Re: Novel Therapies for Metastatic Castrate-Resistant Prostate Cancer

The review article by Dayyani et al. (1) on novel therapies for metastatic castrate-resistant prostate cancer brings much needed attention to the therapeutic implications of interactions between the tumor, stroma, and associated tissue microenvironment in metastatic prostate cancer, an area of considerable importance (2). We were surprised that there was no mention of radium-223, which interacts with an important component of the tumor microenvironment (hydroxyapatite) that is closely intertwined with cancerous cells in osteoblastic bone metastases. This oversight is particularly unfortunate, given that the phase III trial of radium-223 (ClinicalTrials.gov identifier NCT00699751), which enrolled more than 900 patients with bone metastases from castrate-resistant prostate cancer, has recently reported an overall survival benefit (3).

OLIVER SARTOR
CHRIS PARKER

References

Notes
Affiliations of authors: Tulane Cancer Center, Department of Medicine and Department of Urology, Tulane University School of Medicine, New Orleans, LA (OS); Academic Urology Unit, Institute of Cancer Research and Royal Marsden Hospital, Sutton, UK (CP).
Correspondence to: Oliver Sartor, MD, Tulane Cancer Center, Department of Medicine and Department of Urology, Tulane Medical School, 1430 Tulane Ave, SL-42, New Orleans, LA 70112 (e-mail: osartor@tulane.edu).
Conflicts of interest: O. Sartor has been a paid consultant to Algeta and Bayer and has been an Investigator for Algeta in clinical trials with radium-223. C. Parker has been a paid consultant to Bayer and Investigator for Algeta in clinical trials with radium-223.
DOI: 10.1093/jnci/djs162
© The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.