The Role of Polymeric Immunoglobulin Receptor in Inflammation-Induced Tumor Metastasis of Human Hepatocellular Carcinoma

Jing Ai, Qingjuan Tang, Yanlin Wu, Yang Xu, Teng Feng, Ruiyu Zhou, Yi Chen, Xin Gao, Qingfeng Zhu, Xihua Yue, Qiuming Pan, Siyun Xu, Jing Li, Min Huang, Jennifer Daugherty-Holtrop, Yuanzheng He, H. Eric Xu, Jia Fan, Jian Ding, Meiyu Geng

Manuscript received April 18, 2011; revised August 16, 2011; accepted August 17, 2011.

Correspondence to: Meiyu Geng, PhD and Jian Ding, MD, PhD, Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai 201203, People’s Republic of China (e-mail: mygeng@mail.shcnc.ac.cn; suozhang@mail.shcnc.ac.cn) and Jia Fan, MD, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, and Institute of Biomedical Sciences, Fudan University, 180 Fenglin Rd, Shanghai 200032, People’s Republic of China (e-mail: jiafan99@yahoo.com).

Expression of the polymeric immunoglobulin receptor (pIgR), a transporter of polymeric IgA and IgM, is commonly increased in response to viral or bacterial infections, linking innate and adaptive immunity. Abnormal expression of pIgR in cancer was also observed, but its clinical relevance remains uncertain.

A human hepatocellular carcinoma (HCC) tissue microarray (n = 254) was used to investigate the association between pIgR expression and early recurrence. An experimental lung metastasis model using severe combined immune-deficient mice was applied to determine the metastatic potential of Madin–Darby canine kidney (n = 5 mice per group) and SMMC-7721 (n = 12 mice per group) cells overexpressing pIgR vs control cells. RNA interference, immunoprecipitation, and immunoblotting were performed to investigate the potential role for pIgR in the induction of epithelial–mesenchymal transition (EMT). In vitro studies (co-immunoprecipitation, immunoblotting, and migration, invasion, and adhesion assays) were used to determine the mechanisms behind pIgR-mediated metastasis. All statistical tests were two-sided.

High expression of pIgR was statistically significantly associated with early recurrence in early-stage HCC and in hepatitis B surface antigen–positive HCC patients (log-rank P = .02). Mice injected with pIgR-overexpressing cells had a statistically significantly higher number of lung metastases compared with respective control cells (Madin–Darby canine kidney cells: pIgR mean = 29.4 metastatic nodules per lung vs control mean = 0.0 metastatic nodules per lung, difference = 29.4 metastatic nodules per lung, 95% confidence interval = 13.0 to 45.8, P = .001; SMMC-7721 cells: pIgR mean = 10.4 metastatic nodules per lung vs control mean = 2.2 metastatic nodules per lung, difference = 8.2 metastatic nodules per lung, 95% confidence interval = 1.0 to 15.5, P = .03).

Furthermore, high expression of pIgR was sufficient to induce EMT through activation of Smad signaling.

Conclusions

pIgR plays a role in the induction of EMT. Our results identify pIgR as a potential link between hepatitis B virus–derived hepatitis and HCC metastasis and provide evidence in support of pIgR as a prognostic biomarker for HCC and a potential therapeutic target.

J Natl Cancer Inst 2011;103:1696–1712

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-induced death worldwide, and patients have a very poor prognosis (1–3). Surgical resection, in the form of partial hepatectomy or liver transplantation, is the mainstay of curative treatment. Nonetheless, recurrence of HCC is still common after curative surgery. In addition, HCC is frequently diagnosed at an advanced stage and thus precludes curative treatment. No effective therapeutic option exists for the treatment of the majority of patients with liver cancer (4–8). Etiologically, HCC commonly occurs in patients with chronic hepatitis, resulting from inflammation in response to hepatitis B virus (HBV) or hepatitis C virus (HCV) infections. In fact, more than half of all HCCs in the world are attributed to chronic hepatitis B (1–3,9). Although this link has been recognized for decades, the molecular mechanisms of how chronic hepatitis promotes HCC tumorigenesis and metastasis remain largely unclear.

The epithelial–mesenchymal transition (EMT), in which epithelial cancer cells lose their polarity and become motile mesenchymal cells, has been implicated in cancer invasion and metastasis (10). Cancer cells undergoing EMT appear to exhibit properties of cancer stem cells (11), override oncogene-induced premature senescence and apoptosis (12), and contribute to immunosuppression.
The polymeric immunoglobulin receptor (plgR) is a transporter of dimeric IgA (d IgA) and pentameric IgM (plgM), which are the first-line antibodies in response to initial infection. Widely expressed in epithelial cells, plgR expression is also commonly increased by proinflammatory cytokines in response to viral or bacterial infections, thus linking innate and adaptive immunity (16–19). Abnormal expression of plgR in malignantly transformed epithelial cells was initially reported 30 years ago (20–23). High levels of the cleaved extracellular domain of plgR, designated as the secretory component, were also detected in the sera of patients with HCC and colonic carcinoma with liver metastases (24). However, the clinical relevance and potential function of plgR in tumor cells remain uncertain.

In this study, we investigated the relationship between plgR expression and clinical outcome (overall survival, recurrence and disease-free survival [DFS]) in 254 HCC patients enrolled in a Chinese study. The potential role for plgR in EM was investigated in patient samples and HCC cell lines by immunohistochemistry (IHC), co-immunoprecipitation, immunoblotting, and migration, invasion, and adhesion assays. Furthermore, we studied the metastatic potential of plgR-overexpressing cells in an experimental lung metastasis mouse model.

Materials and Methods
Clinical Specimens and Analysis of plgR Expression
Tumor specimens were randomly collected from 254 HCC patients during curative resection from February 15, 2004, to December 15, 2005, in the Liver Cancer Institute, Zhong Shan Hospital, Shanghai, China. The entrance criteria and postsurgical patient surveillance were similar to those specified in previous reports (25,26). Briefly, the enrollment criteria for all patients in this study were 1) definitive HCC diagnosis by pathology on the basis of the World Health Organization criteria; 2) no prior anticancer treatment; 3) surgical resection, defined as complete resection of all tumor nodules with the cut surface being free of cancer by histological examination; 4) availability of suitable formalin-fixed paraffin-embedded tissues and frozen tissues; and 5) availability of complete clinicopathologic and follow-up data. Tumor differentiation was defined according to the Edmondson grading system (27), and liver function was assessed by Child–Pugh classification (28). Tumor staging was defined according to the Sixth Edition of American Joint Committee on Cancer TNM staging manual (29). Patients were re-assessed every 2 months in the first postoperative year and at least every 3–4 months afterward. Follow-up was terminated on May 3, 2010. Most patients died of intrahepatic recurrence, distal metastasis, or complicated liver cirrhosis. All patients were monitored prospectively by serum a-fetoprotein measurement, abdomen ultrasonography, and chest x-ray every 1–6 months, according to the postoperative time. For patients with test results suggestive of recurrence, computed tomography and/or magnetic resonance imaging were used to verify whether intrahepatic recurrence and/or distal metastasis had occurred. The diagnosis of recurrence was made on the basis of typical imaging appearance in computed tomography and/or magnetic resonance imaging scan and an elevated a-fetoprotein level. Patients with confirmed recurrence received further treatments, which followed the same protocol on the basis of tumor size, site, number of tumor nodules, and liver function. Briefly, if the recurrent tumor was localized, a second liver resection, radiofrequency ablation, or percutaneous ethanol injection was suggested. If the recurrent tumor was multiple or diffused, transcatheter arterial chemoembolization was recommended. External radiotherapy was given if lymph node or bone metastases were found; otherwise, symptomatic treatment was provided.

Overall survival was defined as the interval between surgery and either death or the last observation taken. Data were censored at the last follow-up period for living patients. DFS was measured from the date of resection until either detection of recurrent tumor or the last follow-up assessment. In the DFS analysis, data were

CONTEXT AND CAVEATS

Prior knowledge
Although hepatocellular carcinoma (HCC) has been linked to chronic hepatitis B, the underlying molecular mechanisms behind tumorigenesis and metastasis in chronic hepatitis B patients are unclear.

Study design
The polymeric immunoglobulin receptor (plgR) transports immunoglobulins, and its expression is increased in response to proinflammatory cytokines as part of the adaptive immune response. Abnormal expression of plgR has been previously reported in HCC patients. This study investigated the relationship between plgR expression and clinical outcome in 254 HCC patients. In vitro and in vivo experiments with human HCC cell lines were done to determine the role of plgR in epithelial–mesenchymal transition.

Contribution
High expression of plgR was associated with early recurrence in patients with early-stage disease and in those who were positive for hepatitis B. Overexpression of plgR resulted in increased lung metastases in an experimental lung metastases model. In vitro experiments show that overexpression of plgR induces epithelial–mesenchymal transition in HCC cells, which is regulated through the activation of Smad signaling.

Implications
plgR-mediated epithelial–mesenchymal transition is a potential underlying biological mechanism behind the development of HCC and metastases in chronic hepatitis B patients. plgR may also be a prognostic biomarker and potential therapeutic target for HCC.

Limitations
The pathway involved in the development and progression of HCC in hepatitis B patients may be more complex and include multiple converging pathways that regulate epithelial–mesenchymal transition. Further studies to determine the cause of abnormal plgR expression and potential therapeutic strategies are needed.
censored for patients without tumor recurrence, which represented the occurrence of metastases or de novo tumors and were grouped as early (<2 years) or late (>2 years) recurrence (30–33). For patients who had a confirmed tumor recurrence, DFS was calculated as the time that early recurrence was first suspected (34,35). Kaplan–Meier survival analysis of male and female patients with high or low plgR expression was performed, and P values were calculated using a two-sided log-rank test. Ethical approval for the use of human subjects was obtained from the Research Ethics Committee of Zhong Shan Hospital. All patients provided written informed consent.

Expression of plgR and E-cadherin was analyzed via IHC using tissue microarrays, which were constructed as described previously (25,26). Briefly, two core biopsies 1 mm in diameter were obtained from the donor blocks and transferred to the recipient paraffin block at defined array positions. Four different tissue microarray blocks, including tumor and peritumor tissue specimens, were constructed. IHC for plgR and E-cadherin was performed with monoclonal rabbit anti-human plgR antibody (dilution, 1:100) or monoclonal mouse anti-human E-cadherin antibody (dilution, 1:600) following a two-step protocol (Novolink Polymer Detection System; Novocastra, Newcastle, UK). IHC staining was assessed by two independent pathologists with no prior knowledge of patient characteristics (Bo Yang and Yuan Ji, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China). Discrepancies were resolved by consensus. The staining extent score was on a scale of 0–4, corresponding to the percentage of immunoreactive tumor cells (0%, 1%–5%, 6%–25%, 26%–75%, and 76%–100%, respectively). The staining intensity was scored as negative (score = 0), weak (score = 1), or strong (score = 2). A score ranging from 0–8 was calculated by multiplying the staining extent score with the intensity score, resulting in a low (0–4) or a high (6–8) expression value for each specimen (36).

Cell Culture

The Madin–Darby canine kidney (MDCK) and human colon adenocarcinoma HT29 cell lines were purchased from the American Type Culture Collection (Manassas, VA). The hepatic carcinoma cell line SMMC-7721 was obtained from the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (Shanghai, China). Cells were cultured according to the suppliers' instructions. Briefly, MDCK cells were grown in Dulbecco's modified Eagle medium (DMEM; Invitrogen, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS; Invitrogen). HT29 cells were grown in McCoy's 5A medium (Invitrogen) supplemented with 10% FBS. SMMC-7721 cells were cultured in RPMI-1640 medium (Invitrogen) supplemented with 10% FBS (Hangzhou Sijiqing Biological Engineering Materials Co, Ltd, Hangzhou, China). The Phoenix Retroviral Expression System was obtained from American Type Culture Collection (distributed by LGC standards, Middlesex, UK) and grown in DMEM supplemented with 10% FBS. All cell lines were authenticated by using short tandem repeat analysis in July 2009.

Monoclonal and Polyclonal Antibodies

The monoclonal mouse anti-human E-cadherin antibody and the monoclonal mouse anti-human EEA1 antibody were purchased from BD Biosciences (San Diego, CA). The monoclonal rabbit anti-human Smad2 antibody, the polyclonal rabbit anti-human phospho-Smad2 (Ser465/467) antibody, the monoclonal rabbit anti-human Smad3 antibody, the monoclonal rabbit anti-human phospho-Smad3 (Ser423/425) antibody, the monoclonal mouse anti-human Snail antibody, and the monoclonal mouse anti-human Slug antibody were purchased from Cell Signaling Technology (Danvers, MA). The monoclonal mouse anti-human vimentin antibody and the monoclonal mouse anti-human fibronectin antibody were purchased from Abcam (Cambridge, UK). The polyclonal rabbit anti-human plgR (H300), polyclonal goat anti-human plgR (N16), polyclonal goat anti-human plgR (C20), polyclonal rabbit anti-Smad4, normal rabbit IgG, and normal goat IgG antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The monoclonal mouse anti-human pan-cytokeratin antibody, polyclonal rabbit anti-human β-actin antibody, monoclonal mouse anti-human TWIST1 antibody, monoclonal mouse anti-human TWIST2 antibody, and polyclonal rabbit anti-human ZEB1 antibody were purchased from Sigma-Aldrich (St Louis, MO).

Plasmids

Human plgR cDNA-containing pcDNA3.1 (+) was a generous gift from Dr Finn-Eirik Johansen (Rikshospitalet University Hospital, Oslo, Norway). The template sequences for plgR short hairpin RNA (shRNA) were obtained using the Insert Design Tool for the pSilencer Vector of Ambion (Austin, TX). The template plgR shRNA and non-silencing shRNA were chemically synthesized by GenePharma Co (Shanghai, China), annealed to form duplexes (90°C for 3 minutes followed by an incubation at 37°C for 1 hour), and subcloned into pSilencer2.1/Puro vector (Ambion) with T, DNA ligase at 14°C for 16 hours. Human plgR mutants were generated using the Muta-direct Site-directed Mutagenesis kit (Beijing SBS Genetech Co, Ltd, Beijing, China). pBABE-puro-plgR plasmids were constructed using recombinant polymerase chain reaction and subsequently were subcloned into the vectors. The polymerase chain reaction conditions were as follows: 94°C for 5 minutes; 30 cycles of 94°C for 1 minute, 60°C for 1 minute, and 72°C for 2.5 minutes; 72°C for 10 minutes. The polymerase chain reaction product was cloned into pBABE-puro vector at the EcoRI restriction site. All constructs were sequenced by Invitrogen.

Transfection and Infection

For stable transfections, MDCK cells were grown to 60% confluency in six-well plates and transfected with 4 μg of full-length pcDNA3.1 (+) vector or pcDNA3.1 (+)-plgR, using 10 μL of Lipofectamine 2000 (Invitrogen) following the manufacturer's instructions. A monoclonal population of stably transfected cells was selected using 800 μg/mL genetin (G418) (Invitrogen). MDCK-plgR cells were grown to 60% confluency in six-well...
plates and transfected with 4 μg full-length pSilencer2.1/Puro-con shRNA vector or the indicated pSilencer2.1/Puro-shRNA, using 10 μL of Lipofectamine 2000 following the manufacturer’s instructions. A monoclonal population of stably transfected cells was selected using 2 μg/mL puromycin (Invitrogen). Transient transfection in MDCK and SMMC-7721 cells were performed as described above except that cells were directly harvested for analysis 48 hours after transfection. For infection, phoenix cells (American Type Culture Collection) were grown in DMEM supplemented with 10% FBS to 60% confluency in 10-cm dishes and transfected with 24 μg of the retroviral constructs (described above) in antibiotic-free DMEM containing 10% FBS using 60 μL of Lipofectamine 2000 according to the manufacturer’s instructions. Approximately 24 hours after transfection, the media was changed to fresh DMEM containing 10% FBS. After an additional 24-hour incubation at 37°C, the supernatant was collected, filtered using a 0.45-μm filter (Millipore, Cork, Ireland), and used to infect SMMC-7721 cells in the presence of 4 μg/mL polybrene (Millipore). Polyclonal populations of infected cells were then selected using 1 μg/mL puromycin.

RNA Interference

pIgR shRNAs were synthesized and cloned into a pSilencer2.1/Puro vector (Ambion). Target sequences for the shRNAs were as follows: pIgR shRNA1, 5'-GAACGGUGGACCGAGUUUCA-3'; pIgR shRNA2, 5'-CGUGCGACGGAUUUAUCAUC-3'; and pIgR shRNA3, 5'-GAAGAGUUGUUGAGGCAACCA-3'. Shanghai GenePharm (Shanghai, China) synthesized short interfering RNA (siRNAs) sequences specifically targeting human pIgR (5'-GAA GAGUUUGUUGAGGCACATT-3'), human Smad2 (5'-GGU GGUGUUGAUAGCAUUAUATT-3'), human Smad3 (5'-GGCC GGUAGGAAGAACUAAATT-3'), canine Smad2 (5'-ACAUAUA GGAAGAGAGAGAGUGUGCAGATT-3'), canine Smad3 (5'-GAGGAGAUG GUGUGGAGATT-3'), and non-targeting control siRNA (5'-UUCUGCCAGACUGUUGATT-3'). For siRNA delivery, double-stranded RNA oligonucleotides were transfected using Oligofectamine (Invitrogen). MDCK, HT29, or SMMC-7721 cells at 30%-50% confluency in six-well plates were transfected with 100 nM siRNAs, using 3 μL of Oligofectamine according to the manufacturer’s instructions and harvested 48 hours after transfection for analysis.

Co-Immunoprecipitation and Immunoblot Analysis

For total protein extraction, the indicated cell lines were grown in six-well plates or 10-cm dishes; were lysed in buffer consisting of 25 mM HEPES (pH 7.5), 150 mM NaCl, 10 mM MgCl·6H2O, 0.1 mM EDTA, 1 mM sodium orthovanadate, 1% Nonidet P-40; and supplemented with a protease inhibitor cocktail (Roche, Indianapolis, IN) and then centrifuged at 12000 g at 4°C for 15 minutes. The supernatants containing the cellular proteins were then collected, and the protein concentration was measured using Bicinchoninic Acid Protein Assay Reagent (Pierce, Rockford, IL).

For co-immunoprecipitation, the protein lysates (1 mg) were incubated with the appropriate antibodies with rocking for 4 hours at 4°C, followed by the incubation of protein A/G plus Agarose (Santa Cruz Biotechnology) for 6 hours to overnight at 4°C with rocking. The beads were then washed with cold lysis buffer followed by centrifugation at 3000g at 4°C for 5 minutes. The bound proteins were then eluted using 0.2% sodium dodecyl sulfate. Both total protein lysates and eluted proteins from the co-immunoprecipitation experiment were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to Hybond C Extra nitrocellulose membranes (GE Healthcare, Chalfont, St Giles, UK). Membranes were incubated in blocking solution containing 5% dry milk or 1% bovine serum albumin for 1 hour at room temperature. The membranes were incubated at 4°C overnight with the appropriate primary antibodies (mouse anti-human E-cadherin antibody [dilution, 1:3000], rabbit anti-human Smad2 antibody [dilution, 1:1000], rabbit anti-human Smad3 antibody [dilution, 1:1000], rabbit anti-human Smad4 antibody [dilution, 1:1000], mouse anti-human Snail antibody [dilution, 1:1000], mouse anti-human Slug antibody [dilution, 1:1000], mouse anti-human vimentin antibody [dilution, 1:2000], mouse anti-human fibronectin antibody [dilution, 1:1000], rabbit anti-human plgR [H300] antibody [dilution, 1:1000], goat anti-human pIgR [N16] antibody [dilution, 1:1000], goat anti-human plgR [C20] antibody [dilution, 1:1000], rabbit anti-Smad3 antibody [dilution, 1:1000], mouse anti-human pan-cytokeratin antibody [dilution, 1:100,000], rabbit anti-human β-actin antibody [dilution, 1:100,000], mouse anti-human TWIST1 antibody [dilution, 1:1000], mouse anti-human TWIST2 antibody [dilution, 1:1000], rabbit anti-human ZEB1 antibody [dilution, 1:1000], or mouse anti-human GAPDH antibody [dilution, 1:5000]). The membranes were washed for 15 minutes with Tris-buffered saline containing Tween 20 (TBST) (25 mM Tris, 150 mM NaCl, 2 mM KCl, pH 7.4, supplemented with 0.1% Tween 20) three times, before incubation at room temperature for 1 hour with horseradish peroxidase-conjugated anti-goat IgG (dilution, 1:2000), anti-rabbit IgG (dilution, 1:2000), or anti-mouse IgG (dilution, 1:2000) antibody. After washing the membranes with TBST three times for 15 minutes, bound antibodies were visualized using Western Blotting Luminal Reagent (Pierce) and subsequent exposure to KODAK X-OMAT BT Film (Kodak, Rochester, NY) for 30 seconds to 30 minutes. Immunoblotting for GAPDH or β-actin served as a protein loading control. All experiments were performed at least three independent times.

Experimental Lung Metastasis Model

Female severe combined immunodeficient (SCID) mice 6 weeks of age were supplied by the Shanghai Laboratory Animal Center, Chinese Academy of Sciences (Shanghai, China). Mice were housed five or six mice per cage in a specific pathogen-free room with a 12-hour light/dark schedule at 25°C ± 1°C and were fed an autoclaved chow diet and water ad libitum. All experiments were performed according to the institutional ethical guidelines on animal care and approved by the Institute Animal Care and Use Committee at Shanghai Institute of Materia Medica. The mice were randomly divided into indicated groups before the injection, and the double-blinded evaluation was performed when counting metastatic nodules.

The metastatic ability of plgR-overexpressing MDCK and SMMC-7721 cells and respective control cells was determined following cell injection intravenously into the tail vein. MDCK cells (MDCK-mock, MDCK-plgR, MDCK-plgR-con.shRNA, or...
MDCK-pIgR-shRNA3 cells) at 2 × 10^6 cells resuspended in 100 µL phosphate-buffered saline (PBS) were injected into the lateral tail veins of SCID mice (n = 5 mice per group). SMMC-7721-mock or SMMC-7721-pIgR cells (1 × 10^6 cells per mouse, resuspended in 100 µL PBS, n = 12 mice per group) were injected into the lateral tail veins of SCID mice. Sample size was calculated on the basis of 80% power. The number of mice per group was greater than the minimum numbers required as determined by a power test on the basis of preliminary studies—at least two mice per group were required for experiments with pIgR-overexpressing MDCK and control cells, whereas three mice per group were required for experiments with pIgR-overexpressing SMMC-7721 and control cells. In preliminary experiments, we observed a 60% change of death among mice injected with pIgR-overexpressing SMMC-7721 cells (data not shown); therefore, at least eight mice were needed to achieve 80% power. Survival was recorded daily. After 10 weeks, the mice were killed by CO₂, their lungs were removed, and the number of metastasis nodules on the lung surface was counted by the naked eye. Metastatic lungs were fixed with paraformaldehyde (4%) before dehydration and paraffin embedding. Paraffin sections were stained with hematoxylin and eosin according to standard protocols or were subjected to IHC staining using a horseradish peroxidase–labeled streptavidin–biotin ABC kit (ZSGB-BIO, Beijing, China) with hematoxylin as the counterstain.

Migration, Invasion, and Adhesion Assays

For wound-healing migration experiments, pIgR-overexpressing MDCK cell sets (MDCK-mock, MDCK-pIgR, MDCK-pIgR-con.shRNA, MDCK-pIgR-shRNA1, MDCK-pIgR-shRNA2, or MDCK-pIgR-shRNA3 cells) and pIgR-overexpressing SMMC-7721 cell sets (SMMC-7721-mock or SMMC-7721-pIgR cells) were grown to form a monolayer with 90% confluency. Cells were then starved with serum- and growth factor–free medium for 12 hours and added to the top chambers of 24-well transwell plates (8 µm; Corning Costar Corp, Corning, NY). The bottom chambers were filled with growth medium supplemented with 100 ng/mL secretory component (R&D Systems, Minneapolis, MN). Cultures were maintained for 48 hours, followed by removal of non-viable cells at the top of the filter with a cotton swab. Migrating cells were fixed in paraformaldehyde (4%) and stained with crystal violet (0.1%) for 15 minutes at room temperature. Dye that was taken up by cells bound to the membrane was released with crystal violet (0.1%) for 15 minutes at room temperature and images at ×10 magnification were taken using the Olympus IX51 research microscope with a DP-70 camera. The assay was performed three independent times in triplicate.

For the adhesion assay, MDCK-mock, MDCK-pIgR, MDCK-pIgR-con.shRNA, MDCK-pIgR-shRNA1, MDCK-pIgR-shRNA2, or MDCK-pIgR-shRNA3 cells (3 × 10^5 cells per well) were cultured in fibronectin-coated 96-well plates in triplicate for 1 hour at 37°C. After gentle washing with PBS, non-adherent cells were discarded, and adherent cells were fixed with 5% glutaraldehyde and stained with 0.1% crystal violet. Dye that was taken up by cells bound to the membrane was dissolved in 100 µL 10% acetic acid, and the absorbance was measured at 595 nm using a multiwell spectrophotometer (VERSAmax; Molecular Devices). The experiment was performed three independent times.

Urokinase-Type Plasminogen Activator (uPA)-Plasminogen Assay

MDCK (1.5 × 10^4 cells per well) and SMMC-7721 (6 × 10^4 cells per well) cells stably overexpressing an empty vector or pIgR cDNA were seeded in 96-well plates and grown overnight at 37°C. Then cells were cultured in fresh medium for 24 hours. Alternatively, HT29 cells were seeded at 6000 cells per well in 96-well plates and grown overnight at 37°C. Fresh medium containing tumor necrosis factor α (TNF-α) (5, 10, 20 ng/mL) (Peprotech Inc, Rocky Hill, NJ) was added to the appropriate wells and incubated for 24 hours at 37°C. The plates were processed for determination of plasminogen activity by first rinsing twice with phenol red–free DMEM and then adding 200 µL of reaction buffer containing 50% (vol/vol) 0.05 units/mL plasminogen (Roche) in phenol red–free DMEM, 40% (vol/vol) 50 mM Tris–HCl pH 8.2, 10% (vol/vol) 3 mM Chromozyme PL (Roche), and 0.2% tween 20 in 100 mM glycine solution to each well. The plates were incubated for 6 hours at 37°C, 5% CO₂, and the absorbance of each well was read using an automated spectrophotometric plate reader (VERSAmax; Molecular Devices) at 405 nm. The results were repeated in three independent experiments.

Immunocytochemistry

pIgR-overexpressing MDCK cell sets (MDCK-mock, MDCK-pIgR, MDCK-pIgR-con.shRNA, MDCK-pIgR-shRNA1, MDCK-pIgR-shRNA2, or MDCK-pIgR-shRNA3 cells) or pIgR-overexpressing SMMC-7721 cell sets (SMMC-7721-mock or SMMC-7721-pIgR cells) were plated onto 24-well glass chamber slides (20000 or 10000 cells per well) and incubated at 37°C in a humidified incubator with 5% CO₂ for 36 hours. The cells were fixed with 4% formaldehyde at room temperature for 1 hour and permeabilized with 0.1% Triton X-100 in PBS at room temperature for 5 minutes. Subsequently, cells were washed three times for 5 minutes each using PBS containing 1% bovine serum albumin. Cells were incubated with primary antibodies (mouse anti-human E-cadherin antibody [dilution, 1:100], mouse anti-human pan-cytokeratin...
antibody [dilution, 1:100], mouse anti-human vimentin antibody [dilution, 1:100], or mouse anti-human fibronectin antibody [dilution, 1:100]). For dual immunostaining, the primary antibodies were goat anti-human plgR (C20) antibody (dilution, 1:100), rabbit anti-human Smad2 antibody (dilution, 1:1000), rabbit anti-human Smad3 antibody (dilution, 1:1000), and mouse anti-human EEA1 antibody (dilution, 1:100). The cells were washed three times for 5 minutes each using PBS containing 1% bovine serum albumin and then incubated with Alexa Fluor 546 goat anti-mouse IgG (dilution, 1:1000) or Alexa Fluor 488 rabbit anti-mouse IgG (dilution, 1:1000) for single immunofluorescence staining and with Alexa Fluor 546 goat anti-mouse IgG (dilution, 1:1000) and Alexa Fluor 488 rabbit anti-goat IgG (1:1000 dilution), or Alexa Fluor 546 goat anti-mouse IgG (dilution, 1:1000) and Alexa Fluor 488 goat anti-rabbit IgG (1:1000 dilution) for dual immunofluorescence staining at room temperature for 1 hour. Cells were observed using a Zeiss LS510 confocal microscope (Carl Zeiss, Jena, Germany) at ×400 magnification for single immunofluorescence experiments and an Olympus FV 1000 confocal microscope at ×600 magnification for dual immunofluorescence experiments. All experiments were repeated three independent times.

Statistical Analysis
All data (except tissue microarray and animal survival analyses) were analyzed using Student t test. Statistical analysis of tissue microarrays was performed using the statistical package SPSS (version 16.0; SPSS Inc, Chicago, IL). DFS and Overall survival were assessed using the Kaplan–Meier method and compared with the log-rank test. Fisher exact test was applied to determine clinicopathologic correlations. Univariable and multivariable risk ratios were computed with 95% confidence intervals (CIs). Univariable risk ratios with 95% confidence intervals were calculated using Cox proportional hazards regression with forward stepwise selection (forward likelihood ratio). Models were adjusted by serum gamma glutamyl transferase (>54 or ≤54 U/L), α-fetoprotein (>20 or ≤20 U/L), tumor encapsulation (none or complete), tumor size (>5 or ≤5 cm), the number of tumors (multiple or single), vascular invasion (yes or no), TNM stage (stage I or stages II–III), Barcelona Clinic Liver Cancer group stage (stages 0–A or stages B–D), plgR (low or high expression, on the basis of a score ranging from 0 to 4 [low] and 6 to 8 [high]). Multivariable risk ratios with 95% confidence intervals were calculated using Cox multivariable analysis and Cox proportional hazards regression models. Covariables were adopted for their prognostic significance by univariate analysis (P < .05) with forward stepwise selection (forward likelihood ratio). Mouse survival analysis was analyzed using the Kaplan–Meier method and compared using the log-rank test. All statistical tests were two-sided, and P values less than .05 were considered statistically significant.

Results
plgR Expression in HCC Patients With Early Tumor Recurrence
We analyzed 254 tumor specimens from HCC patients for whom follow-up data was available after they underwent curative hepatectomy. Of these HCC patients, 211 (83.1%) tested positive for hepatitis B surface antigen (HBsAg), an indicator of HBV infection (Supplementary Table 1, available online). The tumor specimens were grouped according to high- and low-levels of plgR expression, and 98 specimens (38.6%) belonged to the high-expression group. Patients with high plgR expression had a statistically significantly higher risk of early tumor recurrence as indicated by the decreased DFS compared with HCC patients with low levels of plgR expression (log-rank P = .02, Figure 1, A; hazard ratio = 1.64, 95% CI = 1.08 to 2.48, likelihood ratio test P = .02, Supplementary Table 2, available online, respectively). When stratified by sex, we found that high-level expression of plgR was statistically significantly associated with a higher risk of early recurrence, shown as decreased DFS in male HCC patients, as compared with female HCC patients (log-rank P = .03 vs .57, respectively) (data not shown). Multivariable analyses adjusting for the clinicopathologic variables were adopted for their prognostic significance (P < .05) by univariate analyses, which further confirmed that high expression of plgR was an independent prognostic predictor of early tumor recurrence in HCC patients (hazard ratio = 1.61, 95% CI = 1.07 to 2.45, P = .02) (Table 1).

HBV-related carcinogenesis is a multistep process, encompassing the combination of different not mutually exclusive effects such as the induction of chronic liver inflammation and regeneration (37). HBsAg positivity indicates a clear HBV infection and harbors a higher risk to develop HCC, whereas the positivity of hepatitis B e antigen (HBeAg) usually indicates active HBV replication (38). When stratified by HBV viral status, we found that high-level expression of plgR was statistically significantly associated with a higher risk of early recurrence, shown as decreased DFS in HBsAg-positive HCC patients, as compared with HBsAg-negative patients (log-rank P = .02 vs .62, respectively) (Figure 1, B). A similar but non-statistically significant trend was also observed in HBeAg-positive patients (HBeAg-positive vs HBeAg-negative HCC patients, log-rank P = .05 vs .14) (Supplementary Figure 1, A, available online). These findings suggest that HBsAg-associated chronic liver inflammation may lead to increased plgR protein expression that subsequently promotes tumor early recurrence.

Because loss of E-cadherin expression, a hallmark of EMT, is noted in many malignancies and is associated with metastatic potential (39–41), we examined E-cadherin levels using IHC staining and analyzed the relationship between E-cadherin and plgR expression. High-level plgR expression was statistically significantly associated (P = .02) with loss of E-cadherin (69.8%) (plgR high expression level patients vs plgR low expression level patients, E-cadherin weak positive rate = 69.8% vs 45.7%, difference = 24.1%, 95% CI of the difference = 4.2% to 44.0%) (Figure 1, C) in HCC specimens showing early tumor recurrence. Figure 1, D shows the corresponding representative IHC-stained tissue sections. This inverse association between plgR and E-cadherin expression was also confirmed by immunoblotting (Supplementary Figure 1, B, available online). In addition, high-level expression of plgR was also associated with reduced expression of another epithelial marker, pan-cytokeratin, and with an elevated level of the mesenchymal marker, vimentin (Supplementary Figure 1, B, available online). Such a specific expression pattern suggests a role for plgR in EMT induction in HCC patients.

High expression of plgR remained statistically significantly associated with DFS and its reflecting early tumor recurrence in...
this scenario in patients with early stages of HCC when further stratified by the level of vascular invasion ($P = .03$), the number of tumors ($P = .004$), tumor size ($P = .03$), and TNM stage ($P = .005$) (Figure 2, A–D, left panel). In contrast, plgR expression was not statistically significantly associated with DFS in patients with late-stage HCC when stratified using these same variables (Figure 2, A–D, right panel). Because early recurrence is most likely the consequence of occult metastasis from the initial tumor (31,33), our data suggest that high-level plgR expression is closely associated with a higher risk of metastasis, particularly in patients at early stages of HCC. These results further suggest that plgR may serve as an important tumor metastatic factor predicting metastatic potential in the clinic, particularly in the early stages of HCC.

Relationship Between plgR Expression and EMT Induction In Vitro

To confirm the role of plgR in EMT, we used a model epithelial cell line, MDCK, to generate six stable cell lines, one overexpressing plgR (MDCK-plgR) and the other five with plgR shRNA knockdown (MDCK-plgR-shRNA1, shRNA2, shRNA3) and controls (MDCK-plgR-con.shRNA and MDCK-mock). Parental MDCK cells exhibit a cobblestone morphology in monolayer cultures with tight cell–cell contacts, characteristic of epithelial cells. However, MDCK cells with elevated expression of plgR showed loss of cell–cell contact and displayed a spindle-like fibroblastic morphology, one of the principal characteristics of EMT (Figure 3, A). Such morphological changes were accompanied by almost complete loss of the epithelial markers E-cadherin and pan-cytokeratin (Figure 3, B, and Supplementary Figure 2, A, available online) and by increased expression of the mesenchymal markers vimentin and fibronectin (Figure 3, B, and Supplementary Figure 2, A, available online). The mesenchymal phenotype, including cellular morphology and the expression pattern of mesenchymal markers, displayed by the plgR high-expressing MDCK cells was almost completely reversed by shRNA knockdown of plgR (Figure 3, A–B, and Supplementary Figure 2, A, available online), indicating that plgR is required for
induction of EMT in MDCK cells. Furthermore, high expression of pIgR was also sufficient to induce EMT in two hepatic carcinoma cell lines: SMMC-7721 (Figure 3, A–B) and BEL-7404 (data not shown), as well as a normal liver cell line LO2 (data not shown), when these cell lines were induced to transiently or stably overexpress pIgR.

We next examined whether cell motility was affected by pIgR-induced EMT. Overexpression of pIgR resulted in a clear and potent migratory phenotype as assessed by a wound-healing assay in both SMMC-7721 (pIgR vs mock, mean migration distance at 6 hours = 56.9 vs 15.5 µm; mean difference = 41.4 µm, 95% CI of the difference = 11.0 to 71.8 µm, \(P = .004 \); similar results were observed at 3 and 9 hours) (Figure 3, C) and MDCK cells (pIgR vs mock, mean migration distance at 6 hours = 81.5 vs 30.9 µm, mean difference = 50.6 µm, 95% CI of the difference = 35.7 to 65.5 µm, \(P < .001 \); similar results were observed at 3 and 9 hours) (Figure 3, D). Matrigel invasion studies also revealed that MDCK-pIgR cells were statistically significantly more invasive compared with MDCK-mock cells (Supplementary Figure 2, B, available online). Furthermore, high-level expression of pIgR was associated with a statistically significant decrease in cell adhesion (Supplementary Figure 2, C, available online). In agreement with these findings, overexpression of pIgR in MDCK and SMMC-7721 cells dramatically activated uPA activity (Figure 3, E), a hallmark of cancer cell invasion and metastasis (42,43). Conversely, pIgR knockdown in pIgR-overexpressing MDCK cells reversed the migratory phenotypes, as shown in the wound-healing assay (pIgR shRNA1 vs pIgR con.shRNA, mean migration distance at 6 hours = 70.8 vs 80.1 µm, mean difference = −9.3 µm, 95% CI of the difference = −14.5 to −4.1 µm, \(P = .14 \); pIgR shRNA2 vs pIgR con.shRNA, mean migration distance at 6 hours = 48.0 vs 80.1 µm, mean difference = −32.1 µm, 95% CI of the difference = −64.0 to −0.2 µm, \(P = .004 \); pIgR shRNA3 vs pIgR con.shRNA, mean migration distance at 6 hours = 38.3 vs 80.1 µm, mean difference = −41.8 µm, 95% CI of the difference = −46.6 to −37.0 µm, \(P = .001 \); similar results were observed at 3 and 9 hours) (Figure 3, D). Similar results were observed in matrigel invasion assay and adhesion assay (Supplementary Figure 2, B–C, available online).

Table 1. Multivariable analyses of factors associated with DFS in 254 hepatocellular carcinoma patients

<table>
<thead>
<tr>
<th>Variables†</th>
<th>HR (95% CI)</th>
<th>(P)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor number (multiple vs single)</td>
<td>1.76 (1.07 to 2.92)</td>
<td>.03</td>
</tr>
<tr>
<td>Vascular invasion (yes vs no)</td>
<td>2.28 (1.49 to 3.48)</td>
<td><.001</td>
</tr>
<tr>
<td>pIgR (high vs low)</td>
<td>1.61 (1.07 to 2.45)</td>
<td>.02</td>
</tr>
</tbody>
</table>

† Cox multivariable analysis and Cox proportional hazards regression models were used. Variables were adopted for their prognostic significance by univariable analysis (\(P < .05 \)) with forward stepwise selection (forward likelihood ratio).
‡ For patients who had a confirmed tumor recurrence, DFS was calculated as the time that early recurrence (≤2 years) was first suspected. DFS was used as surrogate endpoint for indicating early recurrence.
§ \(P \) values were calculated using a two-sided likelihood ratio test.
Having established that high expression of pIgR was associated with early recurrence of chronically HBV-infected HCC patients, and increased pIgR expression induced EMT, we next asked whether elevated pIgR expression by the stimulation of proinflammatory cytokines could induce EMT induction in vitro. To this end, we chose a model cell line, human colonic adenocarcinoma HT29, which can respond well to the stimulation of cytokines in terms of increasing pIgR expression (16,17). We exposed the HT29 cell line to various concentrations of proinflammatory cytokines and, as expected, exposure to high concentrations of TNF-α, IL-4, or IFN-γ increased expression of pIgR and vimentin and...
decreased expression of E-cadherin in a dose-dependent and time-dependent manner (Figure 4, A–C). Moreover, knockdown of plgR in TNF-α-treated HT29 cells triggered a decrease in vimentin and an increase in E-cadherin (Figure 4, D). Together, these data indicate that proinflammatory cytokines induce expression of plgR, which in turn activates EMT, a critical step for inflammation-initiated tumor progression. In TNF-α-stimulated HT29 cells, a statistically significant increase in plgR expression was also accompanied by increased uPA activity (Figure 4, E), further supporting the role of plgR in EMT induction.

Effect of plgR Overexpression on Metastatic Lesions In Vivo
To determine the in vivo consequences of plgR overexpression, we injected MDCK-mock, MDCK-plgR, MDCK-plgR-con.shRNA, or MDCK-plgR-shRNA3 cells into the lateral tail veins of SCID mice (n = 5) and evaluated the survival of cells in circulation and their metastatic growth in the lung. After 10 weeks, the MDCK-plgR-injected mice displayed a statistically significantly higher number of lung metastases than mice injected with MDCK-mock cells (plgR mean = 29.4 metastatic nodules per lung vs control mean = 0.0 metastatic nodules per lung, difference = 29.4 metastatic nodules per lung, 95% confidence interval = 13.0 to 45.8, P = .001), indicative of extravasation to and tumor growth in the lung (Figure 5, A and B). When lungs underwent hematoxylin and eosin staining, lung metastases were observed in all five mice intravenously injected MDCK-plgR cells, whereas no obvious lung metastases were observed in the mice intravenously injected MDCK-mock cells (Figure 5, C shows representative hematoxylin- and eosin-stained lung sections). In contrast, MDCK-plgR-shRNA3

Figure 4. The effect of polymeric immunoglobulin receptor (plgR) up-regulation by proinflammatory cytokines on induction of epithelial–mesenchymal transition in HT29 cells. HT29 cells treated with the indicated concentrations of A) TNF-α, B) IL-4, or C) IFN-γ in serum-free medium for 48 hours (left panels) or after treatment in serum-free medium for 0, 12, 24, 48, and 72 hours (right panels) underwent immunoblot for plgR, E-cadherin, and vimentin expression. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control. The experiment was repeated three times with similar results. D) plgR siRNA3-transfected HT-29 cells were treated with TNF-α in serum-free medium for 48 hours and analyzed by immunoblotting for plgR, E-cadherin, vimentin, and GAPDH (loading control). Data are representative of three independent experiments. E) urokinase-type plasminogen activator (uPA) activation in HT29 cells treated with TNF-α for 48 hours was determined. Data from three independent experiments performed in triplicate are presented as the mean with SD (error bars). *P < .001 vs untreated HT29 cells, as calculated using the two-sided Student t test. IFN-γ = interferon γ; IL-4 = interleukin 4; siRNA = short interfering RNA; TNF-α = tumor necrosis factor α.
cells did not metastasize or had statistically significantly fewer metastatic nodules per lung (pIgR shRNA3 vs pIgR con.shRNA, mean number of metastatic nodules per lung = 0.4 vs 22.2 nodules, mean difference = −21.8 nodules, 95% CI of the difference = −43.3 to −0.3 nodules, \(P = .03 \)) (Figure 5, A–C). Similar results were obtained in mice injected with liver cancer cells that have pIgR overexpression on metastasis in vivo. The metastatic abilities of Madin–Darby canine kidney (MDCK) cells stably expressing an empty vector (Mock), pIgR cDNA, pIgR cDNA plus control (non-targeting) short hairpin RNA (shRNA), or pIgR cDNA plus pIgR shRNA3 were examined in severe combined immunodeficient (SCID) mice via tail vein injection. A) The number of metastatic nodules on the surface of the lungs of mice injected with the MDCK cells (n = 5 mice per group) was determined. Data are presented as the mean and SD (error bars). * \(P = .001 \) vs the mock group, and † \(P = .03 \) vs the pIgR con.shRNA group. All \(P \) values were calculated using the two-sided Student t test. This experiment was repeated three times with similar results. B) Representative images of lungs on day 70 after mice were injected with MDCK stable transfectants (scale bar = 5 mm). C) Representative images of hematoxylin and eosin (H&E) and immunohistochemical staining of pIgR in lung tissues of mice injected with MDCK stable transfectants (scale bar = 50 µm, at \(\times 40 \) magnification) are shown. D-F) The metastatic abilities of SMMC-7721 cells stably expressing empty vector (mock) or pIgR cDNA were examined in SCID mice via tail vein injection. D) Number of metastatic nodules on the surface of the lungs of mice injected with SMMC-7721 transfectants (n = 11 mice in the mock group and n = 5 mice in the pIgR group) are presented as the mean and SD (error bars). * \(P = .03 \) vs the mock group, calculated by the two-sided Student t test. E) Representative images of H&E stained of lung tissues from mice injected with SMMC-7721 transfectants (scale bar = 50 µm). F) The comparison of survival curves of mice injected with either SMMC-7721-pIgR or SMMC-7721-mock vectors. Survival rates with 95% confidence intervals (light color lines) in mice injected with either SMMC-7721-pIgR or SMMC-7721-mock vectors are shown. \(P \) was calculated by the two-sided log-rank test. The absolute number of mice at risk is listed below the curve. The last column number indicates the number of mice at risk on day 69. IHC = immunohistochemistry.
overexpression (SMMC-7721-plgR cells: plgR mean = 10.4 metastatic nodules per lung vs control mean = 2.2 metastatic nodules per lung, difference = 8.2 metastatic nodules per lung, 95% confidence interval = 1.0 to 15.5, P = .03) (Figure 5, D–E). These mice had a statistically significantly shorter survival rate (survival rate analysis of mice intravenously injected plgR-overexpressing SMMC-7721 cells, plgR vs mock, survival rate = 41.7% vs 91.7%, difference = −50%, 95% CI of the difference = −82.0% to −18.0%, P = .007) compared with mice that were injected with SMMC-7721 cells with barely detectable expression of plgR (Figure 5, F). Our data thus indicate that plgR is necessary for the development of the aggressive and highly metastatic phenotype.

Relationship Between plgR Overexpression and Activation of Smad Signaling

To determine the molecular basis of how plgR induces EMT, we focused on the Smad signaling pathway that is known to play a major role in EMT induction. Increased expression of plgR in MDCK and SMMC-7721 cells caused a dramatic activation of Smad2/3 compared with the mock control–treated cells (Figure 6, A). Similar results were obtained for TNF-α-, IL-4-, and IFN-γ-treated HT29 cells (Supplementary Figure 3, A–C, available online).

To further confirm the ability of plgR to induce Smad activation, we used shRNAs or siRNA to knock down plgR expression. Knockdown of plgR resulted in a substantial decrease in phosphorylated Smad 2/3 in plgR-overexpressing MDCK cells (Figure 6, A) and in TNF-α-treated HT29 cells (Supplementary Figure 3, D, available online), suggesting that plgR was required for Smad activation. Because transforming growth factor β (TGF-β), a known Smad canonical stimulus, synergizes with proinflammatory cytokines in EMT induction (14,45–48), we introduced TGF-β to MDCK-plgR, SMMC-7721-plgR, and TNF-α-stimulated HT29 cells. We found that TGF-β caused a dramatic increase in Smad2/3 phosphorylation and vimentin expression and a decreased in E-cadherin expression, when compared with the TGF-β-untreated plgR high-expressing cells at both 24 and 48 hours (Figure 6, B and Supplementary Figure 3, E, available online).

These data indicated that TGF-β and plgR converged in activating Smad2/3 as part of EMT induction.

We next determined whether plgR-induced EMT was mediated by Smad activation. Transfection of MDCK-plgR or SMMC-7721-plgR cells with either Smad2/3 or Smad2 siRNAs almost completely reversed the plgR-driven EMT as measured by an increase in E-cadherin and cytokeratin and a decrease in vimentin levels (Figure 6, C). Smad3 siRNAs also inhibited plgR-directed EMT but to a lesser extent compared with Smad2 knockdown. These data indicate that activation of Smads, particularly Smad2, is essential for plgR-induced EMT.

To determine whether plgR promotes Smad activation in vivo, we examined Smad2/3 phosphorylation in HCC samples. Increased levels of phospho-Smad2/3 were observed in plgR-overexpressing HCC samples that exhibited EMT characteristics (Supplementary Figure 1, B, available online), indicating that high levels of plgR expression lead to increased Smad activation and EMT induction.

Mechanism of Smad Activation by plgR

To determine how plgR activates Smad, we tested whether plgR plays a direct role in recruiting the Smad signaling complex. Using immunofluorescence assay in plgR-expressing MDCK and SMMC-7721 cells, we found that overexpression of plgR increased Smad2/3 nuclear translocation (Supplementary Figure 4, A and B, available online). More importantly, we found that plgR, Smad2, and Smad3 were colocalized extensively with EEA1, an early endosome marker (Supplementary Figure 4, A and B, available online). Specifically, plgR and Smad2/3 were present in the same endocytic compartment, the EEA1-positive early endosome. This finding is consistent with a previous report that both plgR and Smad2/3 are localized to EEA1-positive early endosomes (18,49–52).

Furthermore, endogenous Smad2/3 was immunoprecipitated with an anti-plgR antibody from cell lysates from MDCK-plgR cells and plgR transiently expressing SMMC-7721 cells, and vice versa (Figure 6, D). These reciprocal co-immunoprecipitation data suggest that plgR activates Smad signaling by recruiting the Smad2/3 complex. To identify which component is the direct target of plgR, we repeated the co-immunoprecipitation with lysates from MDCK-plgR cells and plgR transiently overexpressing SMMC-7721 cells after treatment with siRNA for Smad2 or Smad3. Knockdown of Smad2, but not Smad3, led to disruption of plgR-Smad interactions, suggesting that plgR plays a direct role in recruiting Smad2 (Figure 6, E). We also found that endogenous plgR interacted with endogenous Smad2/3 in HT29 cells after exposure to IL-4 (Supplementary Figure 3, F, available online).

Together, our data suggest that plgR is a novel partner of the Smad complex and that it activates Smad signaling by recruiting Smad2.

We also found that expression of plgR increased the protein levels of Snail, Slug, and ZEB1, but not Twist1/2, which are all key E-cadherin repressors required for EMT (40,47). Knockdown of plgR in MDCK plgR-expressing cells resulted in a dramatic reversion in the expression pattern of these E-cadherin repressors (Supplementary Figure 5, A–B, available online). These data suggest that plgR-mediated Smad activation converges on the EMT signaling pathways regulated by the Smal, Slug, and ZEB1 transcription factors.

The Role of Serines 682 and 734 in the Cytoplasmic Tail of plgR in EMT Induction

Our results so far have established that plgR has a signaling role in EMT induction in addition to its classic function as a transporter of dIgA and pIgM. To further map which residues in the cytoplasmic domain of plgR are essential for signaling in EMT induction, we performed a series of point mutations in tyrosine residues 677 and 743 and serine 673 mediated EMT induction. Tyrosine 677 and 743 and serine 673 are known to play critical roles in transcytosis, a key step in the major residues required for plgR-mediated immunoglobulin
Figure 6. Activation of Smad signaling by polymeric immunoglobulin receptor (pIgR). A) Protein lysates from Madin–Darby canine kidney (MDCK) cells stably expressing pIgR cDNA or pIgR cDNA plus pIgR short hairpin RNA (shRNA) (top panel) and SMMC-7721 cells transiently expressing pIgR cDNA (bottom panel) were immunoblotted for phospho-Smad2 and phospho-Smad3 (p-Smad2 and p-Smad3, respectively). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin served as a loading control. B) MDCK stable transfectants (top panel) and SMMC-7721 transient transfectants (bottom panel) underwent immunoblotting for p-Smad2 and p-Smad3 24 hours after treatment with TGF-β (5 ng/mL) or were immunoblotted for E-cadherin, pan-cytokeratin, and vimentin 48 hours after transforming growth factor-β (TGF-β) treatment. GAPDH served as a loading control. C) Immunoblots of epithelial and mesenchymal markers and activated Smad2 and Smad 3 in MDCK stable transfectants (top panel) and SMMC-7721 transient transfectants (bottom panel) after a separate transfection with Smad2 and Smad3 siRNAs. D) Co-immunoprecipitation of Smads and pIgR from whole-cell lysates (WCL) prepared from MDCK cells (top panel) and SMMC-7721 cells (bottom panel) as described in (A). Co-immunoprecipitation with IgG served as a negative control. E) Anti-pIgR immunoprecipitates from Smad2 or Smad3 depleted–MDCK cells stably expressing pIgR (left panel) and SMMC-7721 cells transiently expressing pIgR (right panel) were analyzed by immunoblotting for Smads and pIgR. All images are representative of data from three independent experiments. IP = immunoprecipitation; siRNA = short interfering RNA.
transportation differ from those required for plgR-mediated EMT induction.

In contrast, mutations in serine residues 682 and 734 (S682A/S734A and S734A) nearly abolished the ability of plgR to induce EMT (Figure 7, A–B), suggesting that these residues are critical for plgR-induced EMT. Given the essential role of Smad activation in plgR-driven EMT, we tested whether S682 and S734 participated in plgR-directed Smad activation. Whereas wild-type plgR induced Smad2/3 phosphorylation, the S682A/S734A double mutant failed to induce Smad2/3 phosphorylation in MDCK or SMMC-7721 cells (Figure 7, B). Furthermore, the S682A/S734A double mutation substantially reduced interactions between plgR and Smad2/3 (Figure 7, C). These findings suggest that serine residues at positions 734 and 682 are not only required for plgR binding to Smads but also for Smad activation that leads to EMT induction.

Discussion

In this study, we demonstrated that plgR is a signaling mediator of HBV-related hepatitis and HCC metastasis. High expression of plgR was inversely associated with DFS and was associated with poor prognosis in HCC patients. Data showed that the plgR expression level may indicate the metastatic potential of early-stage HCC. Mechanistically, plgR induced the EMT process in vitro and in vivo through activation of Smad signaling. These results establish a missing link between hepatitis-related chronic inflammation, EMT, and HCC metastasis.

It is well known that inflammatory immune responses to HBV viral antigens induce hepatocyte damage, followed by the regeneration of hepatocytes and the development of fibrosis and cirrhosis, which are the important features in pathogenesis of HCC (37, 56). In fact, HBsAg positivity indicates a clear HBV infection; and HBeAg positivity usually reflects active replication with ongoing inflammation and progression of HCCs. In this study, we showed that high-level plgR in HBsAg-positive patients was associated with a higher risk of early recurrence in HCC patients, indicating that the chronic HBV viral infection in hepatitis-related HCC causes the changes of microenvironment such as the release of proinflammatory cytokines that increase plgR expression to promote HCC metastasis. Indeed, we also observed a statistically significant association between TNF-α and plgR expression in HCC patients who had early recurrence, indicated by shorter DFS (data not shown). Notably, in the same specimens from early-recurrence HCC patients, increased plgR levels are accompanied by a loss of E-cadherin, the hallmark of EMT, indicative of the clinical significance of plgR in promoting tumor recurrence and metastasis via EMT induction. The proinflammatory cytokines TNF-α, IL-4, and IFN-γ were observed to increase plgR and promote a clear EMT induction. Our data presented here show that plgR is involved in EMT induction and may be a mechanistic link between hepatitis-related chronic inflammation and HCC.
metastasis, indicating that chronic inflammation to HCC is a decisive factor in EMT induction in HCC metastasis (14,57).

The mainstream view of inflammation and cancer is currently focused on inflammatory cytokines such as TNF-α and their associated signaling pathways. Identification of pIgR as a signaling mediator of inflammation-induced EMT provides a missing link between HBV-related chronic inflammation and HCC metastasis. To the best of our knowledge, pIgR is the first example of a well-known immunoglobulin receptor involved in HBV-related hepatitis-mediated EMT and HCC metastasis. The discovery of this new role could provide a basis for the study of novel mechanisms underlying inflammation-mediated HCC progression.

The important mechanistic finding from our study is that pIgR-induced EMT is mediated by the activation of Smad complex. pIgR activates Smad signaling by recruiting Smad2/3 complex, which is consistent with the fact that both pIgR and Smad2/3 are colocalized in EEA1-positive early endosomes, in which pIgR participates in transcytosis during the immune response (18,52) and Smad2/3 are activated for signal transduction (49–51). The ability of pIgR to activate Smad signaling suggests that pIgR functions as a novel partner of the Smad2/3 signaling complex and establishes the first link between a known immunoglobulin receptor and the Smad signaling pathway. Integrating all the results, we propose a signaling pathway from inflammation to EMT induction. In this pathway, inflammation induced by infections or tumor microenvironments leads to chronic production of cytokines such as TNF-α, which results in overexpression of pIgR and activation of Smad signaling that in turn leads to EMT induction and tumor metastasis.

Generally, the transport of dIgA and pIgM by pIgR is mediated by the ligand binding to the extracellular domain and by transcytosis that requires the cytoplasmic tail of pIgR (18,19). Our mutagenesis studies revealed that different structural elements are required for the transport function and for the EMT induction, respectively. Mutations in tyrosine and serine residues (Y677F and Y743F; S673A and S735A) that are important for transcytosis do not affect EMT function of pIgR, but mutations in two serine residues (S682A and S734A) unrelated to transcytosis nearly abolish the ability of pIgR to induce EMT, suggesting that transcytosis and EMT induction of pIgR are mediated through two distinct signaling pathways. The critical function of S682 and S734 in pIgR-mediated EMT induction also suggests that phosphorylation of these residues may play an important role, and the exact signaling pathways leading to their phosphorylation warrant future investigation. The new role of pIgR in EMT revealed in this study suggests that pIgR has at least two functions: one as the transporter of dIgA and pIgM and the other as a signaling molecule for inflammation-induced EMT.

Establishing the role of pIgR in EMT also helps to resolve the long-standing conflict on the clinical relevance of pIgR in tumor progression (23,24,58–62). This is a reminiscent of the debate about the significance of EMT in tumor progression and its relevance in human cancers, which was not established until recently because EMT is transient and reversible (10,63,64). We observed a statistically significant association between high but not low expression of pIgR and the metastatic risk for early (but not late) stages of HCC, suggesting that pIgR-driven EMT is indeed a transient event at the early stages of HCC. This observation is consistent with previous hypotheses that metastasis is not necessarily a late event in tumor progression (10,65). The discrepancy regarding pIgR expression and clinical relevance in various tumors may be resolved if the stages of the tumors and the subtle characteristics of EMT, which are easily overlooked in clinical samples, are taken into account.

Our study has a few limitations. Although we have noted a clear trend that high expression of pIgR is associated with the early recurrence in HBeAg-positive HCC patients, it was not statistically significant, most likely because of the limited number of patients enrolled in the study. An expanded patient cohort will probably validate this observation. Moreover, our novel findings that increased pIgR expression promotes EMT have expanded the understanding of the role of pIgR in cancer metastasis, but the detailed regulatory network is presumably far more expansive than what our study has shown. It, therefore, will be important to carry out further investigations to identify additional signaling modulators and delineating pivotal regulatory mechanisms involving pIgR and metastasis.

In summary, we demonstrate that pIgR is a novel signaling mediator of HBV-related chronic inflammation–induced tumor metastasis via EMT induction besides its normal function as a transporter of IgA and IgM. Given a major obstacle for the poor prognosis of HCC is recurrence and metastasis after surgery or ablation therapy (4–7), identification of pIgR as a predictor of metastatic potential in early-stage HCC patients could facilitate patient stratification and therapeutic decisions at early stage, therefore affecting the clinical outcome. Our study not only reveals a missing link between HBV-related chronic inflammation and HCCs metastasis but also provides a potential predictive biomarker for prognosis of HCC and a potential therapeutic target.

References

36.ACCEPTED MANUSCRIPT

Funding
This research was supported by grants from the Natural Science Foundation of China for Distinguished Young Scholars (30725046 to MG), the Natural Science Foundation of China for Innovation Research Group (81021062 to JD), the National Key Sci-Tech Special Project of Infectious Diseases (2008ZX10002–022 to YX), and the National Natural Science Foundation of China (30873039 to YX).

Notes
J. Ai, Q. Tang, Y. Wu, and Y. Xu contributed equally to this work. M. Geng and J. Ding designed and supervised this study, analyzed the data, and wrote the article. J. Fan supervised the analysis and comparison of human hepatocellular carcinoma microarray data. J. Ai designed and performed experiments, collected and analyzed data, and cowrote the article. Q. Tang and Y. Wu designed and performed experiments, collected, and analyzed data. Y. Xu analyzed and compared human hepatocellular carcinoma microarray data and cowrote part of the article. Y. Chen helped design and conduct the in vivo lung metastasis experiment. T. Feng, R. Zhou, X. Gao, X. Yue, and Q. Pan technically assisted with experiments and collected and analyzed data. S. Xu performed experiments in initial stages of the project. Q. Zhu contributed to the comparison of human hepatocellular carcinoma microarray data. J. Daugherty-Holtrop, Y. He, and H. E. Xu designed and performed the urokinase-type plasminogen activator assay. J. Li conducted experiments in initial stages of the project, and M. Huang contributed to the discussion of the article and editing the figures.

We thank professors Qiang Yu (Shanghai Institute of Materia Medica, Shanghai, China), Junying Yuan (Harvard Medical School, Boston, MA), Kunliang Guan (University of California, Los Angeles, CA), and Min Li (Johns Hopkins University, Baltimore, MD) for their valuable comments and critical review of the article. We are grateful to the patients and clinicians in Zhong Shan Hospital. We thank Dr Bo Yang and Dr Yuan Ji for assessing immunohistochemical staining of hepatocellular carcinoma tissue microarray. We wish to thank Lijuan Lu, Yong Xi, and Yanyan Shen for providing technical support for the in vivo lung metastasis experiments (Shanghai Institute of Materia Medica). We also wish to thank Dr Finn-Eirik Johansen (Rikshospitalet University Hospital, Oslo, Norway) for providing the pcDNA3.1-pIgR plasmid.

Affiliations of authors: Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (JA, YC, XG, XY, QP, MH, JD, MG); Department of Pharmacology and Glycobiology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China (QT, YW, TF, RZ, SX, JL, MG); Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, and Institute of Biomedical Sciences, Fudan University, Shanghai, China (YX, QZ, JF); Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan (JD-H, YH, HEX); Center for Structural Biology of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (HEX).