed testicular genes to the development of somatic malign tumours (Simpson et al., 2005; Caballero and Chen, 2009). The outcome of the present study lays the foundation for large-scale identification of novel Cancer/Testis genes as targets for cancer immunotherapy because it identified hundreds of genes apparently specifically expressed in tests for which protein localization patterns in tumor cells are being investigated by projects such as HPA (Ponten et al., 2011).

The study reported here constitutes one of the most comprehensive RNA profiling analyses of post-natal human germ cell development. Another potentially important novel candidate is BRD8, a subunit of the NuA4-histone acetyl transferase complex that might play a role in chromatin modification events occurring during germline development (Cai et al., 2003). Finally, we confirmed the presence of the NR6A1 protein in human and rat germ cells. This orphan nuclear receptor, important for normal female fertility (Lan et al., 2003b) among other processes, interacts with the CREM activator via a common DNA-binding motif to regulate gene expression in spermatids (Hummelke and Cooney, 2004; Rajkovic et al., 2010). We have identified numerous as yet unreported TF-target motifs within the promoter regions of genes expressed in the germline, and our data are consistent with novel roles in gametogenesis for a number of regulators implicated in somatic processes. Our work, therefore, provides an initial glimpse into the complex regulatory network controlling germline development and paves the way for further analyses that will lead to a better understanding of the mechanisms that control germ cell type specific transcriptional activation.
References

Genomic analysis of human spermatogenesis

Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 2003;100:12201–12206.

