Letters to the Editor


Menakaya UA, Reid S, Infante F, Connous G. The ‘sliding sign’ in conjunction with sonovaginography: is this the optimal approach for the diagnosis of pouch of Douglas obliteration and posterior compartment deep infiltrating endometriosis? AJUM 2013; 16:122–127.


Uche Menakaya 1,*, Fernando Infante 1 and George Connous 1,2

1Acute Gynaecology, Early Pregnancy and Advanced Endosurgery Unit, Nepean Medical School, Nepean Hospital, University of Sydney, Kingswood, NSW, Australia

2OMNI Gynaecological Care, Centre for Women’s Ultrasound and Early Pregnancy, St Leonards, Sydney, NSW, Australia

*Correspondence address. Acute gynaecology, Early pregnancy and Advanced Endosurgery Unit, University of Sydney Medical School and Nepean Hospital, Penrith, NSW, Australia. E-mail: uchei2000@yahoo.com

doi:10.1093/humrep/det346

Advanced Access publication on September 5, 2013

Reply: Consensus on current management of endometriosis

Sir,

We are grateful for the appreciation of our consensus statement on the current management of endometriosis (Johnson et al., 2013) from Menakaya and Connous and we believe they have raised valid points concerning imaging.

Our consensus process, and the resulting paper, was not designed to examine diagnostic techniques in detail. We are proposing a detailed consensus process to examine the diagnosis and classification of endometriosis to coincide with the 12th World Congress on Endometriosis in Sao Paulo, Brazil, in May 2014.

However, we acknowledge that there may be value in imaging techniques such as transvaginal ultrasound. Any diagnostic technique that accurately predicts the presence of a finding that would alter the type of surgery undertaken is valuable—the principle of ‘facilitation of triaging

References


(Johnson and Hummelshoj, 2013). It was a timely article unique in its methodology, especially its process of global networking and the inclusion of the views of women who suffer from endometriosis. The recommendations on the management of endometriosis in low resource settings and the development of centres (or networks) of expertise are commendable. However, we feel that the non-inclusion of transvaginal ultrasound scan as a non-invasive diagnostic tool of choice in the primary evaluation of women suspected of endometriosis is a significant omission.

Firstly, evidence has evolved on the role of the transvaginal ultrasound scan in the preoperative management of women with extra-ovarian endometriosis (Dessole et al., 2003; Abrao et al., 2007; Hudelist et al., 2011; Benacerraf and Groszmann, 2012). In particular, pattern recognition of the sonographic characteristics of deep infiltrating endometriosis (DIE) of the posterior pelvic compartment has been well described (Bazot et al., 2007). Furthermore, ultrasound techniques that assess the status of the pouch of Douglas (POD) have also been described (Reid et al., 2013). This is especially important as >60% of women with an obliterated POD will have evidence of bowel endometriosis (Khong et al., 2011). Indeed, a systematic preoperative ultrasonographic assessment of the pelvis has demonstrated a high detection rate and low false-positive rate in predicting POD obliteration and presence of midline DIE in women with high stage disease (Reid et al., 2011).

Preoperative ultrasound evaluation therefore provides a stepwise approach to the diagnosis of higher stage disease giving valuable preoperative information. It has the potential to facilitate the triaging of women to the appropriate network of expertise. And with the failure of laparoscopy to sometimes correctly estimate the extent of bowel endometriotic disease in the posterior compartment and incompletely excise ‘skip’ lesions, preoperative imaging enables the laparoscopic surgeon to plan the surgical procedure within the context of a multidisciplinary team approach.

Furthermore, we also believe that maximum cyto reduction at the first surgical procedure is best achieved with preoperative mapping of location and extent of disease using transvaginal ultrasound scan. This has the potential to avoid the need for a diagnostic laparoscopy (Menakaya et al., 2013), reduce patient exposure to anaesthesia and result in significant cost savings for the health system.

Secondly, transvaginal ultrasound scan is a low cost readily available non-invasive diagnostic tool that has been subjected to robust evaluation of its accuracy in predicting posterior compartment endometriotic disease (Abrao et al., 2007). In contrast to the serum biomarkers described in the consensus paper, transvaginal pelvic ultrasound is ready for immediate introduction into clinical practice even in low resource settings.

(Johnson and Hummelshoj, 2013). It was a timely article unique in its methodology, especially its process of global networking and the inclusion of the views of women who suffer from endometriosis. The recommendations on the management of endometriosis in low resource settings and the development of centres (or networks) of expertise are commendable. However, we feel that the non-inclusion of transvaginal ultrasound scan as a non-invasive diagnostic tool of choice in the primary evaluation of women suspected of endometriosis is a significant omission.

Firstly, evidence has evolved on the role of the transvaginal ultrasound scan in the preoperative management of women with extra-ovarian endometriosis (Dessole et al., 2003; Abrao et al., 2007; Hudelist et al., 2011; Benacerraf and Groszmann, 2012). In particular, pattern recognition of the sonographic characteristics of deep infiltrating endometriosis (DIE) of the posterior pelvic compartment has been well described (Bazot et al., 2007). Furthermore, ultrasound techniques that assess the status of the pouch of Douglas (POD) have also been described (Reid et al., 2013). This is especially important as >60% of women with an obliterated POD will have evidence of bowel endometriosis (Khong et al., 2011). Indeed, a systematic preoperative ultrasonographic assessment of the pelvis has demonstrated a high detection rate and low false-positive rate in predicting POD obliteration and presence of midline DIE in women with high stage disease (Reid et al., 2011).

Preoperative ultrasound evaluation therefore provides a stepwise approach to the diagnosis of higher stage disease giving valuable preoperative information. It has the potential to facilitate the triaging of women to the appropriate network of expertise. And with the failure of laparoscopy to sometimes correctly estimate the extent of bowel endometriotic disease in the posterior compartment and incompletely excise ‘skip’ lesions, preoperative imaging enables the laparoscopic surgeon to plan the surgical procedure within the context of a multidisciplinary team approach.

Furthermore, we also believe that maximum cyto reduction at the first surgical procedure is best achieved with preoperative mapping of location and extent of disease using transvaginal ultrasound scan. This has the potential to avoid the need for a diagnostic laparoscopy (Menakaya et al., 2013), reduce patient exposure to anaesthesia and result in significant cost savings for the health system.

Secondly, transvaginal ultrasound scan is a low cost readily available non-invasive diagnostic tool that has been subjected to robust evaluation of its accuracy in predicting posterior compartment endometriotic disease (Abrao et al., 2007). In contrast to the serum biomarkers described in the consensus paper, transvaginal pelvic ultrasound is ready for immediate introduction into clinical practice even in low resource settings.

References


Sleep efficiency in patients with polycystic ovarian syndrome

Sir, Shreeve et al. (2013) conducted a case–control study targeting urinary 6-sulfatoxymelatonin (aMT6s), 8-hydroxy-2-deoxyguanosine (8-OHdG) and sleep efficiency in 26 patients with polycystic ovarian syndrome (PCOS) using wrist actigraphy. As a main result, significantly lower sleep efficiency and higher aMT6s and 8-OHdG were observed in patients with PCOS.

I have some concerns regarding their study outcome. First, the prevalence of obstructive sleep apnoea (OSA) has previously been found to be higher in patients with PCOS (Nandalike et al., 2012; Randeva et al., 2012), partly caused by insulin resistance or by an endocrine disorder. I recommend that the authors check OSA as a sleep-related variable for patients with PCOS.

Secondly, short sleep duration and elongated sleep latency are significantly correlated with increased levels of anxiety and depression (Argyrrou et al., 2011). I also reported that subjectively reported short sleep duration was significantly related to an increase in depressive episodes recorded by the Patient Health Questionnaire 9-item version (Kawada, 2012). As these two reports handled healthy subjects, emotional distress should be checked for patients with PCOS to speculate the relationship between poor sleep quality and PCOS.

Shreeve et al. (2013) conducted a survey using physiological apparatus to measure sleep efficiency and total sleep time. My third concern is the information of validation for wrist actigraphy. Actigraphy is an accelerometry and it does not reflect sleep status in the cases of insomniacs. Shreeve et al. used actigraphy, namely Actiwatch®, and the cut-off value of sensitivity for making a sleep/wake judgment was initially set at 40 counts per minute. As there was no description of the cut-off value, I suppose that this initial setting was used for their analysis. Strictly speaking, the cut-off value should be set according to each test situation by using sleep polysomnography as the gold standard.

As the number of samples is limited in the study of Shreeve et al., further study is needed to make a definite conclusion with satisfactory statistical power.

References


