Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men

Y.H. Chiu1, M.C. Afeiche1, A.J. Gaskins1,2, P.L. Williams2,3, J. Mendiola4, N. Jørgensen5, S.H. Swan6,7, and J.E. Chavarro1,2,8,

1Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA 2Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA 3Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA 4Division of Preventive Medicine and Public Health, University of Murcia School of Medicine, Murcia 30100, Spain 5University Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen DK-2100, Denmark. 6Department of Obstetrics and Gynecology, School of Medicine, University of Rochester, Rochester, NY 14642, USA 7Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA 8Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA

*Correspondence address. 665 Huntington Avenue, Boston, MA 02115, USA. Tel: +1-617-432-4584; Fax: +1-617-432-2435; E-mail: jchavarr@hsph.harvard.edu

Submitted on January 11, 2014; resubmitted on April 1, 2014; accepted on April 9, 2014

STUDY QUESTION: Is consumption of sugar-sweetened beverages (SSB) associated with semen quality?

SUMMARY ANSWER: Higher consumption of SSB was associated with lower sperm motility among healthy, young men.

WHAT IS KNOWN ALREADY: The existing literature on the potential role of SSBs on male reproductive function is scarce and primarily focused on the relation between caffeinated beverages and semen quality. However, a rodent model suggests that SSBs may hamper male fertility.

STUDY DESIGN, SIZE, DURATION: The Rochester Young Men’s Study; a cross-sectional study of 189 healthy young men carried out at the University of Rochester during 2009–2010.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Men aged 18–22 years provided semen and blood samples, underwent a physical examination and completed a previously validated food frequency questionnaire (FFQ). Linear regression was used to analyze the association of SSBs with sperm parameters and reproductive hormone levels while adjusting for potential confounders.

MAIN RESULTS AND THE ROLE OF CHANCE: SSB intake was inversely related to progressive sperm motility. Men in the highest quartile of SSB intake (≥1.3 serving/day) had 9.8 (95% CI: 1.9, 17.8) percentage units lower progressive sperm motility than men in the lowest quartile of intake (<0.2 serving/day) (P, trend = 0.03). This association was stronger among lean men (P, trend = 0.005) but absent among overweight or obese men (P, trend = 0.98). SSB intake was unrelated to other semen quality parameters or reproductive hormones levels.

LIMITATIONS, REASONS FOR CAUTION: As in all cross-sectional studies, causal inference is limited. An additional problem is that only single semen sample was obtained from each subject.

WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this is the first report on the relation between SSB intake and low semen quality beyond the contribution of caffeinated beverages. While our findings are in agreement with recent experimental data in rodents, more studies are required to draw conclusions on the relation of SSB with semen quality or male infertility.

STUDY FUNDING/COMPETING INTEREST(S): Supported by the European Union Seventh Framework Program (Environment), ‘Developmental Effects of Environment on Reproductive Health’ (DEER) grant 212844. Grant P30 DK046200 and Ruth L. Kirschstein National Research Service Award T32 DK007703-16 and T32HD060454 from the National Institutes of Health. None of the authors has any conflicts of interest to declare.

Key words: diet / sugar-sweetened beverage / semen quality
Introduction

Overweight and obesity have been consistently related to low sperm counts (Sermondade et al., 2013) and to decreased fertility in natural (Sallmen et al., 2006; Nguyen et al., 2007) and assisted conception (Bakos et al., 2011; Colaci et al., 2012). It has been suggested that the effects of excess body weight on sperm production could be explained by alterations in hypothalamic–pituitary–gonadal axis, increased scrotal temperature resulting from abdominal and scrotal fat deposition, or the accumulation of liposoluble endocrine disruptors in adipose tissue (Sermondade et al., 2013). However, it is possible that other metabolic consequences of obesity, such as dysregulated adipokine secretion, insulin resistance and increased systemic inflammation (Hammoud et al., 2008a,b; Palmer et al., 2012), could also be responsible for this relationship. In addition, dietary factors have been related to some of the metabolic consequences of obesity, suggesting that specific aspects of diet may affect sperm production through similar mechanisms.

Multiple studies (Malik et al., 2010; Mozaffarian et al., 2011; Pan et al., 2013), including two randomized trials (de Ruyter et al., 2012; Ebbeling et al., 2012), have shown that sugar-sweetened beverages (SSBs) cause weight gain and obesity. It is also well known that SSBs can elicit some of the metabolic consequences of obesity (Stanhope et al., 2009). For example, SSBs increase insulin resistance (Stanhope et al., 2009) which could negatively influence semen quality via increased oxidative stress (Park et al., 2009). However, very few studies have examined the relation of SSB intake with semen quality, reproductive hormone levels or male fertility. While a recent study in rodents found that sugary drinks negatively impact male fertility (Ruff et al., 2013), the existing literature in humans is scarce.

The purpose of this study was to evaluate the relation between SSB intake and semen quality among healthy young men. We hypothesized that higher consumption of SSBs would be associated with lower semen quality.

Methods

Study population

The Rochester Young Men’s Study (RYMS) is a cross-sectional study of healthy young men conducted between 2009 and 2010. Men, aged 18–22 years, were recruited through flyers and newspapers at college campuses in the Rochester, NY, area. Subjects were eligible if they were born in the USA after 31 December 1987, were able to read and speak English, and were able to have their mothers complete a questionnaire. Of the 389 men who contacted the study, 305 met all eligibility criteria. Eighty-three eligible men did not join the study due to lack of interest after learning the details of the study or failure to arrange a study visit. The remaining 222 (73%) men participated in the study. Diet assessment was introduced after enrollment began. Of the 194 men who completed the dietary assessment, three men were excluded due to missing data on sperm morphology and two due to implausible caloric intake (>10,000 or <600 kcal/day), leaving 189 men for the final analysis. Upon entry, all subjects completed questionnaires on lifestyle, demographics, as well as medical and reproductive history. The study was approved by the University of Rochester Research Subjects Review Board and informed consent was obtained from all subjects.

Semen analyses

Men underwent a physical examination and provided semen and blood samples on the same day. The physical examination included measurement of weight and height, assessment of testes size while participants were in the standing position, and presence of varicocele.

Men were instructed to abstain from ejaculation for at least 48 h before sample collection; men who did not follow this instruction were identified but not excluded (n = 26). Semen samples were collected on site by masturbation. Participants were asked to report abstinence period at the time of sample collection. Abstinence times reported to be >240 h (n = 7) were truncated at 240 h. Ejaculate volume was estimated by specimen weight, assuming a semen density of 1.0 g/ml. Sperm concentration was evaluated by hemocytometer (Improved Neubauer, Hauser Scientific, Inc., Horsham, PA, USA). For that, samples were diluted in a solution of 0.6 M NaHCO3 and 0.4% (v/v) formaldehyde in distilled water. Sperm motility was classified as progressive (WHO class A+B) and total (WHO class A+B+C) (World Health Organization, 1999).

Briefly, a 10 μl of well-mixed semen was placed on a clean glass slide that had been kept at 37°C and covered with a 22 × 22 mm coverslip. The preparation was placed on the heating stage of a microscope at 37°C and immediately examined at ×400 magnification.

Reproductive hormones measurement

Blood serum was frozen at −80°C, and then shipped to Copenhagen, Denmark on dry ice and stored at −20°C until hormone analysis was performed at University Department of Growth and Reproduction at Rigshospitalet. Serum levels of FSH (Lifshitz et al., 1993), LH (Mendiola et al.) and sex hormone-binding globulin (SHBG) were assessed using time-resolved immunofluorometric assays (DELFA; PerkinElmer, Skovlund, Denmark). The intra-assay variations were all <5.0% for the FSH, LH and SHBG assay. Serum testosterone (T) levels were determined by a time-resolved fluorim- munofluorometric assay (DELFA; PerkinElmer) with intra-assay variations all <8%. Estradiol (E2) was measured by radioimmunoassay (Pantex, Santa Monica, CA, USA) with intra-assay variation of <8% and the inter-assay variation of <13%. Inhibin B levels were determined by a specific two-sided enzyme immunoassay (Oxford Bio-Innovation Ltd, Bicester, UK) with intra- and inter-assay variation of 13 and 18%, respectively. Free testosterone (FT) concentration was calculated using the equation of Vermeulen et al., assuming a fixed albumin concentration of 43 g/l (Vermeulen et al., 1999).

Dietary assessment

Diet was assessed using a previously validated 131-item FFQ (Rimm et al., 1992). Men were asked to report how often, on average, they had consumed specified amounts of each food, beverage and supplement over the past year. Food frequency options ranged from never to six or more times per day. For beverages, a serving was defined as one glass, bottle or can; size was assumed to be 12 oz (0.35 l) for nutrient estimation. Total SSB consumption was derived by summing intakes of carbonated SSBs with caffeine (e.g. Coke, Pepsi), carbonated SSBs without caffeine (e.g. Ginger Ale, 7-UP) and non-carbonated SSBs (e.g. sports drinks, sugared iced tea). In a validation study, the de-attenuated correlation (i.e. observed correlation corrected for random within-person variability) (Rosner and Willett, 1988) between two 1-week prospectively collected diet records collected 6 months apart and FFQ reports collected at the end of the year were 0.84 for caffeinated carbonated beverages and 0.55 for all other SSBs (Feskanchich et al., 1993). Previously described dietary patterns were calculated to characterize overall food choices (Gaskins et al., 2012). Nutrient intakes were estimated using a
Statistical analyses

Men were classified into quartiles of SSB intake. Linear regression models were used to estimate the adjusted difference and 95% confidence interval (CI) in semen quality parameters and reproductive hormone levels in increasing quartiles of SSB intake using men in the lowest quartile as reference, while adjusting for potential confounders. Sperm concentration, total sperm count and FSH were log-transformed to meet normality assumptions of linear regression. Results for these parameters were back transformed to improve interpretability. Population marginal means were utilized to present marginal population averages adjusted for the covariates in the model (Searle et al., 1980). Tests for linear trend were performed across quartiles of SSB intake using median intake in each quartile as a continuous variable in the linear regression models. To examine the possibility of non-linear relationships, we evaluated potential threshold effects by dichotomizing SSB intake in increments of 0.25 servings/day. Non-linearity was also examined by fitting models with linear and quadratic terms.

Participant characteristics previously related to semen quality parameters in this population (Gaskins et al., 2012, 2013) or other studies (Li et al., 2011; Ser mondade et al., 2013) were considered as potential confounders if they were also related to SSB intake at P < 0.20. Based on these criteria, models were adjusted for age (Vine et al.), smoking status (current/former or never), abstinence time (h), physical activity (h/week), TV viewing hour (h/week), total fat intake (% energy), total protein intake (% energy), total energy intake (kcal/day), total caffeine intake (g/d), total alcohol intake (g/d) and for the Prudent and Western dietary pattern summary scores. Analyses for sperm motility were additionally adjusted for time between ejaculation and start of semen analysis (Chavarro et al.). Models for reproductive hormones were adjusted for time of blood draw to account for circadian variation in hormone levels and the same set of covariates as semen parameters with the exception of abstinence time. Additional adjustment for BMI was planned regardless of statistical significance as it was hypothesized to mediate the relation between SSB and semen quality. In addition, effect modification by BMI (<25 and ≥ 25 kg/m²), smoking status (current and never/former smokers), physical activity (moderate-vigorous activity <10.5 and ≥ 10.5 h/week) and caffeine (<103.1 and ≥103.1 g/d) was tested using cross product-terms in the final model. Statistical analyses were performed with SAS v9.2 (SAS Institute, Cary, NC, USA).

Results

The median (range) age of participants was 19.6 (18–22) years. Most men were Caucasian (83%) and non-smokers (77%); 42% were overweight or obese (BMI ≥ 25 kg/m²) and no men were underweight (BMI ≤ 18.5 kg/m²). Participants were highly active, with a median (25th, 75th percentile) of 8.0 (5.0, 14.0) h/week spent on moderate to vigorous physical activities. The median (25th, 75th percentile) values of sperm parameters were 45.2 × 10⁶/ml [20.5, 95.6] for concentration, 62.8% [55.5, 73.5] for motility, 8.6% [5%, 12%] for normal morphology and 3.5 ml [2.2, 4.4] for ejaculate volume. The median (25th, 75th percentile) SSB intake was 0.71 servings/day [0.22, 1.29], 45% of which was intake of non-carbonated SSBs. Most men did not consume diet beverages (63%) and 95% of men had an intake of diet beverage below 1 serving/day. On average, SSB intake amounted to 6.2% of total energy intake and 25.8% of total sugar intake. Men who consumed more SSBs had higher Western pattern scores, total caloric intake and carbohydrates intake but lower Prudent pattern scores and protein intakes (Table I).

SSB intake was inversely related to sperm motility after adjustment for potential confounders (Table II). Further adjustment for BMI and overall dietary patterns did not have a major impact on the results. In this model, men in the top category of SSB intake had 6.3 (95% CI 1.0, 11.6) percentage units lower sperm motility than men in the lowest 3 quartiles of intake. Adjustment for intake of total sugars slightly strengthened the association. In the multivariate model with additional terms for total sugar intake, the adjusted percentage (95% CI) of total motile sperm in increasing quartiles of SSB intake were 64.2 (59.9, 68.5), 65.8 (61.8, 69.7), 63.9 (60.1, 67.7) and 57.2 (52.5, 61.9) (P trend = 0.02). Results for progressive motility closely paralleled the results for total motility (Table II). Men in the top quartile of SSB intake had 9.8 (95% CI 1.9, 17.8) percentage units lower progressive sperm motility than men in the lowest quartile of intake. SSB intake was unrelated to sperm concentration, morphology and ejaculate volume (Table II). It was also unrelated to derived semen quality parameters (Supplementary Table SI). In addition, there were no differences between specific SSBs (carbonated SSBs with caffeine, carbonated SSBs without caffeine and non-carbonated SSBs) in their association with sperm motility (P = 0.17). Intake of fruit juices was not related to semen quality parameters.

BMI modified the association between SSB consumption and progressive sperm motility (P interaction = 0.002). SSBs were inversely related to progressive motility among lean men but not among overweight or obese men (Fig. 1). There was no evidence of significant heterogeneity on the relation between SSBs and motility by levels of physical activity (P interaction = 0.88), smoking status (P interaction = 0.95) or caffeine intake (P interaction = 0.60).

We assessed the possibility of a threshold or non-linear relation between SSB intake and motility. Analyses where SSB intake was dichotomized in increasing cutoffs showed that the inverse relation between SSB intake and progressive motility became statistically significant at intakes above 1 serving/day (Supplementary Table SI), roughly corresponding to the median intake in the third quartile of SSB intake. Non-linear models did not improve the model fit compared with a linear model (Fig. 2).

Lastly, we investigated the relation between SSB intake and reproductive hormone levels (Table III). There was an inverse association between SSB intake and FSH levels of borderline statistical significance (P trend = 0.07). FSH levels, however, were not related to sperm motility (rSpearman = −0.08, P = 0.21) and further adjustment for FSH in the multivariate models of the relation between SSBs and sperm motility did not affect the results. SSBs were unrelated to levels of the remaining reproductive hormones.

Discussion

Intake of SSBs was related to lower sperm motility (total and progressive) among young healthy men. This relation was independent of a large number of potential confounders, but was confined to lean men. There was also a suggestion of an inverse relation between SSB intake and FSH levels. SSB intake was not related to other semen quality parameters or reproductive hormone levels.

Our results are consistent with recent animal experimental data (Ruff et al., 2013). Male mice fed 25% of their total energy intake as a fructose/glucose solution designed to resemble SSBs had a 25% fewer offspring.
than control male mice (Ruff et al., 2013). SSBs accounted for a smaller proportion of calories in our study, 9.2% of total caloric intake among men in the highest quartile for SSB intake, than in the rodent experiment. It is, therefore, possible that the observed relations may be larger in populations with higher SSB intake. It is also important to point out that it is not possible to determine from our findings to what extent the observed relations with sperm motility might translate into fertility. Therefore, further evaluation of SSBs’ role in male reproductive function is needed.

SSB intake is known to have multiple metabolic effects that could explain the observed associations. Consumption of SSBs has been found to increase insulin resistance in adolescents (Kondaki et al., 2013) and adults (Stanhope et al., 2009). Insulin resistance is known to increase oxidative stress (Park et al., 2009), which in turn can negatively influence sperm motility (Benedetti et al., 2012; Chen et al., 2013). In addition, conditions characterized by insulin resistance, such as type 2 diabetes, have also been related to lower sperm motility (Echavarria Sanchez et al., 2007; Rama Raju et al., 2012). On the other hand,

Table I Characteristics of the Rochester Young Men’s Study population according to quartiles of sugar-sweetened beverage (SSB) intake.

<table>
<thead>
<tr>
<th>Sugar-sweetened beverage</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>48</td>
<td>45</td>
<td>48</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Median, serving/day</td>
<td>0.11</td>
<td>0.42</td>
<td>0.95</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0–0.2</td>
<td>0.2–0.7</td>
<td>0.7–1.3</td>
<td>1.3–7.5</td>
<td></td>
</tr>
</tbody>
</table>

Demographics

- **Age, years**: 19.6 (19.1, 20.8) for Q1, 19.7 (19.0, 20.7) for Q2, 19.5 (18.8, 20.5) for Q3, and 19.1 (18.7, 19.9) for Q4, with a significance of 0.08.
- **BMI, kg/m²**: 24.8 (22.9, 26.6) for Q1, 25.3 (22.8, 27.6) for Q2, 24.0 (22.6, 25.9) for Q3, and 24.5 (22.6, 25.3) for Q4, with a significance of 0.26.
- **Current smoker, n (%)**: 6 (13) for Q1, 14 (31) for Q2, 15 (31) for Q3, and 8 (17) for Q4, with a significance of 0.05.
- **TV viewing (hour/week)**: 12 (4, 14) for Q1, 4 (4, 14) for Q2, 14 (4, 20) for Q3, and 14 (4, 20) for Q4, with a significance of 0.06.
- **Total exercise, h/w**: 14.0 (8.5, 20.0) for Q1, 12.0 (8.0, 18.0) for Q2, 13.0 (7.0, 19.5) for Q3, and 15.0 (8.0, 26.0) for Q4, with a significance of 0.43.
- **Race, n (%)**: White 39 (81) for Q1, 39 (87) for Q2, 37 (77) for Q3, and 41 (85) for Q4, with a significance of 0.63.
- **Abstinence time, hours**: 72.4 (61.6, 134.1) for Q1, 65.8 (53.8, 84.5) for Q2, 70.5 (52.0, 101.0) for Q3, and 69.1 (54.9, 98.3) for Q4, with a significance of 0.19.

Diet

- **Alcohol, g/d**: 8.0 (2.0, 22.2) for Q1, 14.4 (5.9, 28.4) for Q2, 12.7 (2.6, 28.4) for Q3, and 14.4 (3.9, 27.1) for Q4, with a significance of 0.38.
- **Caffeine, g/d**: 20.6 (7.4, 57.6) for Q1, 50.9 (27.4, 135.8) for Q2, 70.2 (34.9, 111.3) for Q3, and 84.9 (58.4, 183.9) for Q4, with a significance of 0.10.
- **Total sugar intake, g/d**: 149 (105, 179) for Q1, 139 (110, 187) for Q2, 143 (118, 193) for Q3, and 225 (174, 307) for Q4, with a significance of 0.0001.
- **Total carbohydrate, % energy**: 48.9 (45.0, 55.8) for Q1, 47.9 (44.8, 54.3) for Q2, 48.8 (46.2, 52.3) for Q3, and 52.3 (47.7, 57.2) for Q4, with a significance of 0.02.
- **Total protein, % energy**: 18.0 (15.7, 19.7) for Q1, 16.3 (14.8, 18.1) for Q2, 15.6 (14.4, 17.2) for Q3, and 14.5 (12.8, 16.7) for Q4, with a significance of 0.0001.
- **Total fat, % energy**: 29.3 (25.4, 32.9) for Q1, 29.8 (27.9, 32.9) for Q2, 31.9 (29.4, 35.4) for Q3, and 29.5 (27.6, 32.6) for Q4, with a significance of 0.07.
- **Total energy intake, kcal/day**: 2536 (2011, 3125) for Q1, 2629 (2275, 3246) for Q2, 2819 (2057, 3668) for Q3, and 3460 (2841, 4441) for Q4, with a significance of 0.0001.
- **Prudent pattern score**: 0.1 (0.3, 1.0) for Q1, 2.0 (0.6, 0.3) for Q2, 2.0 (0.8, 0.3) for Q3, and 2.0 (0.7, 0.1) for Q4, with a significance of 0.0006.
- **Western pattern score**: 2.8 (1.2, 0.3) for Q1, 2.4 (0.7, 0.3) for Q2, 2.0 (0.5, 0.3) for Q3, and 2.0 (0.1, 1.4) for Q4, with a significance of 0.0001.
- **Multivitamin users, n (%)**: 21 (44) for Q1, 10 (22) for Q2, 12 (25) for Q3, and 10 (21) for Q4, with a significance of 0.06.

Reproductive history

- **Self-reported history of cryptorchidism, n (%)**: 0 (0) for Q1, 3 (7) for Q2, 1 (2) for Q3, and 1 (2) for Q4, with a significance of 0.22.
- **Testis low in scrotum, n (%)**: 41 (85) for Q1, 41 (91) for Q2, 45 (94) for Q3, and 46 (96) for Q4, with a significance of 0.32.
- **Genital disease, n (%)**: 0 (0) for Q1, 4 (9) for Q2, 3 (6) for Q3, and 4 (8) for Q4, with a significance of 0.17.
- **Varicocele, n (%)**: 1 (2) for Q1, 1 (2) for Q2, 0 (0) for Q3, and 3 (6) for Q4, with a significance of 0.34.
- **Hydrocele, n (%)**: 0 (0) for Q1, 1 (2) for Q2, 0 (0) for Q3, and 1 (2) for Q4, with a significance of 0.60.

IQR, interquartile range.

*From Kruskal–Wallis test for continuous variables and Fisher’s exact test for categorical variables.

Dietary patterns were constructed by factor analysis as described in Gaskins et al. (2012). A higher score indicates higher adherence to the Prudent or Western dietary pattern.

Including epididymitis, orchitis, prostatitis, urinary tract infection, gonorrhea, genital warts or herpes, chlamydia, torsion of the testes, hypospadia or other diseases of the penis, testicles, urinary tract or scrotum.
insulin resistance decreases hepatic production of SHBG (Pugeat et al., 1991, 2010). Lower circulating levels of SHBG initially increase the bioavailability of testosterone which then via a negative feedback loop decreases central production of gonadotrophins via GnRH to keep free testosterone unchanged. This could partly explain our finding of slightly lower FSH with higher SSB intake. This adaptation, however, would be expected also to result in lower inhibin B levels (secondary to lower FSH) but we did not observe any significant relation between SSB intake and inhibin B. While it is possible that this mismatch reflects that the feed-forward arm of the loop (FSH-inhibin B) is less robust than feedback loop (inhibin B-FSH) (Ramaswamy et al., 2000), it could also be a chance finding. Further evaluation of the effect of SSB on reproductive hormone homeostasis is warranted.

Given the strong relation between SSB intake and obesity and the well-characterized association between obesity and semen quality, we had hypothesized that an association between SSB intake and semen would be mediated through BMI. However, contrary to our hypothesis, we did not observe evidence of mediation by BMI. Instead, BMI modified this relation whereby the association between SSBs and sperm motility was observed among lean men but not among overweight or obese men. Total sperm count and sperm concentration are the parameters more strongly related to obesity (Sermondade et al., 2013) but excess

Table II Directly measured semen quality parameters [mean (95% CI)] according to the intake of sugar-sweetened beverages (SSB).

<table>
<thead>
<tr>
<th>Sugar-sweetened beverage</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>(P^{a}_{\text{trend}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>48</td>
<td>45</td>
<td>48</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>SSB intake median, serving/day</td>
<td>0.11</td>
<td>0.42</td>
<td>0.95</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>Range, serving/day</td>
<td>0–0.2</td>
<td>0.2–0.7</td>
<td>0.7–1.3</td>
<td>1.3–7.5</td>
<td></td>
</tr>
<tr>
<td>Sperm concentration (millions/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>44.1 (33.3, 58.4)</td>
<td>43.5 (32.5, 58.1)</td>
<td>45.5 (34.4, 60.2)</td>
<td>47.3 (35.7, 62.6)</td>
<td>0.67</td>
</tr>
<tr>
<td>Model 1(^{b})</td>
<td>44.4 (33.7, 58.6)</td>
<td>46.2 (34.8, 61.3)</td>
<td>47.8 (36.3, 62.8)</td>
<td>42.3 (31.7, 56.3)</td>
<td>0.71</td>
</tr>
<tr>
<td>Model 2(^{c})</td>
<td>41.1 (31.0, 54.6)</td>
<td>43.8 (33.3, 57.5)</td>
<td>47.7 (36.6, 62.2)</td>
<td>48.1 (35.9, 64.4)</td>
<td>0.54</td>
</tr>
<tr>
<td>Model 3(^{d})</td>
<td>40.6 (30.0, 54.8)</td>
<td>44.1 (33.4, 58.1)</td>
<td>47.4 (36.3, 61.9)</td>
<td>48.7 (35.5, 66.9)</td>
<td>0.53</td>
</tr>
<tr>
<td>Sperm motility (% motile A+B+C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>63.0 (59.1, 66.8)</td>
<td>66.3 (62.4, 70.3)</td>
<td>63.6 (59.8, 67.4)</td>
<td>58.2 (54.4, 62.1)</td>
<td>0.01</td>
</tr>
<tr>
<td>Model 1(^{b})</td>
<td>63.9 (60.1, 67.8)</td>
<td>66.3 (62.3, 70.2)</td>
<td>63.8 (60.0, 67.6)</td>
<td>57.1 (53.1, 61.1)(^{*})</td>
<td>0.002</td>
</tr>
<tr>
<td>Model 2(^{c})</td>
<td>63.5 (59.5, 67.6)</td>
<td>65.3 (61.4, 69.2)</td>
<td>63.7 (59.9, 67.5)</td>
<td>58.3 (54.4, 62.7)</td>
<td>0.03</td>
</tr>
<tr>
<td>Model 3(^{d})</td>
<td>63.9 (59.7, 68.1)</td>
<td>65.4 (61.5, 69.3)</td>
<td>63.7 (59.9, 67.4)</td>
<td>58.0 (53.6, 62.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Progressive motility (% motile A+B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>58.5 (54.4, 62.5)</td>
<td>61.8 (57.7, 66.0)</td>
<td>59.8 (55.8, 63.8)</td>
<td>53.6 (49.6, 57.7)</td>
<td>0.01</td>
</tr>
<tr>
<td>Model 1(^{b})</td>
<td>59.6 (55.3, 63.6)</td>
<td>61.8 (57.7, 65.9)</td>
<td>60.0 (56.1, 64.0)</td>
<td>52.3 (48.2, 56.5)(^{*})</td>
<td>0.002</td>
</tr>
<tr>
<td>Model 2(^{c})</td>
<td>58.9 (54.7, 63.2)</td>
<td>60.8 (56.7, 64.9)</td>
<td>60.0 (56.0, 64.0)</td>
<td>54.0 (49.6, 58.4)</td>
<td>0.04</td>
</tr>
<tr>
<td>Model 3(^{d})</td>
<td>59.3 (54.8, 63.8)</td>
<td>60.9 (56.8, 65.0)</td>
<td>60.0 (56.0, 64.0)</td>
<td>53.5 (48.8, 58.2)</td>
<td>0.03</td>
</tr>
<tr>
<td>Sperm morphology (% normal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>8.2 (6.9, 9.5)</td>
<td>8.8 (7.5, 10.1)</td>
<td>8.5 (7.2, 9.8)</td>
<td>9.0 (7.8, 10.3)</td>
<td>0.46</td>
</tr>
<tr>
<td>Model 1(^{b})</td>
<td>8.2 (6.9, 9.5)</td>
<td>8.9 (7.5, 10.2)</td>
<td>8.5 (7.2, 9.8)</td>
<td>8.9 (7.6, 10.3)</td>
<td>0.61</td>
</tr>
<tr>
<td>Model 2(^{c})</td>
<td>8.2 (6.8, 9.6)</td>
<td>8.8 (7.5, 10.1)</td>
<td>8.6 (7.3, 9.9)</td>
<td>9.0 (7.5, 10.4)</td>
<td>0.59</td>
</tr>
<tr>
<td>Model 3(^{d})</td>
<td>8.4 (6.9, 9.9)</td>
<td>8.9 (7.5, 10.2)</td>
<td>8.6 (7.3, 9.9)</td>
<td>8.6 (7.1, 10.2)</td>
<td>0.98</td>
</tr>
<tr>
<td>Semen volume (ml)</td>
<td>3.6 (3.2, 4.1)</td>
<td>3.2 (2.8, 3.7)</td>
<td>3.6 (3.1, 4.0)</td>
<td>3.3 (2.9, 3.8)</td>
<td>0.58</td>
</tr>
<tr>
<td>Model 1(^{b})</td>
<td>3.5 (3.1, 3.9)</td>
<td>3.3 (2.8, 3.7)</td>
<td>3.6 (3.2, 4.0)</td>
<td>3.4 (3.0, 3.9)</td>
<td>0.98</td>
</tr>
<tr>
<td>Model 2(^{c})</td>
<td>3.5 (3.0, 3.9)</td>
<td>3.3 (2.9, 3.7)</td>
<td>3.7 (3.3, 4.1)</td>
<td>3.3 (2.9, 3.8)</td>
<td>0.77</td>
</tr>
<tr>
<td>Model 3(^{d})</td>
<td>3.5 (3.1, 4.0)</td>
<td>3.3 (2.9, 3.8)</td>
<td>3.7 (3.3, 4.1)</td>
<td>3.2 (2.8, 3.7)</td>
<td>0.51</td>
</tr>
</tbody>
</table>

\(^{a}\)Estimated using median intake in each quartile as a continuous variable.

\(^{b}\)Adjusted for total energy intake and abstinence time.

\(^{c}\)Adjusted for total energy intake, abstinence time, age, smoking status, alcohol, caffeine, total protein intake, total fat intake, TV viewing hours and physical activity.

\(^{d}\)Adjusted for total energy intake, abstinence time, age, smoking status, alcohol, caffeine, total protein intake, total fat intake, TV viewing hours, physical activity, BMI, and the Prudent and Western dietary patterns.

\(^{e}\)Additionally adjusted for time from current ejaculation to start of semen analysis.

\(^{*}\) \(P \)-value for trend \(< 0.05 \) compared with men in the lowest quartile of SSB intake.
weight has also been related to lower sperm motility in humans (Hammoud et al., 2008a,b; Sekhavat and Moein, 2010; Hammiche et al., 2012) and in animal models (Fernandez et al., 2011). The observed interaction may represent a true biological interaction where the strong deleterious effect of excess body weight on motility outweighs the modest association between SSB and semen quality beyond the contribution of other dietary factors that have been subsequently associated with semen quality in Jensen’s study (Jensen et al., 2013). Other studies that have considered intake of SSBs as part of their assessment of sources of caffeine have not found associations with semen quality (Vine et al., 1997; Ramlau-Hansen et al., 2008), although the association between caffeinated soft drinks and semen quality was not specifically reported in these studies. Clearly, further examination of the relation between SSB intake and semen quality parameters deserves further consideration.

Strengths of our study include, first, a relatively homogenous population of young healthy men without knowledge of their fertility potential or the results of their semen analysis, which makes it unlikely that the results are explained by changes in diet made in response to fertility issues. On the other hand, the homogeneity hinders generalizability to other groups of men. Second, we used a previously validated dietary instrument, which not only gives confidence to the validity of self-reported SSB intake, but also allows us to assess and adjust for overall food choices thereby reducing the likelihood of residual confounding by other dietary behaviors. In addition, we had detailed information on a variety of lifestyle risk factors, reproductive history and results of a physical examination, which allowed for adjustment of potential confounders. Third, the range of SSB intake observed in this population is comparable to that of adult men in the USA (Kit et al., 2013).

The most important limitation of the study is its cross-sectional design, which severely hampers our ability to assess causality. However, as mentioned above, men were blinded to the study outcomes thereby limiting the possibility of reverse causation; one of the most serious sources of bias in cross-sectional studies. Second, the sensitive window for spermatogenesis is 3 months prior to the ejaculate (with a shorter time window for effects on sperm maturation in the epididymis manifested by an association with motility but not concentration, as observed here), while the FFQ asked men’s typical daily intake during the previous year. Nevertheless, people generally tend to ‘telescope’ their reports. As a result, it may reflect more recent intake thus minimizing this limitation (Willet, 2012). An additional problem is that only single semen sample was obtained from each subject. However, previous work suggests that there is limited gain in information from using multiple samples per man in research settings (Carlsen et al., 2005; Stokes-Riner et al., 2007).

In conclusion, we found that SSB intake was inversely related to sperm motility among young healthy men. This association was confined to lean men. Our findings are consistent with recent experimental data in rodents (Smith et al.). To our knowledge, this is the first report on the relation between SSB intake and low semen quality beyond the contribution of specific SSBs as sources of caffeine. Therefore, it is important that this association should be further evaluated.
Figure 2 Sugar-sweetened beverage (SSB) intake in relation to total sperm motility. Solid lines indicate estimate of linear regression model; dashed lines indicate 95% confidence limits of the estimate. (A) SSBs modeled as a linear predictor among all men. (B) SSBs modeled as a linear predictor among lean men. (C) SSBs modeled with linear and quadratic terms among all men. (D) SSBs modeled with linear and quadratic terms among lean men. All models are adjusted for total energy intake, abstinence time, age, BMI, smoking status, alcohol, caffeine, total protein intake, total fat intake, TV viewing hours, physical activity, Prudent and Western dietary patterns, and time from current ejaculation to start of semen analysis.
Supplementary data

Supplementary data are available at http://humrep.oxfordjournals.org/.

Authors’ roles

S.H.S. was involved in study concept and design. J.M., J.E.C., S.H.S. and N.J. contributed to the acquisition of data. Y.H.C. analyzed data, wrote the manuscript and had a primary responsibility for final content; J.E.C. supervised analysis and edited the manuscript. M.A., A.J.G., P.L.W., J.M., N.J., S.H.S. and J.E.C. were involved in the critical revision of the manuscript. All authors read and approved the final manuscript.

Funding

Supported by the European Union Seventh Framework Program (Environment), ‘Developmental Effects of Environment on Reproductive Health’ (DEER) grant 212844. Grant P30 DK046200 and Ruth L. Kirschstein National Research Service Award T32 DK007703-16 and T32 HD060454 from the National Institutes of Health.

Conflict of interest

None declared.

References

Bakos HW, Henshaw RC, Mitchell M, Lane M. Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. *Fertil Steril* 2011; 95: 1700–1704.

Table III Reproductive hormone levels [mean (95% CI)] according to the intake of sugar-sweetened beverages (SSB).

<table>
<thead>
<tr>
<th>Sugar-sweetened beverages</th>
<th>SSB intake, quartiles</th>
<th>P trend*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1 0–0.2</td>
<td>Q2 0.2–0.7</td>
</tr>
<tr>
<td>FSH (IU/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>2.6 (2.3, 3.0)</td>
<td>2.6 (2.3, 3.0)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>2.7 (2.3, 3.2)</td>
<td>2.6 (2.3, 3.1)</td>
</tr>
<tr>
<td>LH (IU/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>3.6 (3.2, 4.0)</td>
<td>3.6 (3.2, 4.1)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>3.6 (3.2, 4.1)</td>
<td>3.6 (3.2, 4.0)</td>
</tr>
<tr>
<td>Testosterone (nmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>19.9 (18.0, 21.9)</td>
<td>21.8 (19.8, 23.8)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>20.5 (18.4, 22.7)</td>
<td>21.8 (19.7, 23.8)</td>
</tr>
<tr>
<td>Free testosterone (nmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>0.44 (0.40, 0.48)</td>
<td>0.52 (0.48, 0.56)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>0.44 (0.39, 0.49)</td>
<td>0.51 (0.46, 0.56)</td>
</tr>
<tr>
<td>SHBG (nmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>33.1 (29.8, 36.4)</td>
<td>29.5 (26.0, 32.9)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>34.5 (30.9, 38.0)</td>
<td>30.5 (27.1, 33.8)</td>
</tr>
<tr>
<td>Estradiol (pmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>88.6 (81.5, 95.7)</td>
<td>95.9 (88.5, 103.2)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>90.8 (82.7, 98.8)</td>
<td>95.3 (87.8, 102.8)</td>
</tr>
<tr>
<td>Inhibin B (pg/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>190.5 (173.2, 207.9)</td>
<td>187.9 (169.9, 205.8)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>192.3 (172.8, 211.7)</td>
<td>188.4 (170.3, 206.5)</td>
</tr>
<tr>
<td>Inhibin B/FSHa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>86.4 (62.4, 110.4)</td>
<td>84.2 (61.9, 106.5)</td>
</tr>
<tr>
<td>Adjusted</td>
<td>143.2 (110.7, 175.7)</td>
<td>150.0 (124.8, 185.2)</td>
</tr>
<tr>
<td>E2/testosteroneb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude</td>
<td>4.8 (4.4, 5.3)</td>
<td>4.6 (4.2, 5.3)</td>
</tr>
</tbody>
</table>

CI, confidence interval; SHBG, sex hormone-binding globulin; testosterone/LH, ratio of testosterone (nmol/l) to LH (IU); FT/LH, ratio of calculated free testosterone (pmol/l) to LH (IU); E2/testosterone, ratio of E2 (pmol/l) to testosterone (nmol/l); inhibin B/FSH, ratio of inhibin B (pg/ml) to FSH (IU). *Estimated using median intake in each quartile as a continuous variable.

P-value for trend < 0.05 compared with men in the lowest quartile of intake.

