Re: Risk of Thyroid Cancer After Exposure to 131I in Childhood

In his editorial, Boice (1) summarized “what is new” about radiogenic thyroid cancer in children as a result of the April 1986 Chernobyl nuclear accident, as presented by Cardis et al. (2). One of their puzzling findings is the fact that potassium iodide given to children months to years after exposure reduced the cancer risk by threefold. Cardis et al. hypothesize that the reduction in risk might be the result of shrinkage in the size of the thyroid due to prolonged administering of dietary iodine supplements.

Neither Cardis et al. nor Boice considered the fact that the release of 131I (half-life = 8 days) into the environment from the molten fuel rods was accompanied by large amounts of 129I (half-life = 16 million years), probably in higher proportion than that released by the Hanford, WA, plutonium production process (3).

In a report that suggests excess cancers, including thyroid cancers, among a population of residents downwind of the reactors in Hanford, WA, during periods of large releases of radioactive iodine into the atmosphere (downwinders), Grossman et al. (4) referred to several studies that show that the commonly assumed biological clearance half-time for iodine (80 days from the thyroid and 12 days for the rest of the body) (3) is inconsistent with several well-documented observations of much longer iodine retention times in tissue. Therefore, in contrast to statements that contributions to dose from uptake of 129I by the thyroid of residents downwind of Hanford, WA, were negligible (3), we suggested that a long retention time, combined with the considerably higher relative biological effectiveness of the very low-energy radiation from the radioactiv decay of 129I compared with 131I emissions may contribute substantially to damage of thyroid tissue, including cancer induction (4).

The sizable reduction of risk by administering potassium iodide to children long after exposure to Chernobyl fallout supports our hypothesis of an important role of 129I in thyroid cancer induction, mitigated by long-term metabolic exchange between stable and radioactive iodine, and would explain the puzzle presented by the findings of Cardis et al.

CHARLES M. GROSSMAN
RUDI H. NUSSBAUM

REFERENCES

NOTES

Affiliations of authors: Department of Medicine, Legacy Good Samaritan Hospital, Portland, OR (CMG); Department of Physics and Environmental Sciences, Portland State University, Portland, OR (RHN).

Correspondence to: Rudi H. Nussbaum, PhD, 2393 SW Park Pl., #301, Portland, OR 97205 (e-mail: D4RN@odin.pdx.edu).

DOI: 10.1093/jnci/djj164
© The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org.

RESPONSES

We do not share the opinion expressed by Grossman and Nussbaum that “…the release of 131I (half-life = 8 days) into the environment from the molten fuel rods was accompanied by large amounts of 129I (half-life = 16 million years), probably in higher proportion than that released by the Hanford, WA, plutonium production process.” The ratio of activities of 129I to 131I in the Unit 4 reactor core at the time of the accident on 26 April 1986 has been estimated (via different approaches that were based on the fuel burned or on measurements in soil) to be almost eight orders of magnitude lower than that of 131I, i.e., in the range of 1.3×10^{-8} to 2.6×10^{-8} ($/3$).

We have used the standard dose coefficients recommended of the International Commission on Radiological Protection in publications 67 and 71 (4,5), which are based on the biological clearance half-time values in these publications, to calculate the expected ratio of thyroid dose from intake of 129I to thyroid dose from intake of 131I for the 2-month period after the accident (the period over which virtually all of the dose from 131I was accumulated). This ratio is on the order of 10^{-6} for adults and 10^{-7} for children. Thus, the average thyroid dose from intake of 129I in subjects in our study can be estimated to be on the order of 0.1 μGy; this dose is very small in comparison with the average dose from 131I, which is on the order of 400 μGy for children younger than 2 years at the time of the accident and 40 μGy for children 10–14 years old at the time of the accident (6).

In the years since the accident, intake of 129I from Chernobyl fallout continues to occur with ingestion of locally produced foodstuffs (mainly with milk). The deposition density of 129I from the Chernobyl accident measured in the most contaminated regions in Belarus ranged from 80 μBq/m2 to 2.8 μBq/m2 in evacuated settlements of the 30-km zone around the Chernobyl nuclear power plant (3). If we apply a radioecological model describing transfer of radioactivity from soil through plants and milk to humans (7), we obtain 129I thyroid doses from the intake of milk of up to 1 μGy/year in the most contaminated regions. Thus, even over a 50-year period, the estimated cumulative doses from 129I would be considerably lower than that from 131I. Even with much longer iodine retention times in tissue, as mentioned by Grossman and Nussbaum, we expect that doses from 129I intake would be considerably smaller than doses from intake of 131I.

We do not, therefore, share their opinion that 129I plays an important role in the large increase in the incidence of thyroid cancer in young people after the Chernobyl accident.

VLADIMIR DROZDOVITCH
VALERI KHROUCH
ANDRÉ BOUVILLE
GUENNADI GOULKO
IRINA ZYNOVA
ELISABETH CARDIS
The contribution of ^{129}I to thyroid dose compared with that of ^{131}I released during the Chernobyl accident in 1986 and with the background radiation from natural sources is minor because of the long physical half-life (15.7 million years) of ^{129}I and its short retention time in the body (1). There is no experimental evidence for a carcinogenic effect of ^{129}I—the rate of decay is one billion times lower than that of ^{131}I and is much too low to expect one. Exposure of ^{129}I to rats at 1 cGy/day for life produced no excess of thyroid tumors or other thyroidal effects (2). ^{129}I occurs naturally when high-energy particles interact with xenon in the upper atmosphere, and ^{129}I is produced after nuclear detonations and in nuclear reactors. ^{129}I is not considered a principal radioactive release product after Chernobyl (3). Any continued small exposure to ^{129}I to those alive in 1986 would be at older ages than occurred for the short-lived radioiodines, and any carcinogenic risk would accordingly be reduced because risk decreases dramatically with age at exposure. The possible contribution of ^{129}I to thyroid dose from the Hanford nuclear site releases in Washington State was estimated to be very small (4), and comprehensive epidemiologic studies of populations residing near Hanford have failed to identify an increased risk of thyroid cancer (or any of 14 measures of thyroid disease) associated with ^{129}I exposure (5).

The areas near Chernobyl of highest fallout to radioactive iodines were also the areas most deficient in dietary stable iodine. The continued administration of potassium iodine (KI) reduced thyroid cancer risk, even after the time when blockage of ^{131}I uptake was no longer possible. How this risk reduction could occur is not entirely clear. It has been postulated that diets deficient in iodine may interact with radioactive iodines to enhance the risk of thyroid cancer (6). Animal studies have shown that the tumorigenic effect of thyroid irradiation depends on the duration and extent of subsequent thyroid stimulation; i.e., thyroid stimulation resulting from iodine-deficient diets increased the number of radioiodine-induced thyroid tumors, and radiation-induced tumors were conversely reduced when excessive thyroid stimulation was removed (7). It is conceivable that restoring normal levels of stable iodine to the diet in areas of endemic goiter might quell the overactive thyroid gland so that any underlying damage from prior radioiodine exposures did not progress to cancer. If KI administration has influenced the patterns of thyroid cancer risk among children living near Chernobyl, this influence is unlikely because of any protective action against a hypothetical and implausible carcinogenic effect of ^{129}I. It is more plausible that the higher levels of thyroxine associated with iodine supplements decreased the level of thyroid stimulation (and subsequent cancer risk) by indirect inhibition of thyrotropin secretion.

John D. Boice, Jr.

Notes

Affiliations of authors: International Agency for Research on Cancer, Lyon, France (VD, EC); State Research Center, Institute of Biophysics, Moscow, Russian Federation (VK); Research Institute of Radiation Hygiene, clinic for Nuclear Medicine, Bayerische Julius-Maximilians University of Würzburg, Germany (GG); Research Institute of Radiation Hygiene, St. Petersburg, Russian Federation (IZ).

Correspondence to: Vladimir Drozdovitch, PhD, Radiation Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, Lyon 69372, France (e-mail: drozdovitch@iarc.fr).

DOI: 10.1093/jnci/dji465

© The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org.

The contribution of ^{129}I to thyroid dose compared with that of ^{131}I released during the Chernobyl accident in 1986 and with the background radiation from natural sources is minor because of the long physical half-life (15.7 million years) of ^{129}I and its short retention time in the body (1). There is no experimental evidence for a carcinogenic effect of ^{129}I—the rate of decay is one billion times lower than that of ^{131}I and is much too low to expect one. Exposure of ^{129}I to rats at 1 cGy/day for life produced no excess of thyroid tumors or other thyroidal effects (2). ^{129}I occurs naturally when high-energy particles interact with xenon in the upper atmosphere, and ^{129}I is produced after nuclear detonations and in nuclear reactors. ^{129}I is not considered a principal radioactive release product after Chernobyl (3). Any continued small exposure to ^{129}I to those alive in 1986 would be at older ages than occurred for the short-lived radioiodines, and any carcinogenic risk would accordingly be reduced because risk decreases dramatically with age at exposure. The possible contribution of ^{129}I to thyroid dose from the Hanford nuclear site releases in Washington State was estimated to be very small (4), and comprehensive epidemiologic studies of populations residing near Hanford have failed to identify an increased risk of thyroid cancer (or any of 14 measures of thyroid disease) associated with ^{129}I exposure (5).

The areas near Chernobyl of highest fallout to radioactive iodines were also the areas most deficient in dietary stable iodine. The continued administration of potassium iodine (KI) reduced thyroid cancer risk, even after the time when blockage of ^{131}I uptake was no longer possible. How this risk reduction could occur is not entirely clear. It has been postulated that diets deficient in iodine may interact with radioactive iodines to enhance the risk of thyroid cancer (6). Animal studies have shown that the tumorigenic effect of thyroid irradiation depends on the duration and extent of subsequent thyroid stimulation; i.e., thyroid stimulation resulting from iodine-deficient diets increased the number of radioiodine-induced thyroid tumors, and radiation-induced tumors were conversely reduced when excessive thyroid stimulation was removed (7). It is conceivable that restoring normal levels of stable iodine to the diet in areas of endemic goiter might quell the overactive thyroid gland so that any underlying damage from prior radioiodine exposures did not progress to cancer. If KI administration has influenced the patterns of thyroid cancer risk among children living near Chernobyl, this influence is unlikely because of any protective action against a hypothetical and implausible carcinogenic effect of ^{129}I. It is more plausible that the higher levels of thyroxine associated with iodine supplements decreased the level of thyroid stimulation (and subsequent cancer risk) by indirect inhibition of thyrotropin secretion.

John D. Boice, Jr.

References

